Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 208-218.doi: 10.3864/j.issn.0578-1752.2022.01.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana

FENG RuiRong1(),FU ZhongMin1,2(),DU Yu1,ZHANG WenDe1,FAN XiaoXue1,WANG HaiPeng1,WAN JieQi1,ZHOU ZiYu1,KANG YuXin1,CHEN DaFu1,2,GUO Rui1,2(),SHI PeiYing1()   

  1. 1College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
    2Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2021-04-28 Accepted:2021-06-07 Online:2022-01-01 Published:2022-01-07
  • Contact: Rui GUO,PeiYing SHI E-mail:frr18705911634@163.com;369699776@qq.com;ruiguo@fafu.edu.cn;peiyshi@126.com

Abstract:

【Objective】 In this study, transcriptome-wide identification and analysis of miRNAs in the larval guts of Apis cerana cerana was conducted using a combination of small RNA-seq (sRNA-seq) technology and bioinformatic method, aiming to enrich the information of A. c. cerana miRNAs and offer a basis for further investigation of miRNA-regulated molecular mechanism underlying A. c. cerana larval gut development.【Method】 Gut samples of A. c. cerana 4-, 5-, and 6-day-old larvae (Ac1, Ac2, and Ac3 ) were sequenced using sRNA-seq technology, and clean tags were obtained after quality control. By using Blast tool, clean tags were continuously mapped to Apis cerana genome and miRBase database to identify known miRNAs and novel miRNAs. TPM method was used to perform normalization of miRNAs’ expression. The ratio of sRNAs, length distribution of miRNAs and first base bias were calculated with GraphPad Prism 7 software. Using related software, target mRNAs of above-mentioned miRNAs were predicted followed by GO and KEGG database annotation. Further, regulatory networks between genes associated with development and immune-related pathways and corresponding target miRNAs were constructed and analyzed, followed by visualization of regulatory networks with Cytoscape software. The authenticity of miRNA expression and sequence was verified by using Stem-loop RT-PCR, molecular cloning and Sanger sequencing.【Result】 In total, 371 known miRNAs and 64 novel ones of A. c. cerana were identified; their length was distributed among 18-25 nt, and the first base had an U bias. The aforementioned miRNAs could target 14 750 mRNAs, involving 2 270 GO terms such as ion binding, metal ion binding, membrane, membrane part and single-organism process, as well as 332 KEGG pathways including endocytosis, apoptosis, mTOR signaling pathway, RNA transport and insect hormone biosynthesis. Further investigation suggested that 156 miRNAs could target 67 genes relative to development-associated pathways such as Wnt, Hippo, Notch and mTOR signaling pathways, while 145 miRNAs could target 21 genes relevant to immune-associated pathways such as Toll, Imd/JNK, Jak-STAT signaling pathways and antimicrobial effectors. Stem-loop RT-PCR result indicated that specific fragments with expected sizes could be amplified from miR-8-y, miR-9-z, miR-14-y, miR-281-y, miR-283-x and miR-306-x; Sanger sequencing result demonstrated that sequences of above-mentioned six miRNAs were in accordance with those in deep sequencing result.【Conclusion】 Our findings provide number, structural characteristics and expression profile of A. c. cerana miRNAs, and unraveled that miRNAs in A. c. cerana larval gut potentially regulate a lot of life processes and cellular activities, part of miRNAs can participate in regulation of development-related and immune-related pathways by targeting corresponding mRNAs.

Key words: Apis cerana, Apis cerana cerana, larva, gut, microRNA, regulatory network

Table 1

An overview of sRNA-seq dataset"

样品
Sample
高质量读段
High quality reads
有效序列标签
Clean tags
占比
Ratio (%)
Ac1-1 11231070 9761109 86.91
Ac1-2 11994516 10566352 88.09
Ac1-3 10594332 9048317 85.41
Ac2-1 13057999 10932504 83.72
Ac2-2 10718330 8834247 82.42
Ac2-3 10273562 8440841 82.16
Ac3-1 10611126 8828377 83.20
Ac3-2 9932874 8401872 84.59
Ac3-3 12822276 10953694 85.43

Fig. 1

Structural characteristics of miRNAs in A. c. cerana larval guts"

Fig. 2

Confirmation of miRNAs in A. c. cerana larval gut using Stem-loop RT-PCR and Sanger sequencing"

Fig. 3

Loop graph showing GO terms enriched by target mRNAs of miRNAs in the larval gut of A. c. cerana"

Fig. 4

Loop graph showing KEGG pathways enriched by target mRNAs of miRNAs in the larval gut of A. c. cerana"

Fig. 5

Regulation network between miRNAs and development-associated target genes in A. c. cerana larval gut"

Fig. 6

Regulation network between miRNAs and immune-associated target genes in A. c. cerana larval gut"

