Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4197-4209.doi: 10.3864/j.issn.0578-1752.2018.21.018

• RESOURCE INSECT • Previous Articles     Next Articles

Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut

Rui GUO1(),Yu DU1(),CuiLing XIONG1,YanZhen ZHENG1,ZhongMin FU1,GuoJun XU1,HaiPeng WANG1,HuaZhi CHEN1,SiHai GENG1,DingDing ZHOU1,CaiYun SHI1,HongXia ZHAO2,DaFu CHEN1()   

  1. 1College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002
    2Guangdong Institute of Applied Biological Resources, Guangzhou 510260
  • Received:2018-05-22 Accepted:2018-06-28 Online:2018-11-01 Published:2018-11-01
  • Contact: Rui GUO,Yu DU,DaFu CHEN E-mail:ruiguo@fafu.edu.cn;m18505700830@163.com;dfchen826@fafu.edu.cn

Abstract:

【Objective】MicroRNA (miRNA) is a kind of key regulator for negative regulation of mRNA at post-transcriptional level. The objective of this study is to provide miRNA expression patterns and differential expression information, illuminate the function of differentially expressed miRNA (DEmiRNA) in the development of larval gut by comprehensively investigating the DEmiRNAs and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. 【Method】Deep sequencing of the 4-, 5- and 6-day-old larval guts of A. m. ligustica was conducted using small RNA-seq (sRNA-seq) technology, followed by mapping of the data after quality-control with the reference genome of Apis mellifera, and the mapped tags were then compared to miRBase database. The miRNA expression level was normalized by TPM algorithm, and the expression clustering, prediction of secondary structure of precursor and differential expression analysis were performed using related bioinformatic softwares. TargetFinder software was used to predict target gene of DEmiRNA, which was annotated to GO and KEGG databases using Blast, furthermore, miRNA-mRNA regulation networks were constructed using Cytoscape software. Stem-loop RT-qPCR was used to verify the sequencing data in this study.【Result】High-throughput sequencing of larval gut samples produced 10 841 644, 12 037 678 and 9 230 496 clean tags, respectively. In Am4 vs Am5 comparison group, there were16 up-regulated and 10 down-regulated miRNAs, while Am5 vs Am6 comparison group included 5 up-regulated and 7 down-regulated miRNAs, respectively. Among them, Novel-m0031-3p was shared by both Am4 vs Am5 and Am5 vs Am6, binding 5 target genes associated with ecdysone inducible protein, 25 and 11 DEmiRNAs were specific for the above-mentioned two comparison groups. DEmiRNA in Am4 vs Am5 could bind 5 742 target genes, among them 2 725 targets could be annotated to 46 GO terms in GO database, and the largest ones were binding, cellular process, metabolic process and single-organism process. Similarly, 12 DEmiRNAs in Am5 vs Am6 could link 3 733 target genes, among them 2 725 targets could be annotated to 41 GO terms, and mostly enriched terms were binding, cellular process, single-organism process and metabolic process. In addition, 1 046 and 676 target genes of two comparison groups were related to 116 and 92 KEGG pathways, and the number of DEmiRNA target genes in Am4 vs Am5 was more than that in Am5 vs Am6, which annotated to Wnt signaling pathway, Hippo signaling pathway, purine metabolism and endocytosis. Further analysis demonstrated that up-regulated and down-regulated miRNAs in Am4 vs Am5 could bind 611 and 85 target genes, and ame-miR-6052 linked the most target genes and participated in regulating cytochrome P450 via 5 target genes. miR-281-x could bind 49 target genes and indirectly regulate histidine metabolism, TGF-β signaling pathway and Hippo signaling pathway. In Am5 vs Am6 comparison group, up-regulated and down-regulated miRNAs could bind 43 and 431 target genes, respectively, among them miR-iab-4-x linked the most target genes, and it could participate in regulating growth and development related pathways, such as dorso-ventral axis formation, Hippo signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Notch signaling pathway and mTOR signaling pathway. Regulation network analysis indicated that complex networks formed between DEmiRNAs and target genes, and DEmiRNAs lied in the center while target genes lied in the periphery. Finally, Stem-loop RT-qPCR was carried out to validate the randomly selected three DEmiRNAs, and the result confirmed the reliability of sequencing data. 【Conclusion】The DEmiRNA and corresponding target genes in the A. m. ligustica larval gut were predicted and analyzed at genome-wide level, it was found that A. m. ligustica are capable of regulating the expression of many miRNAs such as ame-miR-6052, miR-iab-4-x, miR-281-x and novel-m0031-3p. The results not only offer the expression pattern and differential expression information of miRNA during the developmental process of A. m. ligustica larval gut, but also lay a foundation for clarifying the molecular mechanisms underlying the larval gut’s development.

