Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 3948-3959.doi: 10.3864/j.issn.0578-1752.2022.20.007

• PLANT PROTECTION • Previous Articles     Next Articles

Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China

WANG ShuaiYu1(),ZHANG ZiTeng1,2,XIE AiTing1,DONG Jie1,YANG JianGuo1,ZHANG AiHuan2()   

  1. 1Beijing Plant Protection Station, Beijing 100029
    2College of Bioscience and Resource Environment, Beijing University of Agriculture/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 102206
  • Received:2022-06-28 Accepted:2022-07-20 Online:2022-10-16 Published:2022-10-24
  • Contact: ShuaiYu WANG,AiHuan ZHANG E-mail:shuaiyu3@126.com;zhangaihuan@126.com

Abstract:

【Background】The fall armyworm (Spodoptera frugiperda) is a major migratory agricultural pest in the tropical and subtropical areas of America, it has rapidly expanded to more than 100 countries around the world since 2016, and has now invaded 27 provinces (Autonomous Region, Municipality) in China, posing a great threat to food security. Resistance may become an increasingly serious problem in many regions with the heavy reliance on insecticides for several years and lead to low control efficiency. S. frugiperda had spread to the north of the Great Wall rapidly. However, there are few studies on insecticide resistance and annual variation in China, especially the Great Wall protection zone in 2020 and 2021.【Objective】The objective of this study is to clarify the susceptibility and differences of S. frugiperda populations to insecticides in the Great Wall protection zone and other areas of China, and to provide guidance for scientific insecticide use for the prevention and control of S. frugiperda.【Method】Samples of S. frugiperda were collected from maize fields in 13 provinces (Autonomous Region, Municipality) in China, and the genomic DNA was extracted. The mutations of target genes of carbamate, pyrethroid and diamide insecticides in 362 individuals collected from 47 cities (districts) of 13 provinces (Autonomous Region, Municipality) in 2020 and 2021 were analyzed through direct sequencing of the PCR products individually.【Result】There were 6 genotypes of mutations in ace-1 to carbamate insecticides in all the samples. A201S and F290V mutations were detected in ace-1. The frequency of A201S heterozygous mutation was 8.4%, and the frequency of F290V homozygous and heterozygous mutations was 14.9% and 25.7%, respectively. No G227A mutation was detected. The mutation frequency at F290V in the key prevention region was higher than that in the migratory transition region and annual breeding region, while the mutation frequency at A201S was lower than that in the above two regions. The average frequency of ace-1 mutation was high in the Great Wall protection zone, Huang-Huai-Hai interception zone, Yangtze River Basin and Southwest and South China protection zone. There was no significant difference in the frequency of ace-1 mutation between the populations in 2021 and 2020. No mutations were detected in pyrethroid vgsc and diamide ryr.【Conclusion】A201S and F290V mutations with high frequency in ace-1 is one of the mechanisms conferring carbamate resistance in many populations in China. The use of carbamates should be restricted in the control of S. frugiperda. No mutations had been detected in the vgsc and ryr, suggesting susceptibility to pyrethroids and diamides for rational rotation, however, the low frequency of mutation in S. frugiperda and common mutation in Spodoptera exigua (relatives of S. frugiperda) to pyrethroids and diamides have been detected. In the future, the effect of high insecticide selection stress in the lab and field populations fed by different hosts on the target gene mutation should be evaluated, and the research of rapid diagnostics methods and products of insecticide resistance should be accelerated.

Key words: Spodoptera frugiperda, insecticide resistance, carbamate, pyrethroid, diamide, target gene, mutation frequency

Table 1

Collection information of S. frugiperda in 2020-2021"

