Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 165-178.doi: 10.3864/j.issn.0578-1752.2023.01.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis

YANG XinRan1(),MA XinHao1,DU JiaWei1,ZAN LinSen1,2()   

  1. 1. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
    2. National Beef Cattle Improvement Center, Yangling 712100, Shaanxi
  • Received:2021-09-30 Accepted:2022-04-12 Online:2023-01-01 Published:2023-01-17
  • Contact: LinSen ZAN E-mail:yangxinran93@nwafu.edu.cn;zanlinsen@163.com

Abstract:

【Objective】 The role of RNA m6A methylation modification in muscle development has been continuously discovered in recent years. The aim of this study was to explore the mRNA expression of m6A methylases, including METTL3, METTL14, WTAP, FTO, and ALKBH5, in bovine muscle tissue and in the proliferation and differentiation of skeletal muscle satellite cells (SMSCs). Meanwhile, the changes of m6A level during SMSCs myogenic differentiation in vitro were analyzed. This study could provide a reference for clarifying the role and mechanism of m6A modification in skeletal muscle development. 【Method】 The expression of m6A methylases in skeletal muscle of newborn and adult cattle was detected by real-time quantitative PCR (RT-qPCR). Then, SMSCs were isolated from the Longissimus dorsi muscle of Qinchuan beef cattle. The proliferation and myogenic differentiation of SMSCs were verified by cell growth curve, immunofluorescence and RT-qPCR, and the temporal expression profiles of m6A methylases in proliferation (24 h, 36 h, 48 h, 60 h, and 72 h) and differentiation (Day 0, 2, 4, 6, and 8) of SMSCs were detected by RT-qPCR. Finally, the m6A levels during SMSCs differentiation were detected using LC-MS/MS and dot blot assays. 【Result】 The mRNA expression levels of m6A methyltransferases, including METTL3, METTL14, and WTAP, in the Longissimus dorsi muscle, forelegs muscle and hind legs muscle of adult cattle were significantly lower than those of newborn cattle (P<0.01). The mRNA expression of demethylases such as FTO and ALKBH5 in the hind leg muscle of adult cattle was higher (P<0.01), and ALKBH5 was higher in the Longissimus dorsi muscle of adult cattle (P<0.01). The isolated SMSCs had the functions of normal growth, proliferation and myogenic differentiation. The expression of METTL3 decreased gradually in SMSCs proliferation, but increased significantly at 72 h. The expression of METTL14 did not change significantly, while WTAP reached the highest level at 48 h, and then decreased gradually. The temporal expression profiles of FTO and ALKBH5 were similar in the proliferative phase. They did not change obviously before 60 h and increased significantly at 72 h. The expression patterns of METTL3, METTL14 and WTAP were consistent during SMSCs differentiation, with an increase in the early stage of differentiation, followed by a decrease, and an increase in the late stage of differentiation. The expression of FTO increased gradually with differentiation. The expression of ALKBH5 increased during the first 4 days of differentiation and then continuously decreased. Furthermore, the overall m6A level of mRNA declined during the myogenic differentiation in SMSCs (P<0.01). 【Conclusion】 The expression changes of m6A methyltransferases and demethylases in skeletal muscle of newborn and adult cattle were significantly different, suggesting that m6A modification might have an important role in the development of skeletal muscle in Qinchuan cattle. Meanwhile, these m6A methylases might regulate the proliferation and differentiation of bovine SMSCs. These results provide a theoretical basis for the study of the role and molecular mechanism of m6A methylation modifications in regulating skeletal myogenesis.

