Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4583-4599.doi: 10.3864/j.issn.0578-1752.2022.23.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Ning(),LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen*(),SUN DaiZhen*()
[1] |
AKRAM N A, WASEEM M, AMEEN R, ASHRAF M. Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: Some key physio-biochemical traits. Acta Physiologiae Plantarum, 2016, 38(1): 3.
doi: 10.1007/s11738-015-2018-1 |
[2] |
JECK W R, SHARPLESS N E. Detecting and characterizing circular RNAs. Nature Biotechnology, 2014, 32(5): 453-461.
doi: 10.1038/nbt.2890 pmid: 24811520 |
[3] |
SALZMAN J. Circular RNA expression: Its potential regulation and function. Trends in Genetics, 2016, 32(5): 309-316.
doi: S0168-9525(16)00032-9 pmid: 27050930 |
[4] |
LI L, GUO J, CHEN Y, CHANG C, XU C. Comprehensive CircRNA expression profile and selection of key circRNAs during priming phase of rat liver regeneration. BMC Genomics, 2017, 18(1): 80.
doi: 10.1186/s12864-016-3476-6 pmid: 28086788 |
[5] |
ZHENG Q, BAO C, GUO W, LI S, CHEN J, CHEN B, LUO Y, LYU D, LI Y, SHI G. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 2016, 7: 11215.
doi: 10.1038/ncomms11215 pmid: 27050392 |
[6] |
WANG K, BO L, FANG L, WANG J X, LIU C Y, BING Z, ZHOU L Y, TENG S, MAN W, TAO Y.A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37(33): 2602-2611.
doi: 10.1093/eurheartj/ehv713 pmid: 26802132 |
[7] |
LI Z, HUANG C, BAO C, CHEN L, LIN M, WANG X, ZHONG G, YU B, HU W, DAI L. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural and Molecular Biology, 2015, 22: 256.
doi: 10.1038/nsmb.2959 pmid: 25664725 |
[8] |
WANG P L, BAO Y, YEE M C, BARRETT S P, HOGAN G J, OLSEN M N, DINNENY J R, BROWN P O, SALZMAN J. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE, 2014, 9(3): e90859.
doi: 10.1371/journal.pone.0090859 |
[9] |
YE C Y, CHEN L, LIU C, ZHU Q H, FAN L J. Widespread noncoding circular RNAs in plants. New Phytologist, 2015, 208(1): 88-95.
doi: 10.1111/nph.13585 |
[10] |
YIN J L, LIU M Y, MA D F, WU J W, LI S L, ZHU Y X, HAN B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136: 90-98.
doi: 10.1016/j.postharvbio.2017.10.013 |
[11] |
ZHOU R, ZHU Y X, ZHAO J, FANG Z W, WANG S P, YIN J L, CHU Z H, MA D F. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies Brasiliense infection. International Journal of Molecular Sciences, 2018, 19(1): 71.
doi: 10.3390/ijms19010071 |
[12] | WANG Y, YANG M, WEI S, QIN F, ZHAO H, SUO B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Frontiers in Plant Science, 2017, 7: 2024. |
[13] |
ZHAO W, CHENG Y, ZHANG C, YOU Q, SHEN X, GUO W, JIAO Y. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Scientific Reports, 2017, 7(1): 5636.
doi: 10.1038/s41598-017-05922-9 pmid: 28717203 |
[14] |
WEI T, JIE Y, YAN H, LI F, ZHOU Q, WEI C, BENNETZEN J L. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta, 2018, 248(10): 1-13.
doi: 10.1007/s00425-018-2910-1 |
[15] |
DARBANI B, NOEPARVAR S, BORG S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Frontiers in Plant Science, 2016, 7: 776.
doi: 10.3389/fpls.2016.00776 pmid: 27375638 |
[16] | CHEN L, ZHANG P, FAN Y, LU Q, LI Q, YAN J, MUEHLBAUER G J, SCHNABLE P S, DAI M, LI L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytologist, 2018, 217(3): 3. |
[17] |
TAN J, ZHOU Z, NIU Y, SUN X, DENG Z. Identification and functional characterization of tomato circrnas derived from genes involved in fruit pigment accumulation. Scientific Reports, 2017, 7: 8594.