省(自治区、直辖市)
Province (Autonomous Region, Municipality)
市(区)
City (District)
采集时间
Collection time (y-m-d)
虫态
State
数量(头)
Number
北京Beijing 顺义Shunyi 2020-09-01;2021-10-05 成虫Adult 4
丰台Fengtai 2020-09-01 成虫Adult 2
通州Tongzhou 2020-09-01;2021-09-14 成虫Adult 3
怀柔Huairou 2020-09-01 成虫Adult 2
朝阳Chaoyang 2021-10-04 成虫Adult 1
海淀Haidian 2020-09-01;2021-09-09 成虫Adult 3
昌平Changping 2020-09-01 成虫Adult 2
平谷Pinggu 2020-09-01;2021-09-03 成虫Adult 3
密云Miyun 2020-09-01 成虫Adult 2
延庆Yanqing 2021-09-03 成虫Adult 3
大兴Daxing 2021-09-03 成虫Adult 2
天津Tianjin 蓟州Jizhou 2020-08-31;2021-08-25 成虫Adult 5
东丽Dongli 2020-09-07 成虫Adult 8
滨海Binhai 2020-09-18 成虫Adult 1
静海Jinghai 2020-09-03 成虫Adult 3
宝坻Baodi 2020-09-21 成虫Adult 2
武清Wuqing 2020-09-27 成虫Adult 2
河北Hebei 石家庄Shijiazhuang 2020-10-14;2021-09-02 幼虫Larva 8
霸州Bazhou 2021-09-01 成虫Adult 3
唐山Tangshan 2021-10-08 成虫Adult 24
山东Shandong 济南Ji’nan 2020-10-13 幼虫Larva 3
河南Henan 周口Zhoukou 2020-10-20;2021-08-23 成虫Adult 6
开封Kaifeng 2020-10-11;2021-10-05 成虫Adult 33
驻马店Zhumadian 2021-10-08 成虫Adult 48
安徽Anhui 黄山Huangshan 2020-10-28 成虫Adult 2
池州Chizhou 2020-10-28 幼虫Larva 3
马鞍山Maanshan 2020-10-24 成虫Adult 6
芜湖Wuhu 2020-11-07;2021-10-06 成虫Adult 29
宿州Suzhou 2020-10-25 成虫Adult 5
安庆Anqing 2020-11-07;2021-10-09 成虫Adult 24
江苏Jiangsu 盐城Yancheng 2020-10-25 成虫Adult 3
大丰Dafeng 2020-10-25 成虫Adult 3
浙江Zhejiang 金华Jinhua 2020-10-16;2021-09-01 幼虫/成虫Larva/Adult 10
杭州Hangzhou 2020-10-18;2021-09-01 成虫Adult 19
温州Wenzhou 2020-10-11 成虫Adult 4
四川Sichuan 西昌Xichang 2020-11-16 成虫Adult 4
攀枝花Panzhihua 2021-10-03 幼虫Larva 3
云南Yunnan 红河Honghe 2020-09-20 幼虫Larva 3
西清Xiqing 2020-09-20 幼虫Larva 3
临沧Lincang 2020-09-20 成虫Adult 23
德宏Dehong 2020-09-20;2021-09-10 幼虫Larva 12
曲靖Qujing 2021-10-10 幼虫Larva 8
昆明Kunming 2021-10-10 成虫Adult 3
楚雄Chuxiong 2021-10-10 幼虫Larva 3
广东Guangdong 广州Guangzhou 2020-11-04 幼虫Larva 10
广西Guangxi 南宁Nanning 2020-11-01 幼虫Larva 3
海南Hainan 儋州Danzhou 2020-10-30 幼虫Larva 6

Table 2

Primers used for PCR amplification of ace-1, vgsc and ryr"

基因
Gene
引物
<BOLD>P</BOLD>rimer
引物序列
<BOLD>P</BOLD>rimer sequence (5′-3′)
扩增长度
<BOLD>L</BOLD>ength (bp)
位点
<BOLD>S</BOLD>ite
来源
Source
ace-1 ACEF TAAGAACGCTGCTGTCATGC 760 A201S、F290V CARVALHO et al.[9]
ACER TGGCCTGTCTTCCAACATCA
ryr RYFG ACATAGACTGGCGTTACC 730 G4891E 本研究This study
RYRG CCTCGTCATCTTCCTCC
I4734F CGAGGACTTCTTCTACATGG 800 I4734M BOAVENTURA et al.[17]
I4734R AATTTACGGGCAATCTCC
vgsc VG9F CAAATTGGCAAAGTCATG 253 T929I、L932F 本研究This study
VG9R AGCAGCGATTGTATGTATCT
V10F CGTAGACCGTTTCCCG 360 L1014F 本研究This study
V10R CACCCAATCAATGAACCT