Key words: N6-methyladenosine (m6A), m6A methylase, cattle, skeletal muscle satellite cells, cell proliferation, myogenic differentiation

Table 1

Primers for RT-qPCR"

基因名称 Gene name 引物序列 Primer sequence (5′-3′) 产物长度 Product length (bp)
METTL3 F: TCGAAAGCTGCACTTCAGAC 199
R: TCCAACGCTCTGTGTAAGGG
METTL14 F: TGACATCAGAGAACTGACACCC 198
R: AGGTCCAATCCTTCCCCAGA
WTAP F: GCCTGGAAGTTTACGCCTGA 176
R: TCCTGACTGCTTTTAAGCTCCT
FTO F: AGCAGCGTACAACGTCACTT 193
R: AGGGTCGTCCTCACTTTCCT
ALKBH5 F: TACTTCTTCGGCGAGGGCTA 191
R: TGGTAGTCGTTGATGACGGC
MYOD1 F: AACCCCAACCCGATTTACC 196
R: CACAACAGTTCCTTCGCCTCT
MYOG F: GGCGTGTAAGGTGTGTAAG 85
R: CTTCTTGAGTCTGCGCTTCT
MYF6 F: GTGATAACTGCCAAGGAAGGAG 93
R: CGAGGAAATGCTGTCCACGA
MYH3 F: TGAACGCCCTCTCCAAATCC 101
R: AATGAAGTGCTGTCTCGGCA
GAPDH F: AGTTCAACGGCACAGTCAAGG 124
R: ACCACATACTCAGCACCAGCA

Fig. 1

Expression of m6A methylase genes in different parts of skeletal muscle in Qinchuan beef cattle A: Relative mRNA expression of METTL3 in different parts of skeletal muscle in newborn and adult Qinchuan beef cattle; B: METTL14; C: WTAP; D: FTO; E: ALKBH5. *means significant difference (P<0.05), **means extremely significant difference (P<0.01), no makers mean no significant difference (P>0.05). The same as below"

Fig. 2

Detection of proliferation phase of skeletal muscle satellite cells in Qinchuan beef cattle A: Phenotypic observation of bovine SMSCs proliferation (scale bar: 200 μm); B: Growth curve of bovine SMSCs; C: Identification of SMSCs based on PAX7 and MYOD1 expression in growth medium for 48 h (scale bar: 50 μm)"

Fig. 3

Detection of bovine SMSCs myogenic differentiation A: Observation of myotube formation on days 0, 2, 4, 6 and 8 of culture in differentiation medium after the induction of myogenic differentiation (scale bar: 100 μm); B: Identification of differentiated myotubes based on MYHC expression after culture in differentiation medium for 2, 4 and 6 days (scale bar: 200 μm); C: Relative mRNA expression of myogenic genes (MYOD1, MYOG, MYF6 and MYH3) during bovine SMSCs differentiation. Different capital letters indicate very significant differences (P<0.01), different lowercase letters indicate significant differences (P<0.05), and the same letters indicate no significant differences (P>0.05). The same as below"

Fig. 4

Temporal expression profile of m6A methylation-related genes during SMSCs proliferation A: Temporal mRNA expression profile of METTL3 during SMSCs proliferation; B: METTL14; C: WTAP; D: FTO; E: ALKBH5"

Fig. 5

Temporal expression profile of m6A methylation-related genes during SMSCs myogenic differentiation A: Temporal mRNA expression profile of METTL3 during SMSCs myogenic differentiation; B: METTL14; C: WTAP; D: FTO; E: ALKBH5"

Fig. 6

Changes of m6A level during SMSCs myogenic differentiation A: LC-MS/MS assay showing the amount of mRNA m6A during myogenic differentiation; **means extremely significant difference (P<0.01). B: Dot blotting was used to detect the m6A modification of mRNA at D0, D2 and D4 during SMSCs myogenic differentiation. Methylene blue staining was used as a loading control"