doi: 10.1038/s41598-017-08806-0 pmid: 28819222 |
[18] |
CHENG J, ZHANG Y, LI Z, WANG T, ZHANG X, ZHENG B. A lariat-derived circular RNA is required for plant development in Arabidopsis. Science China Life Sciences, 2018, 61(2): 204-213.
doi: 10.1007/s11427-017-9182-3 |
[19] |
PAN T, SUN X, LIU Y, LI H, DENG G, LIN H, WANG S. Heat stress alters genome wide profiles of circular RNAs in Arabidopsis. Plant Molecular Biology, 2018, 96(3): 217-229.
doi: 10.1007/s11103-017-0684-7 |
[20] | LI N, LIU T T, GUO F, YANG J W, SHI Y G, WANG S G, SUN D Z. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 10: 1011064. |
[21] |
QUAN X, ZENG J, YE L, CHEN G, HAN Z, SHAH J, ZHANG G. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biology, 2016, 16(1): 30-45.
doi: 10.1186/s12870-016-0721-8 |
[22] |
SUN Y, SONG K, SUN L, QIN Q, JIANG T, JIANG Q, XUE Y. Morpho-Physiological and transcriptome analysis provide insights into the effects of zinc application on nitrogen accumulation and metabolism in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2020, 149: 111-120.
doi: 10.1016/j.plaphy.2020.01.038 |
[23] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142 |
[24] |
MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, NOBLE F, RAJEWSKY N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
doi: 10.1038/nature11928 |
[25] |
ZHU Y X, JIA J H, YANG L, XIA Y C, ZHANG H L, JIA J B, ZHOU R, NIE P Y, YIN J L, MA D F, LIU L C. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biology, 2019, 19(1): 164.
doi: 10.1186/s12870-019-1712-3 |
[26] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 2014, 15(12): 550.
doi: 10.1186/s13059-014-0550-8 |
[27] |
BO X, WANG S. Target Finder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics, 2005, 21(8):1401.
doi: 10.1093/bioinformatics/bti211 |
[28] |
MA S W, WANG M, WU J H, GUO W L, CHEN Y M, LI G W, WANG Y P, SHI W M, XIA G M, FU D L, KANG Z S, NI F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12): 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393 |
[29] | CONESA A, GÖTZ S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 2008, 2008: 619832. |
[30] |
YANG C, LU X, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Molecular Plant, 2015, 8(4): 495-505.
doi: 10.1016/j.molp.2015.01.003 |
[31] |
HU B, JIANG Z, WANG W, QIU Y, ZHANG Z, LIU Y, LI A, GAO X, LIU L, QIAN Y, HUANG X, YU F, KANG S, WANG Y, XIE J, CAO S, ZHANG L, WANG Y, XIE Q, KOPRIVA S, CHU C. Nitrate- NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants, 2019, 5(4): 401-413.
doi: 10.1038/s41477-019-0384-1 |
[32] |
PARK J J, YI J, YOON J, CHO L H, PING J, JEONG H J, CHO S K, KIM W T, AN G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. The Plant Journal, 2011, 65(2): 194-205.
doi: 10.1111/j.1365-313X.2010.04416.x |
[33] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833.
doi: 10.1038/ng.3305 |
[34] |
AI P H, SUN S B, ZHAO J N, FAN X R, XIN W J, GUO Q, YU L, SHEN Q R, WU P, MILLER A J, XU G H. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 2009, 57(5): 798-809.
doi: 10.1111/j.1365-313X.2008.03726.x pmid: 18980647 |
[35] |
LOURENÇO T, SAPETA H, FIGUEIREDO D D, RODRIGUES M, CORDEIRO A, ABREU I A, SAIBO N J, OLIVEIRA M M. Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Molecular Biology, 2013, 83(4/5): 351-363.