Table 3

Genotypes and mutation frequencies of ace-1 of different S. frugiperda populations in 2020-2021"

省(自治区、直辖市)Province (Autonomous Region, Municipality) 年份<BOLD>Y</BOLD>ear 数量(头)<BOLD>N</BOLD>umber A201S位点基因型Genotype at locus A201S (%) 突变频率<BOLD>M</BOLD>utation frequency (%) F290V位点基因型Genotype at locus F290V (%) 突变频率<BOLD>M</BOLD>utation frequency (%) G227A位点基因型Genotype at locus G227A (%) 突变频率<BOLD>M</BOLD>utation frequency (%)
SS RS RR SS RS RR SS RS RR
北京Beijing 2020 15 66.7 33.3 0 16.7 46.6 46.7 6.7 30 100 0 0 0
2021 12 100 0 0 0 58.4 33.3 8.3 25 100 0 0 0
天津Tianjin 2020 19 68.4 31.6 0 15.8 15.8 68.4 15.8 50 100 0 0 0
2021 2 100 0 0 0 0 50 50 75 100 0 0 0
河北Hebei 2020 3 100 0 0 0 100 0 0 0 100 0 0 0
2021 32 87.4 12.6 0 6.3 15.6 68.8 15.6 50 100 0 0 0
山东Shandong 2020 3 66.6 33.4 0 16.7 0 66.7 33.3 66.7 100 0 0 0
河南Henan 2020 33 91 9 0 4.5 33.3 45.5 21.2 69.4 100 0 0 0
2021 54 83.4 16.6 0 8.3 24 51.9 24.1 50 100 0 0 0
安徽Anhui 2020 45 88.8 11.2 0 5.6 42.2 42.2 15.6 36.7 100 0 0 0
2021 24 79.2 20.8 0 10.4 50 37.5 12.5 31.3 100 0 0 0
江苏Jiangsu 2020 6 83.4 16.6 0 8.3 16.6 66.7 16.7 50 100 0 0 0
浙江Zhejiang 2020 10 60 40 0 20 40 60 0 30 100 0 0 0
2021 23 87 13 0 6.5 52.2 47.8 0 23.9 100 0 0 0
四川Sichuan 2020 4 100 0 0 0 0 50 50 75 100 0 0 0
2021 3 66.7 33.3 0 16.7 66.7 33.3 0 16.7 100 0 0 0
云南Yunnan 2020 32 84.4 15.6 0 7.8 21.8 59.4 18.8 48.4 100 0 0 0
2021 23 82.6 17.4 0 8.7 47.9 47.8 4.3 28.3 100 0 0 0
广东Guangdong 2020 10 80 20 0 10 20 70 10 45 100 0 0 0
广西Guangxi 2020 3 100 0 0 0 66.7 33.3 0 16.7 100 0 0 0
海南Hainan 2020 6 50 50 0 25 16.6 66.7 16.7 50 100 0 0 0

Fig. 1

Frequency of A201S and F290V mutations in ace-1 of S. frugiperda in different provinces"

Fig. 2

Frequency of A201S and F290V mutations in ace-1 of S. frugiperda populations in three ecological regions and four protective zones"

Fig. 3

Difference in ace-1 A201S and F290V mutation frequencies of S. frugiperda populations in three ecological regions and four protective zones in 2020-2021"