[1] HUSSAIN M, ASGARI S. MicroRNAs as mediators of insect host-pathogen interactions and immunity. Journal of Insect Physiology, 2014, 70: 151-158.
doi: 10.1016/j.jinsphys.2014.08.003
[2] ASGARI S. MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 2013, 43(4): 388-397.
doi: 10.1016/j.ibmb.2012.10.005
[3] 杨婕, 谢苗, 徐雪娇, 白建林, 尤民生. 昆虫miRNA研究进展. 昆虫学报, 2021, 64(2): 259-280.
YANG J, XIE M, XU X J, BAI J L, YOU M S. Research progress of insect miRNAs. Acta Entomologica Sinica, 2021, 64(2): 259-280. (in Chinese)
[4] 施腾飞, 余林生, 刘芳, 宗超, 汪天澍. 蜜蜂microRNA的研究进展. 昆虫学报, 2014, 57(5): 601-606.
SHI T F, YU L S, LIU F, ZONG C, WANG T S. Progress in microRNAs in honey bees. Acta Entomologica Sinica, 2014, 57(5): 601-606. (in Chinese)
[5] LIU F, SHI T, YIN W, SU X, QI L, HUANG Z Y, ZHANG S, YU L. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2017, 90: 34-42.
doi: 10.1016/j.ibmb.2017.09.008
[6] CRISTINO A S, BARCHUK A R, FREITAS F C, NARAYANAN R K, BIERGANS S D, ZHAO Z, SIMOES Z L, REINHARD J, CLAUDIANOS C. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nature Communications, 2014, 5: 5529.
doi: 10.1038/ncomms6529
[7] 熊翠玲, 杜宇, 陈大福, 郑燕珍, 付中民, 王海朋, 耿四海, 陈华枝, 周丁丁, 吴素珍, 石彩云, 郭睿. 意大利蜜蜂幼虫肠道的miRNAs的生物信息学预测及分析. 应用昆虫学报, 2018, 55(6): 1023-1033.
XIONG C L, DU Y, CHEN D F, ZHENG Y Z, FU Z M, WANG H P, GENG S H, CHEN H Z, ZHOU D D, WU S Z, SHI C Y, GUO R. Bioinformatic prediction and analysis of miRNAs in the Apis mellifera ligustica larval gut. Chinese Journal of Applied Entomology, 2018, 55(6): 1023-1033. (in Chinese)
[8] 杜宇, 范小雪, 蒋海宾, 王杰, 范元婵, 祝智威, 周丁丁, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 微小RNA及其介导的竞争性内源RNA调控网络在意大利蜜蜂工蜂中肠发育过程中的潜在作用. 中国农业科学, 2020, 53(12): 2512-2526.
DU Y, FAN X X, JIANG H B, WANG J, FAN Y C, ZHU Z W, ZHOU D D, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. The potential role of microRNAs and microRNA-mediated competing endogenous networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526. (in Chinese)
[9] 吴小波, 王子龙, 石元元, 张飞, 曾志将. 婚飞对中华蜜蜂性成熟处女蜂王sRNAs表达的影响. 中国农业科学, 2013, 46(17): 3721-3728.
WU X B, WANG Z L, SHI Y Y, ZHANG F, ZENG Z J. Effects of mating flight on sRNAs expression in sexual matured virgin queens (Apis cerana cerana). Scientia Agricultura Sinica, 2013, 46(17): 3721-3728. (in Chinese)
[10] 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019, 59(9): 1747-1764.
DU Y, TONG X Y, ZHOU D D, CHEN D F, XIONG C L, ZHENG Y Z, XU G J, WANG H P, CHEN H Z, GUO Y L, LONG Q, GUO R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9): 1747-1764. (in Chinese)
[11] CHEN D F, DU Y, CHEN H Z, FAN Y C, FAN X X, ZHU Z W, WANG J, XIONG C L, ZHENG Y Z, HOU C S, DIAO Q Y, GUO R. Comparative identification of microRNAs in Apis cerana cerana workers’ midguts in response to Nosema ceranae invasion. Insects, 2019, 10(9): 258.
doi: 10.3390/insects10090258
[12] 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018, 51(21): 4197-4209.
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209. (in Chinese)
[13] 郭睿, 杜宇, 童新宇, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 耿四海, 周丁丁, 郭意龙, 吴素珍, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌侵染前期的差异表达microRNA及其调控网络. 中国农业科学, 2019, 52(1): 166-180.
GUO R, DU Y, TONG X Y, XIONG C L, ZHENG Y Z, XU G J, WANG H P, GENG S H, ZHOU D D, GUO Y L, WU S Z, CHEN D F. Differentially expressed microRNAs and their regulation networks in Apis mellifera ligustica larval gut during the early stage of Ascosphaera apis infection. Scientia Agricultura Sinica, 2019, 52(1): 166-180. (in Chinese)
[14] 陈华枝, 熊翠玲, 祝智威, 王杰, 范小雪, 蒋海宾, 范元婵, 万洁琦, 卢家轩, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 基于small RNA组学分析揭示意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答机制. 微生物学报, 2020, 60(7): 1458-1478.
CHEN H Z, XIONG C L, ZHU Z W, WANG J, FAN X X, JIANG H B, FAN Y C, WAN J Q, LU J X, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Unraveling the mechanism underlying the immune responses of Apis mellifera ligustica to Nosema ceranae stress based on small RNA omics analyses. Acta Microbiologica Sinica, 2020, 60(7): 1458-1478. (in Chinese)
[15] 熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020, 60(5): 992-1009.
XIONG C L, DU Y, FENG R R, JIANG H B, SHI X Y, WANG H P, FAN X X, WANG J, ZHU Z W, FAN Y C, CHEN H Z, ZHOU D D, ZHENG Y Z, CHEN D F, GUO R. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020, 60(5): 992-1009. (in Chinese)