[1] BRAUN T, GAUTEL M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature Reviews Molecular Cell Biology, 2011, 12(6): 349-361. doi:10.1038/nrm3118.
doi: 10.1038/nrm3118 pmid: 21602905
[2] LIU J, YUE Y, HAN D, WANG X, FU Y, ZHANG L, JIA G, YU M, LU Z, DENG X, DAI Q, CHEN W, HE C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology, 2014, 10 (2): 93-95. doi:10.1038/nchembio.1432.
doi: 10.1038/nchembio.1432 pmid: 24316715
[3] PING X L, SUN B F, WANG L, XIAO W, YANG X, WANG W J, ADHIKARI S, SHI Y, LV Y, CHEN Y S, ZHAO X, LI A, YANG Y, DAHAL U, LOU X M, LIU X, HUANG J, YUAN W P, ZHU X F, CHENG T, ZHAO Y L, WANG X, DANIELSEN J M R, LIU F, YANG Y G. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24(2): 177-189. doi:10.1038/cr.2014.3.
doi: 10.1038/cr.2014.3
[4] JIA G, FU Y, ZHAO X, DAI Q, ZHENG G, YANG Y, YI C, LINDAHL T, PAN T, YANG Y G, HE C. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO">. Nature Chemical Biology, 2011, 7(12): 885-887. doi:10.1038/nchembio.687.
doi: 10.1038/nchembio.687 pmid: 22002720
[5] ZHENG G Q, DAHL J A, NIU Y M, FEDORCSAK P, HUANG C M, LI C J, VÅGBØ C B, SHI Y, WANG W L, SONG S H, LU Z K, BOSMANS R P G, DAI Q, HAO Y J, YANG X, ZHAO W M, TONG W M, WANG X J, HE C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 2013, 49(1): 18-29. doi:10.1016/j.molcel.2012.10.015.
doi: 10.1016/j.molcel.2012.10.015
[6] WANG X, LU Z, GOMEZ A, HON G C, YUE Y, HAN D, FU Y, PARISIEN M, DAI Q, JIA G, REN B, PAN T, HE C. N6- methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120. doi:10.1038/nature12730.
doi: 10.1038/nature12730
[7] FU Y, DOMINISSINI D, RECHAVI G, HE C. Gene expression regulation mediated through reversible m6A RNA methylation">. Nature Reviews Genetics, 2014, 15(5): 293-306. doi:10.1038/nrg3724.
doi: 10.1038/nrg3724
[8] WANG X, ZHAO B S, ROUNDTREE I A, LU Z K, HAN D L, MA H H, WENG X C, CHEN K, SHI H L, HE C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015, 161(6): 1388-1399. doi:10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014
[9] SHI H L, WEI J B, HE C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell, 2019, 74(4): 640-650. doi:10.1016/j.molcel.2019.04.025.
doi: S1097-2765(19)30317-X pmid: 31100245
[10] WANG X, HUANG N, YANG M, WEI D, TAI H, HAN X, GONG H, ZHOU J, QIN J, WEI X, CHEN H, FANG T, XIAO H. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death & Disease, 2017, 8(3): e2702. doi:10.1038/cddis.2017.122.
doi: 10.1038/cddis.2017.122
[11] KUDOU K, KOMATSU T, NOGAMI J, MAEHARA K, HARADA A, SAEKI H, OKI E, MAEHARA Y, OHKAWA Y. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biology, 2017, 7(9): 170119.doi:10.1098/rsob.170119.
doi: 10.1098/rsob.170119
[12] TAO X L, CHEN J N, JIANG Y Z, WEI Y Y, CHEN Y, XU H M, ZHU L, TANG G Q, LI M Z, JIANG A N, SHUAI S R, BAI L, LIU H F, MA J D, JIN L, WEN A X, WANG Q, ZHU G X, XIE M, WU J Y, HE T, HUANG C Y, GAO X, LI X W. Transcriptome-wide N6-methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics, 2017, 18: 336. doi:10.1186/s12864-017-3719-1.
doi: 10.1186/s12864-017-3719-1