[1] 郭井菲, 赵建周, 何康来, 张峰, 王振营. 警惕危险性害虫草地贪夜蛾入侵中国. 植物保护, 2018, 44(6): 1-10.
GUO J F, ZHAO J Z, HE K L, ZHANG F, WANG Z Y. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Protection, 2018, 44(6): 1-10. (in Chinese)
[2] 陈辉, 杨学礼, 谌爱东, 李永川, 王德海, 刘杰, 胡高. 我国最早发现为害地草地贪夜蛾的入侵时间及其虫源分布. 应用昆虫学报, 2020, 57(6): 1270-1278.
CHEN H, YANG X L, CHEN A D, LI Y C, WANG D H, LIU J, HU G. Immigration timing and origin of the first fall armyworms (Spodoptera frugiperda) detected in China. Chinese Journal of Applied Entomology, 2020, 57(6): 1270-1278. (in Chinese)
[3] 吴秋琳, 姜玉英, 刘媛, 刘杰, 马景, 胡高, 杨明进, 吴孔明. 草地贪夜蛾在中国西北地区的迁飞路径. 中国农业科学, 2022, 55(10): 1949-1960.
WU Q L, JIANG Y Y, LIU Y, LIU J, MA J, HU G, YANG M J, WU K M. Migration pathway of Spodoptera frugiperda in Northwestern China. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960. (in Chinese)
[4] 秦誉嘉, 蓝帅, 赵紫华, 孙宏禹, 朱晓明, 杨普云, 李志红. 迁飞性害虫草地贪夜蛾在我国的潜在地理分布. 植物保护, 2019, 45(4): 43-47, 60.
QIN Y J, LAN S, ZHAO Z H, SUN H Y, ZHU X M, YANG P Y, LI Z H. Potential geographical distribution of the fall armyworm (Spodoptera frugiperda) in China. Plant Protection, 2019, 45(4): 43-47, 60. (in Chinese)
[5] 王亚如, 蔡香云, 王锦达, 汤宝珍, 侯有明. 重大入侵害虫草地贪夜蛾的研究进展. 环境昆虫学报, 2020, 42(4): 806-816.
WANG Y R, CAI X Y, WANG J D, TANG B Z, HOU Y M. Current opinions on the important alien invasive insect, Spodoptera frugiperda. Journal of Environmental Entomology, 2020, 42(4): 806-816. (in Chinese)
[6] OKUMA D M, BERNARDI D, HORIKOSHI R J, BERNARDI O, SILVA A P, OMOTO C. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Management Science, 2018, 74(6): 1441-1448.
doi: 10.1002/ps.4829
[7] 李永平, 张帅, 王晓军, 解晓平, 梁沛, 张雷, 谷少华, 高希武. 草地贪夜蛾抗药性现状及化学防治策略. 植物保护, 2019, 45(4): 14-19.
LI Y P, ZHANG S, WANG X J, XIE X P, LIANG P, ZHANG L, GU S H, GAO X W. Current status of insecticide resistance in Spodoptera frugiperda and strategies for its chemical control. Plant Protection, 2019, 45(4): 14-19. (in Chinese)
[8] BURTET L M, BERNARDI O, MELO A A, PES M P, STRAHL T T, GUEDES J V. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Management Science, 2017, 73(12): 2569-2577.
doi: 10.1002/ps.4660
[9] CARVALHO R A, OMOTO C, FIELD L M, WILLIAMSON M S, BASS C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE, 2013, 8(4): e62268.
doi: 10.1371/journal.pone.0062268
[10] DIEZ-RODRGUEZ G I, OMOTO C. Inheritance of lambda-cyhalothrin resistance in Spodoptera frugiperda (J. E. Smith)(Lepidoptera: Noctuidae). Neotropical Entomology, 2001, 30(2): 311-316.
doi: 10.1590/S1519-566X2001000200016
[11] DO NASCIENCEMENTO A R, FARIAS J R, BERNARDI D, HORIKOSHI R J, OMOTO C. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Management Science, 2016, 72(4): 810-815.
doi: 10.1002/ps.4057
[12] 吴益东, 沈慧雯, 张正, 王兴亮, 施雨, 武淑文, 杨亦桦. 草地贪夜蛾抗药性概况及其治理对策. 应用昆虫学报, 2019, 56(4): 599-604.
WU Y D, SHEN H W, ZHANG Z, WANG X L, SHI Y, WU S W, YANG Y H. Current status of insecticide resistance in Spodoptera frugiperda and counter measures to prevent its development. Chinese Journal of Applied Entomology, 2019, 56(4): 599-604. (in Chinese)
[13] LIRA E C, BOLZAN A, NASCIMENTO A R, AMARAL F S, KANNO R H, KAISER I S, OMOTO C. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Management Science, 2020, 76(8): 2674-2680.