Key words: Apis mellifera ligustica, larval gut, development, microRNA, target gene, regulation network

Table 1

Overview of sRNA-seq datasets"

样品Sample 有效读段Clean reads 有效标签序列Clean tags
Am4-1 14736731 11802658 (80.09%)
Am4-2 12954535 10940303 (84.45%)
Am4-3 11869496 9781972 (82.41%)
Am5-1 13907726 11653319 (83.79%)
Am5-2 13844605 11812820 (85.32%)
Am5-3 15015570 12646896 (84.23%)
Am6-1 11260874 9324373 (82.80%)
Am6-2 10434013 9038930 (86.63%)
Am6-3 11070804 9328185 (84.26%)

Fig. 1

Pearson correlation between different biological repeats within each A. m. ligustica larval gut sample"

Fig. 2

Expression clustering of DEmiRNA and secondary structure of novel miRNA’ precursors"

Fig. 3

GO database annotation of DEmiRNA target genes in the larval guts of A. m. ligustica"

Fig. 4

KEGG database annotation of DEmiRNA target genes in the larval guts of A. m. ligustica"

Fig. 5

Regulation networks of DEmiRNA during the developmental process of A. m. ligustica larval gut"

Fig. 6

RT-qPCR validation of DEmiRNA A:miR-7964-y;B:miR-8516-x;C:miR-3747-x"