[13] ZHANG X X, YAO Y L, HAN J H, YANG Y L, CHEN Y, TANG Z L, GAO F. Longitudinal epitranscriptome profiling reveals the crucial role of N6-methyladenosine methylation in porcine prenatal skeletal muscle development. Journal of Genetics and Genomics (Yi Chuan Xue Bao), 2020, 47(8): 466-476. doi:10.1016/j.jgg.2020.07.003.
doi: 10.1016/j.jgg.2020.07.003
[14] XU T S, XU Z J, LU L Z, ZENG T, GU L H, HUANG Y Z, ZHANG S J, YANG P, WEN Y F, LIN D J, XING M P, HUANG L L, LIU G J, CHAO Z, SUN W P. Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose (Anser cygnoides orientalis). BMC Genomics, 2021, 22(1): 270. doi:10.1186/s12864-021-07556-8.
doi: 10.1186/s12864-021-07556-8
[15] YANG X R, WANG J F, MA X H, DU J W, MEI C G, ZAN L S. Transcriptome-wide N6-methyladenosine methylome profiling reveals m 6 A regulation of skeletal myoblast differentiation in cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 2021, 9: 785380. doi:10.3389/fcell.2021.785380.
doi: 10.3389/fcell.2021.785380
[16] 昝林森, 王洪程, 梅楚刚. 秦川牛肉用选育改良及产业化开发. 农业生物技术学报, 2015, 23(1): 135-140. doi:10.3969/j.issn.1674-7968.2015.01.015.
doi: 10.3969/j.issn.1674-7968.2015.01.015
ZAN L S, WANG H C, MEI C G. Breeding and improvement of Qinchuan cattle and its beef industrialization. Journal of Agricultural Biotechnology, 2015, 23(1): 135-140. doi:10.3969/j.issn.1674-7968.2015.01.015. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2015.01.015
[17] 杜嘉伟, 杜鑫泽, 杨昕冉, 宋贵兵, 赵慧, 昝林森, 王洪宝. 干扰TP53INP2抑制牛成肌细胞分化. 中国农业科学, 2021, 54(21): 4685-4693. doi:10.3864/j.issn.0578-1752.2021.21.017.
doi: 10.3864/j.issn.0578-1752.2021.21.017
DU J W, DU X Z, YANG X R, SONG G B, ZHAO H, ZAN L S, WANG H B. Interference in TP53INP2 gene inhibits the differentiation of bovine myoblasts. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693. doi:10.3864/j.issn.0578-1752.2021.21.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.21.017
[18] 宁越, 米雪, 陈星伊, 邵建航, 昝林森. SMAD1基因的沉默和过表达及对秦川牛原代成肌细胞生肌的影响. 中国农业科学, 2019, 52(10): 1818-1829. doi:10.3864/j.issn.0578-1752.2019.10.014.
doi: 10.3864/j.issn.0578-1752.2019.10.014
NING Y, MI X, CHEN X Y, SHAO J H, ZAN L S. Silencing and overexpressing SMAD family member 1 (SMAD1) gene and its effect on myogenesis in primary myoblast of Qinchuan cattle (Bos taurus). Scientia Agricultura Sinica, 2019, 52(10): 1818-1829. doi:10.3864/j.issn.0578-1752.2019.10.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.014
[19] BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. doi:10.1101/cshperspect.a008342.
doi: 10.1101/cshperspect.a008342
[20] YAMAKAWA H, KUSUMOTO D, HASHIMOTO H, YUASA S. Stem cell aging in skeletal muscle regeneration and disease. International Journal of Molecular Sciences, 2020, 21(5): 1830. doi:10.3390/ijms21051830.
doi: 10.3390/ijms21051830
[21] WEI C M, GERSHOWITZ A, MOSS B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell, 1975, 4(4): 379-386. doi:10.1016/0092-8674(75)90158-0.
doi: 10.1016/0092-8674(75)90158-0 pmid: 164293
[22] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, SALMON-DIVON M, UNGAR L, OSENBERG S, CESARKAS K, JACOB-HIRSCH J, AMARIGLIO N, KUPIEC M, SOREK R, RECHAVI G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397): 201-206. doi:10.1038/nature11112.