doi: 10.1002/ps.5812
[14] LV S L, SHI Y, ZHANG J C, LIANG P, ZHANG L, GAO X W. Detection of ryanodine receptor target-site mutations in diamide insecticide-resistant Spodoptera frugiperda in China. Insect Science, 2021, 28(3): 639-648.
doi: 10.1111/1744-7917.12896
[15] BOLZAN A, PADOVEZ F E, NASCIMENTO A R, KAISER I S, LIRA E C, AMARAL F S, KANNO R H, MALAQUIAS J B, OMOTO C. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Management Science, 2019, 75(10): 2682-2689.
doi: 10.1002/ps.5376
[16] GUTIÉRREZ-MORENO R, MOTA-SANCHEZ D, BLANCO C A, WHALON M E, TERÁN-SANTOFIMIO H, RODRIGUEZ-MACIEL J C, DIFONZO C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of Economic Entomology, 2019, 112(2): 792-802.
doi: 10.1093/jee/toy372
[17] BOAVENTURA D, BOLZAN A, PADOVEZ F E, OKUMA D M, OMOTO C, NAUEN R. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda. Pest Management Science, 2020, 76(1): 47-54.
doi: 10.1002/ps.5505 pmid: 31157506
[18] BOAVENTURA D, BUER B, HAMAEKERS N, MAIWALD F, NAUEN R. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Management Science, 2021, 77(8): 3713-3726.
doi: 10.1002/ps.6061
[19] DONG K, DU Y, RINKEVICH F, NOMURA Y, XU P, WANG L, SILVER K, ZHOROV B S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology, 2014, 50: 1-17.
doi: 10.1016/j.ibmb.2014.03.012 pmid: 24704279
[20] YAINNA S, NÈGRE N, SILVIE P J, BRÉVAULT T, TAY W T, GORDON K, DALENÇON E, WALSH T, NAM K. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the fall armyworm. Insects, 2021, 12(5): 468.
doi: 10.3390/insects12050468
[21] 李康, 王凯博, 陶丽红, 李丽, 李佳俊, 吴文伟, 肖春, 叶敏. 草地贪夜蛾鱼尼丁受体与双酰胺类杀虫剂的结合模式及抗性风险分析. 农药学学报, 2021, 23(5): 856-868.
LI K, WANG K B, TAO L H, LI L, LI J J, WU W W, XIAO C, YE M. Analysis of binding modes and resistance risk between ryanodine receptor of Spodoptera frugiperda and diamide insecticides. Chinese Journal of Pesticide Science, 2021, 23(5): 856-868. (in Chinese)
[22] RICHARDSON E B, TROCZKA B J, GUTBROD O, EMYR DAVIES T G, NAUEN R. Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 2020, 93(3): 911-928.
doi: 10.1007/s10340-020-01220-y
[23] ZUO Y, WANG H, XU Y, HUANG J, WU S, WU Y, YANG Y. CRISPR/Cas 9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochemistry and Molecular Biology, 2017, 89: 79-85.
doi: 10.1016/j.ibmb.2017.09.005
[24] GUO L, LIANG P, ZHOU X, GAO X. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Science Reports, 2014, 4: 6924.
[25] 李芬, 王力奎, 彭正强, MALHAT F, 吕宝乾, 吴少英. 菊酯类药剂对草地贪夜蛾的毒力及对钠离子通道的诱导特性. 植物保护学报, 2020, 47(4): 884-890.
LI F, WANG L K, PENG Z Q, MALHAT F, LÜ B Q, WU S Y. Toxicity of pyrethroid pesticides to fall armyworm Spodoptera frugiperda and its inducing properties of sodium ion channels. Journal of Plant Protection, 2020, 47(4): 884-890. (in Chinese)
[26] GUAN F, ZHANG J, SHEN H, WANG X, PADOVAN A, WALSH T K, TAY W T, GORDON K H J, JAMES W, CZEPAK C, OTIM M H, KACHIGAMBA D, WU Y. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Science, 2021, 28(3): 627-638.
doi: 10.1111/1744-7917.12838
[27] 郭志敏, 邓晓倩, 李静, 袁茂钧, 万虎, 李建洪, 马康生. 湖北四个地区草地贪夜蛾田间种群的杀虫剂敏感性及靶标突变检测. 昆虫学报, 2020, 63(5): 582-589.