[16] 耿四海, 石彩云, 范小雪, 王杰, 祝智威, 蒋海宾, 范元婵, 陈华枝, 杜宇, 王心蕊, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制. 中国农业科学, 2020, 53(15): 3187-3204.
GENG S H, SHI C Y, FAN X X, WANG J, ZHU Z W, JIANG H B, FAN Y C, CHEN H Z, DU Y, WANG X R, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. The mechanism underlying microRNAs-mediated Nosema ceranae infection to Apis mellifera ligustica worker. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204. (in Chinese)
[17] 陈华枝, 祝智威, 蒋海宾, 王杰, 范元婵, 范小雪, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析. 中国农业科学, 2020, 53(17): 3606-3619.
CHEN H Z, ZHU Z W, JIANG H B, WANG J, FAN Y C, FAN X X, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619. (in Chinese)
[18] XIAO S, WANG B, LI K, XIONG S, YE X, WANG J, ZHANG J, YAN Z, WANG F, SONG Q, STANLEY D W, YE G, FANG Q. Identification and characterization of miRNAs in an endoparasitoid wasp, Pteromalus puparum. Archives of Insect Biochemistry and Physiology, 2020, 103(2): e21633.
[19] ROUSH S, SLACK F J. The let-7 family of microRNAs. Trends in Cell Biology, 2008, 18(10): 505-516.
doi: 10.1016/j.tcb.2008.07.007
[20] SIMOES DA SILVA C J, SOSPEDRA I, APARICIO R, BUSTURIA A. The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mechanisms of Development, 2019, 158: 103555.
doi: 10.1016/j.mod.2019.103555
[21] MACEDO L M, NUNES F M, FREITAS F C, PIRES C V, TANAKA E D, MARTINS J R, PIULACHS M D, CRISTINO A S, PINHEIRO D G, SIMÕES Z L. MicroRNA signatures characterizing caste- independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Molecular Biology, 2016, 25(3): 216-226.
doi: 10.1111/imb.2016.25.issue-3
[22] KLEINO A, SILVERMAN N. Regulation of the Drosophila Imd pathway by signaling amyloids. Insect Biochemistry and Molecular Biology, 2019, 108: 16-23.
doi: 10.1016/j.ibmb.2019.03.003
[23] GOU J, LIN L, OTHMER H G. A model for the Hippo pathway in the Drosophila wing disc. Biophysical Journal, 2018, 115(4): 737-747.
doi: 10.1016/j.bpj.2018.07.002
[24] SONG J, LI W, ZHAO H, ZHOU S. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology, 2019, 106: 39-46.
doi: 10.1016/j.ibmb.2018.11.004
[25] ZHU K, LIU M, FU Z, ZHOU Z, KONG Y, LIANG H, LIN Z, LUO J, ZHENG H, WAN P, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 2017, 13(8): e1006946.
doi: 10.1371/journal.pgen.1006946
[26] HU Y T, WU T C, YANG E C, WU P C, LIN P T, WU Y L. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Scientific Reports, 2017, 7: 41255.
doi: 10.1038/srep41255
[27] BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 2015, 10: 71-82.
doi: 10.1016/j.cois.2015.04.016
[28] LOURENÇO A P, GUIDUGLI-LAZZARINI K R, FREITAS F C, BITONDI M M, SIMÕES Z L. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochemistry and Molecular Biology, 2013, 43(5): 474-482.
doi: 10.1016/j.ibmb.2013.03.001
[29] 李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012, 55(7): 790-797.
LI J H, ZHENG Z Y, CHEN D F, LIANG Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012, 55(7): 790-797. (in Chinese)
[1] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[2] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[3] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[4] YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
[5] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[6] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[7] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[8] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[9] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[10] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[11] GAO Xue,ZHANG Yin,XIN Guang,ZHANG Bo,MU JingJing,LI YiMeng,LIU ChangJiang,SUN XiaoRong,LI Bin. Classification Criteria and Storage Characteristics of Actinidia Arguta Fruits with Different Maturities [J]. Scientia Agricultura Sinica, 2019, 52(10): 1784-1796.
[12] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[13] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[14] CHANG ShuangShuang,LI Meng,LI XiuMei,SHI YuXiang,ZHANG MinHong,FENG JingHai. Effects of the Daily Cycle Variation of the Moderate Ambient Temperatures on the Serum Brain Gut Peptide and the Diversity of Caecal Microflora in Broilers [J]. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372.
[15] ZHANG Bo,WU XiaoBo,LIAO ChunHua,HE XuJiang,YAN WeiYu,ZENG ZhiJiang. Research and Application of Honeybee Non-Grafting Larvae Technology [J]. Scientia Agricultura Sinica, 2018, 51(22): 4387-4394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!