[1] AZZAM G, SMIBERT P, LAI E C, LIU J L . Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Developmental Biology, 2012,365(2):384-394.
doi: 10.1016/j.ydbio.2012.03.005 pmid: 3763516
[2] ASGARI S . MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 2013,43(4):388-397.
doi: 10.1016/j.ibmb.2012.10.005
[3] XU L, HU Y G, CAO Y, LI J R, MA L G, LI Y, QI Y J . An expression atlas of miRNAs in Arabidopsis thaliana. Science China Life Sciences, 2018,61(2):178-189.
[4] LIU M, YU H, ZHAO G, HUANG Q, LU Y, OUYANG B . Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics, 2017,18(1):481.
doi: 10.1186/s12864-017-3869-1 pmid: 28651543
[5] YU Z Q, GAO X L, LIU C N, LV X P, ZHENG S M . Analysis of microRNA expression profile in specific pathogen-free chickens in response to reticuloendotheliosis virus infection. Applied Microbiology and Biotechnology, 2017,101(7):2767-2777.
doi: 10.1007/s00253-016-8060-0 pmid: 28032193
[6] OJHA C R, RODRIGUEZ M, DEVER S M, MUKHOPADHYAY R, EL-HAGE N . Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. Journal of Biomedical Science, 2016,23(1):74.
doi: 10.1186/s12929-016-0292-x pmid: 27784307
[7] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006,443(7114):931-949.
[8] 刘芳 . 意蜂哺育蜂与采集蜂头部mRNAs与miRNAs表达谱Solexa测序比较分析及其调控网络研究[D]. 杭州: 浙江大学, 2012.
LIU F . Integrating of Solexa high-abundance mRNAs and miRNAs in Apis mellifera: comparison between nurses and foragers to identify regulatory network[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[9] 郭昱, 苏松坤, 陈盛禄, 张少吾, 陈润生 . LncRNA在蜜蜂级型分化中的功能研究. 生物化学与生物物理进展, 2015,42(8):750-757.
GUO Y, SU S K, CHEN S L, ZHANG S W, CHEN R S . The function of lncRNAs in the caste determination of the honeybee. Progress in Biochemistry and Biophysics, 2015,42(8):750-757. (in Chinese)
[10] ASHBY R, FORÊT S, SEARLE I, MALESZKA R . MicroRNAs in honey bee caste determination. Scientific Reports, 2016,6:18794.
doi: 10.1038/srep18794 pmid: 4704047
[11] 陈晓 . 蜜蜂卵巢激活和产卵过程差异表达的编码RNA与非编码RNA的筛选和鉴定[D]. 北京: 中国农业科学院, 2017.
CHEN X . Identification of differentially expressed coding and noncoding RNAs during ovary activation and oviposition in honey bees[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese)
[12] 石元元 . 东方蜜蜂遗传图谱构建以及雌性蜜蜂发育分子机理[D]. 南昌: 江西农业大学, 2014.
SHI Y Y . Construction of genetic linkage map in Apis cerana and molecular mechanism of development in females honey bee[D]. Nanchang: Jiangxi Agricultural University, 2014. ( in Chinese)
[13] 常伟 . 蜜蜂消化道共生细菌及其多态性研究初探[D]. 福州: 福建农林大学, 2010.
CHANG W . Diversity of symbiotic bacteria in honeybee alimentary tract[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. ( in Chinese)
[14] 贾慧茹 . 亚致死剂量吡虫啉对意大利蜜蜂中肠菌群的影响[D]. 北京: 中国农业科学院, 2015.
JIA H R . Effect of the sublethal doses of imidacloprid on the bacterial diversity in the midgut of Apis mellifera ligustica[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. ( in Chinese)
[15] 郭睿, 解彦玲, 熊翠玲, 尹伟轩, 郑燕珍, 付中民, 陈大福 . 意大利蜜蜂4、5和6日龄幼虫肠道发育过程中差异表达基因的趋势分析. 上海交通大学学报(农业科学版), 2018,36(4):14-21, 29.
GUO R, XIE Y L, XIONG C L, YI W X, ZHENG Y Z, FU Z M, CHEN D F . Trend analysis for differentially expressed genes in developmental process of 4-, 5- and 6-day-old larval guts of Apis mellifera ligustica. Journal of Shanghai Jiaotong University (Agricultural Science), 2018,36(4):14-21, 29. (in Chinese)
[16] CHEN D, GUO R, XU X, XIONG C L, LIANG Q, ZHENG Y Z, LUO Q, ZHANG Z, HUANG Z J, KUMAR D, XI W J, ZOU X, LIU M . Uncovering the immune responses of Apis mellifera ligustica, larval gut to Ascosphaera apis, infection utilizing transcriptome sequencing. Gene, 2017,621:40-50.
[17] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军 . 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
doi: 10.16380/j.kcxb.2017.04.005
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J . Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica(Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
doi: 10.16380/j.kcxb.2017.04.005
[18] 王倩, 孙亮先, 肖培新, 刘锋, 康明江, 胥保华 . 室内人工培育中华蜜蜂幼虫技术研究. 山东农业科学, 2009(11):113-116.
doi: 10.3969/j.issn.1001-4942.2009.11.037
WANG Q, SUN L X, XIAO P X, LIU F, KANG M J, XU B H . Study on technology for indoor artificial feeding ofApis cerana cerana larvae. Shandong Agricultural Sciences, 2009(11):113-116. (in Chinese)
doi: 10.3969/j.issn.1001-4942.2009.11.037