doi: 10.1038/nature11112
[23] MEYER K D, SALETORE Y, ZUMBO P, ELEMENTO O, MASON C E, JAFFREY S R. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 2012, 149(7): 1635-1646. doi:10.1016/j.cell.2012.05.003.
doi: 10.1016/j.cell.2012.05.003 pmid: 22608085
[24] DENG K P, FAN Y X, LIANG Y X, CAI Y, ZHANG G M, DENG M T, WANG Z B, LU J W, SHI J F, WANG F, ZHANG Y L. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway. Molecular Therapy - Nucleic Acids, 2021, 26: 34-48. doi:10.1016/j.omtn.2021.06.013.
doi: 10.1016/j.omtn.2021.06.013
[25] 丁浩, 林月月, 张涛, 张闪闪, 吴玉麟, 段严军, 巩用双, 谢恺舟, 王金玉, 戴国俊, 张跟喜. m6A甲基化在鸡肌肉生长发育中的表达研究. 中国畜牧兽医, 2021, 48(5): 1525-1534. doi:10.16431/j.cnki.1671-7236.2021.05.003.
doi: 10.16431/j.cnki.1671-7236.2021.05.003
DING H, LIN Y Y, ZHANG T, ZHANG S S, WU Y L, DUAN Y J, GONG Y S, XIE K Z, WANG J Y, DAI G J, ZHANG G X. Study on the expression of m6A methylation in chicken muscle growth and development. China Animal Husbandry & Veterinary Medicine, 2021, 48(5): 1525-1534. doi:10.16431/j.cnki.1671-7236.2021.05.003. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2021.05.003
[26] 朱琳娜. FTO、METTL3基因表达对猪脂肪细胞mRNA N6-甲基腺苷水平及脂肪沉积的影响研究[D]. 杭州: 浙江大学, 2014.
ZHU L N. Effectof FTO, METTL3Gene expression on mRNAm6Amathylation and lipid metabolism in porcine subcutaneous adipocytes[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[27] 陈悦, 唐竞桐, 罗仕蓉. METTL3-m6A途径抑制肺动脉平滑肌细胞增殖的实验研究. 海南医学, 2021, 32(8): 953-956. doi:10.3969/j.issn.1003-6350.2021.08.001.
doi: 10.3969/j.issn.1003-6350.2021.08.001
CHEN Y, TANG J T, LUO S R. Role of METTL3-dependent m6A in inhibiting proliferation of pulmonary artery smooth muscle cells. Journal of Hainan Medical University, 2021, 32(8): 953-956. doi:10.3969/j.issn.1003-6350.2021.08.001. (in Chinese)
doi: 10.3969/j.issn.1003-6350.2021.08.001
[28] 刘钟颖. 甲基转移酶METTL3在心肌细胞中的作用研究[D]. 武汉: 武汉科技大学, 2020.
LIU Z Y. The role of methyltransferase METTL3 in cardiomyocytes[D]. Wuhan: Wuhan University of Science and Technology, 2020. (in Chinese)
[29] XIA T F, WU X Q, CAO M, ZHANG P B, SHI G D, ZHANG J J, LU Z P, WU P F, CAI B B, MIAO Y, JIANG K R. The RNA m6A methyltransferase METTL 3 promotes pancreatic cancer cell proliferation and invasion. Pathology - Research and Practice, 2019, 215(11): 152666. doi:10.1016/j.prp.2019.152666.
doi: 10.1016/j.prp.2019.152666
[30] HAN J, WANG J Z, YANG X, YU H, ZHOU R, LU H C, YUAN W B, LU J C, ZHOU Z J, LU Q, WEI J F, YANG H W. METTL 3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Molecular Cancer, 2019, 18(1): 110. doi:10.1186/s12943-019-1036-9.
doi: 10.1186/s12943-019-1036-9
[31] LIU J, ECKERT M A, HARADA B T, LIU S M, LU Z K, YU K K, TIENDA S M, CHRYPLEWICZ A, ZHU A C, YANG Y, HUANG J T, CHEN S M, XU Z G, LENG X H, YU X C, CAO J, ZHANG Z Z, LIU J Z, LENGYEL E, HE C. M 6 A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 2018, 20(9): 1074-1083. doi:10.1038/s41556-018-0174-4.
doi: 10.1038/s41556-018-0174-4
[32] 徐晓东.N6-甲基嘌呤(m6A) 甲基转移酶METTL14对胰腺癌增殖和侵袭转移的影响及其机制研究[D]. 武汉: 华中科技大学, 2017.
XU X D. The effect METTL14 on prolifetation and metastasis of pancreatic cancer cells and its mechanisms[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