GUO Z M, DENG X Q, LI J, YUAN M J, WAN H, LI J H, MA K S. Detection of insecticide sensitivity and target site mutations in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) in four regions of Hubei, central China. Acta Entomologica Sinica, 2020, 63(5): 582-589. (in Chinese)
[28] 李妍. 2019-2020年我国16省份草地贪夜蛾对高效氯氟氰菊酯和茚虫威抗性水平监测[D]. 北京: 中国农业科学院, 2021.
LI Y. Monitoring of resistance level of Spodoptera frugiperda to lambda-cyhalothrin and indoxacarb in 16 provinces of China from 2019 to 2020[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[29] ZHANG L, LIU B, ZHENG W, LIU C, ZHANG D, ZHAO S, LI Z, XU P, WILSON K, WITHERS A, et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Molecular Ecology Resources, 2020, 20(6): 1682-1696.
doi: 10.1111/1755-0998.13219
[30] 殷畅, 毕莹莹, 韩丽君, 范志金, 宋霜雨, 秦发艺. 双酰胺类杀虫剂作用机制及其先导优化研究进展. 世界农药, 2021, 43(2): 15-33.
YIN C, BI Y Y, HAN L J, FAN Z J, SONG S Y, QIN F Y. Research progress on action mechanism and lead optimization of diamide insecticides. World Pesticides, 2021, 43(2): 15-33. (in Chinese)
[31] BOAVENTURA D, MARTIN M, POZZEBON A, MOTA-SANCHEZ D, NAUEN R. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects, 2020, 11(8): 545.
doi: 10.3390/insects11080545
[32] 中华人民共和国农业农村部. 农业农村部关于印发《全国草地贪夜蛾防控方案》的通知 (农农发[2019]3号). (2019-06-21) [2022-06-28].
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of Ministry of Agriculture and Rural Affairs on the national plan for the prevention and control of Spodoptera frugiperda in China. (NongNongFa [2019] No. 3). (2019-06-21) [2022-06-28]. (in Chinese)
[33] 中华人民共和国农业农村部种植业管理司. 农业农村部种植业管理司关于落实草地贪夜蛾“三区三带”布防任务的通知 (农农植保[2020]12号). (2020-04-28) [2022-06-28].
Department of Crop Management, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of Department of Crop Management of Ministry of Agriculture and Rural Affairs on the implementation of the “three regions and three zones” deployment task of Spodoptera frugiperda NongNong Plant Protection 2020 No. 12). (2020-04-28) [2022-06-28]. (in Chinese)
[34] 中华人民共和国农业农村部种植业管理司. 农业农村部种植业管理司关于落实草地贪夜蛾“长城防线”布防任务的通知 (农农植保[2020]18号). (2020-06-02) [2022-06-28].
Department of Crop Management, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of Department of Crop Management of Ministry of Agriculture and Rural Affairs on the implementation of the “Great Wall defense” deployment task of Spodoptera frugiperda (NongNong Plant Protection [2020] No. 18). (2020-06-02) [2022-06-28]. (in Chinese)
[35] 李妍, 龚丽凤, 王欢欢, 李曦, 孙歌, 谷少华, 梁沛, 高希武. 我国草地贪夜蛾田间种群有机磷和氨基甲酸酯类杀虫剂靶标基因ace-1的基因型和突变频率. 昆虫学报, 2020, 63(5): 574-581.
LI Y, GONG L F, WANG H H, LI X, SUN G, GU S H, LIANG P, GAO X W. Genotype and mutation frequency of ace-1, the target gene of organophosphorus and carbamate insecticides, in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. Acta Entomologica Sinica, 2020, 63(5): 574-581. (in Chinese)
[36] WALSH S B, DOLDEN T A, MOORES G D, KRISTENSEN M, LEWIS T, DEVONSHIRE A L, WILLIAMSON M S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. The Biochemical Journal, 2001, 359(6): 175-181.
doi: 10.1042/bj3590175
[37] 赵胜园, 孙小旭, 张浩文, 杨现明, 吴孔明. 常用化学杀虫剂对草地贪夜蛾防效的室内测定. 植物保护, 2019, 45(3): 10-14, 20.
ZHAO S Y, SUN X X, ZHANG H W, YANG X M, WU K M. Laboratory test on the control efficacy of common chemical insecticides against Spodoptera frugiperda. Plant Protection, 2019, 45(3): 10-14, 20. (in Chinese)