[19] FRIEDLäNDER M R, MACKOWIAK S D, LI N, CHEN W, RAJEWSKY N . MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012,40(1):37-52.
doi: 10.1093/nar/gkr688 pmid: 21911355
[20] ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C . MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028
[21] SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T . Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011,27(3):431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340
[22] CHEN C, RIDZON D A, BROOMER A J, ZHOU Z, LEE D H, NGUYEN J T, BARBISIN M, XU N L, MAHUVAKAR V R, ANDERSEN M R, LAO K Q, LIVAK K J, GUEGLER K J . Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005,33(20):e179.
doi: 10.1093/nar/gni178 pmid: 16314309
[23] LUCAS K J, ZHAO B, LIU S, RAIKHEL A S . Regulation of physiological processes by microRNAs in insects. Current Opinion in Insect Science, 2015,11:1-7.
doi: 10.1016/j.cois.2015.06.004 pmid: 26251827
[24] ZHANG Y, ZHOU X, GE X, LI M, JIA S, YANG X, KAN Y, MIAO X, ZHAO G, LI F, HUANG Y . Insect-specific microRNA involved in the development of the silkworm Bombyx mori. PLoS ONE, 2009,4(3):e4677.
doi: 10.1371/journal.pone.0004677 pmid: 2650705
[25] LIU S, GAO S, ZHANG D, YIN J, XIANG Z, XIA Q . MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori. BMC Genomics, 2010,11:85.
doi: 10.1186/1471-2164-11-85 pmid: 2835664
[26] LIANG P, FENG B, ZHOU X G, GAO X W . Identification and developmental profiling of microRNAs in diamondback moth,Plutella xylostella(L.). PLoS ONE, 2013,8(11):e78787.
doi: 10.1371/journal.pone.0078787 pmid: 3827265
[27] 陈璇, 俞晓敏, 郑火青, 蔡亦梅, 胡福良 . 西方蜜蜂( Apis mellifera L.) sRNA的富集与文库检测. 中国农业科学, 2009,42(8):2943-2948.
CHEN X, YU X M, ZHENG H Q, CAI Y M, HU F L . Separation and enrichment of sRNAs from honeybee (Apis mellifera L.) and its quality detection by library construction. Scientia Agricultura Sinica, 2009,42(8):2943-2948. (in Chinese)
[28] 陈璇 . 蜜蜂( Apis mellifera) microRNA的全基因组挖掘及在雌性蜜蜂级型分化关键时期转录组水平调控作用[D]. 杭州: 浙江大学, 2012.
CHEN X . Genome-wide identification of microRNAs and their regulation of transcriptome on female caste determination of honey bee (Apis mellifera)[D]. Hangzhou: Zhejiang University, 2012. ( in Chinese)
[29] 汝玉涛, 王勇, 周敬林, 王德意, 马月月, 姜义仁, 高清, 秦利 . 蜕皮激素受体和超气门蛋白基因在柞蚕发育过程及激素诱导后的表达模式. 蚕业科学, 2017(4):594-602.
RU Y T, WANG Y, ZHOU J L, WANG D Y, MA Y Y, JIANG Y R, GAO Q, QIN L . The expression patterns of ecdysone receptor and ultraspiracle genes inAntheraea pernyi during development and hormone-induced process. Science of Sericulture, 2017(4):594-602. (in Chinese)
[30] 舒旭 . 家蚕蜕皮触发激素及其受体基因的克隆和表达分析[D]. 重庆: 西南大学, 2009.
SHU X . Cloning and expression analysis of genes encoding ecdysis triggering hormone and its receptor in the silkworm, Bombyx mori[D]. Chongqing: Southwest University, 2009. ( in Chinese)
[31] 周艳河 . 白纹伊蚊中肠特异性高表达miRNA-miR-281对登革病毒复制的调节作用[D]. 广州: 南方医科大学, 2014.
ZHOU Y H . Dengue virus replication is regulated by miR-281: an abundant midgut-specific miRNA of vector mosquito Aedes albopictus[D]. Guangzhou: Southern Medical University, 2014. ( in Chinese)
[32] 熊慧萍 . 位于可变内含子区的果蝇microRNA-281-1/2基因转录和启动子分析[D]. 南京: 南京农业大学, 2008.
XIONG H P . Transcription and promoter analysis of Drosophila intronic microRNA-281-1/2 located in alternative spliced region[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese)
[33] RONSHAUGEN M, BIEMAR F, PIEL J, LEVINE M, LAI E C . The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes and Development, 2005,19(24):2947-2952.
doi: 10.1101/gad.1372505 pmid: 16357215
[34] TAMáSI V, MONOSTORY K, PROUGH R A, FALUS A . Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cellular and Molecular Life Sciences, 2011,68(7):1131-1146.
doi: 10.1007/s00018-010-0600-7 pmid: 21184128
[35] 黄献彬 . 小菜蛾解毒代谢相关miRNA鉴定及表达分析[D]. 福州: 福建农林大学, 2016.
HUANG X B . Identification and analysis of miRNAs involved in detoxification in the diamondback moth, Plutella xylostella[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. ( in Chinese)
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[7] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[8] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[9] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[13] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[14] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[15] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!