[33] SMALL T W, BOLENDER Z, BUENO C, O'NEIL C, NONG Z X, RUSHLOW W, RAJAKUMAR N, KANDEL C, STRONG J, MADRENAS J, PICKERING J G. Wilms' tumor 1-associating protein regulates the proliferation of vascular smooth muscle cells. Circulation Research, 2006, 99(12): 1338-1346. doi:10.1161/01.RES.0000252289.79841.d3.
doi: 10.1161/01.RES.0000252289.79841.d3 pmid: 17095724
[34] HORIUCHI K, UMETANI M, MINAMI T, OKAYAMA H, TAKADA S, YAMAMOTO M, ABURATANI H, REID P C, HOUSMAN D E, HAMAKUBO T, KODAMA T. Wilms' tumor 1-associating protein regulates G 2/M transition through stabilization of cyclin A2 mRNA. PNAS, 2006, 103(46): 17278-17283. doi:10.1073/pnas.0608357103.
doi: 10.1073/pnas.0608357103 pmid: 17088532
[35] KONG Y, WU R F, ZHANG S H, ZHAO M, WU H J, LU Q J, FU S Q, SU Y W. Wilms' tumor 1-associating protein contributes to psoriasis by promoting keratinocytes proliferation via regulating cyclinA2 and CDK2. International Immunopharmacology, 2020, 88: 106918. doi:10.1016/j.intimp.2020.106918.
doi: 10.1016/j.intimp.2020.106918
[36] SMALL T W, PICKERING J G. Nuclear degradation of wilms tumor 1-associating protein and survivin splice variant switching underlie IGF-1-mediated survival. Journal of Biological Chemistry, 2009, 284(37): 24684-24695. doi:10.1074/jbc.M109.034629.
doi: 10.1074/jbc.M109.034629 pmid: 19605357
[37] SU R, DONG L, LI C Y, NACHTERGAELE S, WUNDERLICH M, QING Y, DENG X L, WANG Y G, WENG X C, HU C, YU M X, SKIBBE J, DAI Q, ZOU D L, WU T, YU K K, WENG H Y, HUANG H L, CHEN J J. R-2HG exhibits anti-tumor activity by targeting FTO/m6a/MYC/CEBPA signaling. Cell, 2018, 172(1/2): 90-105.e23. doi:10.1016/j.cell.2017.11.031.
doi: 10.1016/j.cell.2017.11.031
[38] ZHANG S C, ZHAO B S, ZHOU A D, LIN K Y, ZHENG S P, LU Z K, CHEN Y H, SULMAN E P, XIE K P, BÖGLER O, MAJUMDER S, HE C, HUANG S Y. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 2017, 31(4): 591-606.e6. doi:10.1016/j.ccell.2017.02.013.
doi: 10.1016/j.ccell.2017.02.013
[39] 方婷晓. m6A去甲基化酶ALKBH5抑制食管鳞癌的增殖、侵袭和迁移[D]. 广州: 南方医科大学, 2019.
FANG T X. M6A demethylase ALKBH5 inhibits proliferation, migration and invasion of esophageal squamous cell carcinoma[D]. Guangzhou: Southern Medical University, 2019. (in Chinese)
[40] GHELLER B J, BLUM J E, FONG E H H, MALYSHEVA O V, COSGROVE B D, THALACKER-MERCER A E. A defined N6- methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discovery, 2020, 6: 95. doi:10.1038/s41420-020-00328-5.
doi: 10.1038/s41420-020-00328-5
[41] CHURCH C, MOIR L, MCMURRAY F, GIRARD C, BANKS G T, TEBOUL L, WELLS S, BRÜNING J C, NOLAN P M, ASHCROFT F M, COX R D. Overexpression of Fto leads to increased food intake and results in obesity. Nature Genetics, 2010, 42(12): 1086-1092. doi:10.1038/ng.713.
doi: 10.1038/ng.713 pmid: 21076408
[42] FISCHER J, KOCH L, EMMERLING C, VIERKOTTEN J, PETERS T, BRÜNING J C, RÜTHER U. Inactivation of the Fto gene protects from obesity. Nature, 2009, 458(7240): 894-898. doi:10.1038/nature07848.
doi: 10.1038/nature07848