doi: 10.1007/s11103-013-0092-6 |
[36] |
SUN S K, XU X, TANG Z, TANG Z, HUANG X Y, WIRTZ M, HELL R, ZHAO F J. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nature Communications, 2021, 12: 1392.
doi: 10.1038/s41467-021-21282-5 |
[37] |
LIAO Y D, LIN K H, CHEN C C, CHIANG C M. Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Molecular Breeding, 2016, 36: 22.
doi: 10.1007/s11032-016-0446-2 |
[38] |
GIRI J, VIJ S, DANSANA P K, TYAGI A K. Rice A20/AN1 zinc- finger containing stress-associated proteins (SAP1/11) and a receptor- like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytologist, 2011, 191(3): 721-732.
doi: 10.1111/j.1469-8137.2011.03740.x |
[39] | MUKHOPADHYAY A, VIJ S, TYAGI A K.Overexpression of a zinc- finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the USA, 2004, 101(16): 6309-6314. |
[40] |
ERRICHELLI L, DINI M S, LANEVE P, COLANTONI A, LEGNINI I, CAPAUTO D, ROSA A, DE SANTIS R, SCARFO R, PERUZZI G. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 2017, 8: 14741.
doi: 10.1038/ncomms14741 pmid: 28358055 |
[41] | YIN J L, MA D F, LIU L C, XIA Y C, ZHU Y X. Biology features of circular RNAs and their research progress in plants. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2510-2518. |
[42] |
LU T, CUI L, ZHOU Y, ZHU C, FAN D, GONG H, ZHAO Q, ZHOU C, ZHAO Y, LU D. Transcriptome-wide investigation of circular RNAs in rice. RNA, 2015, 21(12): 2076-2087
doi: 10.1261/rna.052282.115 pmid: 26464523 |
[43] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495: 384-388.
doi: 10.1038/nature11993 |
[44] |
MELONI D, OLIVA M, MARTINEZ C, CAMBRAIA J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49: 69-76.
doi: 10.1016/S0098-8472(02)00058-8 |
[45] |
GUTTERSON N, REUBER T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7(4): 465-471.
pmid: 15231271 |
[46] |
NELSON D R. Plant cytochrome P450s from moss to poplar. Phytochemistry Reviews, 2006, 5(2/3): 193-204.
doi: 10.1007/s11101-006-9015-3 |
[47] |
SCHULZ P, HERDE M, ROMEIS T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiology, 2013, 163(2): 523-530.
doi: 10.1104/pp.113.222539 pmid: 24014579 |
[48] |
DAS R, PANDEY G. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics, 2010, 11(1): 2-13.
doi: 10.2174/138920210790217981 pmid: 20808518 |
[49] |
LI M Z, LI M F, LI D D, WANG S M, YIN H J. Overexpression of the Zygophyllum xanthoxylum aquaporin, ZxPIP1;3, promotes plant growth and stress tolerance. International Journal of Molecular Sciences, 2021, 22(4): 2112.
doi: 10.3390/ijms22042112 |
[50] |
CAO Y F, WU Y F, ZHENG Z, SONG F G. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiological and Molecular Plant Pathology, 2006, 67(3/5): 202-211.
doi: 10.1016/j.pmpp.2006.01.004 |
[51] |
LIU C W, FUKUMOTO T, MATSUMOTO T, GENA P, FRASCARIA D, KANEKO T, KATSUHARA M, ZHONG S H, SUN X L, ZHU Y M, IWASAKI I, DING X D, CALAMITA G, KITAGAWA Y. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiology and Biochemistry, 2013, 63: 151-158.
doi: 10.1016/j.plaphy.2012.11.018 |
[1] | PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645. |
[2] | WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. |
[3] | HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514. |
[4] | MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358. |
[5] | NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034. |
[6] | CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073. |
[7] | WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126. |
[8] | WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820. |
[9] | FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849. |
[10] | GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865. |
[11] | WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878. |
[12] | YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994. |
[13] | DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634. |
[14] | CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216. |
[15] | YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299. |
|