[38] ZHANG D D, XIAO Y T, XU P J, YANG X M, WU Q L, WU K M. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. Journal of Integrative Agriculture, 2021, 20(3): 783-791.
doi: 10.1016/S2095-3119(20)63392-5
[39] YU S J. Insensitivity of acetylcholinesterase in a field strain of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 2006, 84(2): 135-142.
doi: 10.1016/j.pestbp.2005.06.003
[40] SUPYOON K, SYMINGTON S B, HYEOCK LEE S, SODERLUND D M, MARSHALL CLARK J. Three mutations identified in the voltage-sensitive sodium channel alpha-subunit gene of permethrin- resistant human head lice reduce the permethrin sensitivity of house fly Vssc1 sodium channels expressed in Xenopus oocytes. Insect Biochemistry and Molecular Biology, 2008, 38(6): 296-306.
doi: 10.1016/j.ibmb.2007.11.011
[41] 魏向敏, 崔勇, 叶国浚, 朱克森, 相辉. 草地贪夜蛾寄主适应性、种群动态特征及防控新思路展望. 环境昆虫学报, 2020, 42(1): 42-51.
WEI X M, CUI Y, YE G J, ZHU K S, XIANG H. On the host adaptability, population dynamics of Spodoptera frugiperda: Advances and prospect in efficient control. Journal of Environmental Entomology, 2020, 42(1): 42-51. (in Chinese)
[42] 全国农业技术推广服务中心. 草地贪夜蛾应急防治药剂科学使用指导意见. (2020-03-05) [2022-06-28].
National Agricultural Technology Extension Service Center. Guidance on scientific use of emergency control agents of Spodoptera frugiperda. (2020-03-05) [2022-06-28]. (in Chinese)
[43] YU S J, MCCORD E. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidopera: Noctuidae) and Plutella xylostella (Lepidopera: Yponomeutidae). Pest Management Science, 2007, 63(1): 63-67.
doi: 10.1002/ps.1309
[44] ZHAO Y X, HUANG J M, NI H, GUO D, YANG F X, WANG X, WU S F, GAO C F. Susceptibility of fall armyworm, Spodoptera frugiperda (J. E. Smith), to eight insecticides in China, with special reference to lambda-cyhalothrin. Pesticide Biochemistry and Physiology, 2020, 168: 104623.
doi: 10.1016/j.pestbp.2020.104623
[45] LIANG J G, ZHANG D G, LI D Y, ZHAO S Y, WANG C Y, XIAO Y T, XU D, YANG Y Z, LI G P, WANG L L, et al. Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936. Journal of Integrative Agriculture, 2021, 20(3): 792-803.
doi: 10.1016/S2095-3119(20)63475-X
[46] 王思彤, 陈艳, 罗雨嘉, 杨缘缘, 蒋志洋, 蒋鑫怡, 钟樊, 陈好, 徐红星, 吴俨, 段红霞, 唐斌. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响. 中国农业科学, 2022, 55(8): 1568-1578.
WANG S T, CHEN Y, LUO Y J, YANG Y Y, JIANG Z Y, JIANG X Y, ZHONG F, CHEN H, XU H X, WU Y, DUAN H X, TANG B. Effect of three novel compounds on trehalose and chitin metabolism and development of Spodoptera frugiperda. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578. (in Chinese)
[47] QIN C, WANG C H, WANG Y Y, SUN S Q, WANG H H, XUE C B. Resistance to diamide insecticides in Plutella xylostella (Lepidoptera: Plutellidae): Comparison between lab-selected strains and field- collected populations. Journal of Economic Entomology, 2018, 111(2): 853-859.
doi: 10.1093/jee/toy043
[48] KULYE M, MEHLHORN S, BOAVENTURA D, GODLEY N, VENKATESH S K, RUDRAPPA T, CHARAN T, RATHI D, NAUEN R. Baseline susceptibility of Spodoptera frugiperda populations collected in India towards different chemical classes of insecticides. Insects, 2021, 12(8): 758.
doi: 10.3390/insects12080758