[43] ZHAO X, YANG Y, SUN B F, SHI Y, YANG X, XIAO W, HAO Y J, PING X L, CHEN Y S, WANG W J, JIN K X, WANG X, HUANG C M, FU Y, GE X M, SONG S H, JEONG H S, YANAGISAWA H, NIU Y, JIA G F, WU W, TONG W M, OKAMOTO A, HE C, DANIELSEN J M R, WANG X J, YANG Y G. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 2014, 24(12): 1403-1419. doi:10.1038/cr.2014.151.
doi: 10.1038/cr.2014.151 pmid: 25412662
[44] HAN Z B, WANG X X, XU Z H, CAO Y, GONG R, YU Y, YU Y, GUO X F, LIU S Z, YU M X, MA W Y, ZHAO Y M, XU J, LI X D, LI S N, XU Y, SONG R J, XU B B, YANG F, BAMBA D, SUKHAREVA N, LEI H, GAO M Q, ZHANG W W, ZAGIDULLIN N, ZHANG Y, YANG B F, PAN Z W, CAI B Z. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics, 2021, 11(6): 3000-3016. doi:10.7150/thno.47354.
doi: 10.7150/thno.47354
[45] SONG H W, FENG X, ZHANG H, LUO Y M, HUANG J, LIN M H, JIN J F, DING X, WU S J, HUANG H, YU T, ZHANG M K, HONG H O, YAO S H, ZHAO Y X, ZHANG Z Y. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy, 2019, 15(8): 1419-1437. doi:10.1080/15548627.2019.1586246.
doi: 10.1080/15548627.2019.1586246
[46] YU J J, SHEN L J, LIU Y L, MING H, ZHU X X, CHU M P, LIN J T. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Molecular and Cellular Biochemistry, 2020, 463(1/2): 203-210. doi:10.1007/s11010-019-03641-5.
doi: 10.1007/s11010-019-03641-5
[1] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[2] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[3] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[4] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[5] CHEN GuangJi,XIONG XianQin,HE RunXia,TIAN Xiong,SHEN YingLong,ZOU XiaoMin,YANG Hong,SHANG YiShun,ZHAO MingKun,LI XiaoDong,LI ShiGe,ZHANG Rong,SHU JianHong. Evaluation of Feeding Value for Whole Broussonetia papyrifera Silage in Diet of Wuchuan Black Beef Cattle [J]. Scientia Agricultura Sinica, 2021, 54(19): 4218-4228.
[6] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[7] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[8] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[9] ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
[10] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[11] LIU JiWei,ZHANG XiangLun,LI Xu,WANG Lei,QIN LiHong,BAN ZhiBin,WU Jian,ZHANG GuoLiang,WAN FaChun. Effects of Dietary Energy Levels on Metabolism and Serum Parameters of Steppe Red Cattle [J]. Scientia Agricultura Sinica, 2020, 53(12): 2502-2511.
[12] GUO HongFang,NING Yue,CHENG Gong,ZAN LinSen. The Effect of Krüppel-Like Factor 3 (KLF3) Gene on Bovine Fat Deposition [J]. Scientia Agricultura Sinica, 2019, 52(7): 1272-1281.
[13] WEI Chen,ZHAO Junjin,HUANG XiXia,YANG HongJie,ZHANG MengHua,GE JianJun,MA GuangHui,ZHANG XiaoXue,WANG Dan,YOU ZhenChen,XU Lei,JIANG Hui,ZHAO FanFan,JU Xing,LI YunXia. Selection of Nucleus Herd for Simmental Cattle in Xinjiang Area [J]. Scientia Agricultura Sinica, 2019, 52(5): 921-929.
[14] NING Yue,MI Xue,CHEN XingYi,SHAO JianHang,ZAN LinSen. Silencing and Overexpressing SMAD Family Member 1 (SMAD1) Gene and Its Effect on Myogenesis in Primary Myoblast of Qinchuan Cattle (Bos taurus) [J]. Scientia Agricultura Sinica, 2019, 52(10): 1818-1829.
[15] LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!