[49] ARIAS O, CORDEIRO E, CORRÊA A S, DOMINGUES F A, GUIDOLIN A S, OMOTO C. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): Implications for insect resistance management programs. Pest Management Science, 2019, 75(11): 2948-2957.
doi: 10.1002/ps.5407
[50] 崔丽, 芮昌辉, 李永平, 王芹芹, 杨代斌, 闫晓静, 郭永旺, 袁会珠. 国外草地贪夜蛾化学防治技术的研究与应用. 植物保护, 2019, 45(4): 7-13.
CUI L, RUI C H, LI Y P, WANG Q Q, YANG D B, YAN X J, GUO Y W, YUAN H Z. Research and application of chemical control technology against Spodoptera frugiperda (Lepidoptera: Noctuidae) in foreign countries. Plant Protection, 2019, 45(4): 7-13. (in Chinese)
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[3] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[4] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[5] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[6] ZHANG WenYing, HAN Xu, ZHU XuDong, XIE ZhenQiang, JIU SongTao, HUANG YuQing, JIA HaiFeng, FANG JingGui, WANG Chen. Identification of the Target Genes of VvmiR159s and Their Regulation in Response to GA in Different Tissues of Grape Berry [J]. Scientia Agricultura Sinica, 2019, 52(16): 2858-2870.
[7] YIN Xing, ZHANG LiJuan, LI BoWen, LIU WenJu, GUO YanJie, LI YuTao. Effects of Nitrogen Fertilizer and Dicyandiamide Application on Tomato Growth and Reactive Nitrogen Emissions in Greenhouse [J]. Scientia Agricultura Sinica, 2018, 51(9): 1725-1734.
[8] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[9] WANG ChengHua, SUN ShiQing, XU JuLong, ZHAO XiaoLong, XUE ChaoBin. Differential Expressed Genes and their Pathways of the  Resistance to Flubendiamide in Plutella xylostella [J]. Scientia Agricultura Sinica, 2018, 51(11): 2106-2115.
[10] LIU Shi-ping, WU Xiao-yan, ZHANG Dan-yu, HUANG Ya-xi, WANG Wei, ZHAO Ping, XIA Qing-you. Identification of Bmhairy as the Target of bmo-miR-7 and Its Transcriptional Expression Profiles in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(1): 195-204.
[11] WU Zheng-chang, YIN Xue-mei, SUN Li, XIA Ri-wei, HUO Yong-jiu, WU Sheng-long, BAO Wen-bin. Tissue Expression Profile and Key Target Genes Analysis of Porcine miR-192 and miR-215 [J]. Scientia Agricultura Sinica, 2015, 48(11): 2251-2261.
[12] LI Guo-Xi, WANG Le-Le, SUN Gui-Rong, KANG Xiang-Tao. Tissue Expression Profile and Bioinformatics Analysis of Abundance miR-101 from the Hypothalamus of Chicken [J]. Scientia Agricultura Sinica, 2013, 46(6): 1247-1255.
[13] WANG Hai-Yang, ZHENG Yue, LI Hui-Xia, HAN Zhao-Yu, WANG Gen-Lin. Profiling of Differential Expressed MicroRNA in Intramuscular Fat and Subcutaneous Fat of Simmental and Bioinformatic Analyses of miR-27b Target Gene [J]. Scientia Agricultura Sinica, 2013, 46(18): 3894-3900.
[14] WANG Na, LANG Zhi-Fei, HE Kang, LI Fei. Resistance of Field Population Aphis gossypii Glover to Carbosulfan and Imidacloprid in Xingtai and Nanjing District [J]. Scientia Agricultura Sinica, 2013, 46(16): 3377-3383.
[15] HE Yong-Sheng, CHEN Shu-Chi, WANG Hong, HAN Shuang-Yan, YANG Qiong, LIU Xi-Xia, DONG Jie-Xian, YANG Wu-Ying, SUN Yuan-Ming. Expression of Bombyx mori Acetylcholinesterase Gene bmace in Pichia pastoris GS115 and Analysis of Its Bioactivity [J]. Scientia Agricultura Sinica, 2012, 45(11): 2189-2198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!