Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1805-1820.doi: 10.3864/j.issn.0578-1752.2021.08.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae

DU Yu1(),FAN XiaoXue1(),JIANG HaiBin1,WANG Jie1,FENG RuiRong1,ZHANG WenDe1,YU KeJun1,LONG Qi1,CAI ZongBing1,XIONG CuiLing1,ZHENG YanZhen1,2,CHEN DaFu1,2,FU ZhongMin1,2,XU GuoJun1,2,GUO Rui1,2()   

  1. 1College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
    2Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-06-02 Accepted:2020-06-22 Online:2021-04-16 Published:2021-04-25
  • Contact: Rui GUO E-mail:m18505700830@163.com;imfanxx@163.com;ruiguo@fafu.edu.cn

Abstract:

【Objective】Nosema ceranae infects Apis mellifera ligustica and causes microsporidiosis. In this study, to reveal the mechanism of miRNA-mediated cross-kingdom regulation of A. m. ligustica worker to N. ceranae, prediction, GO and KEGG database annotation as well as regulatory network analysis of N. ceranae mRNAs and differentially expressed mRNAs (DEmRNAs) targeted by differentially expressed miRNAs (DEmiRNAs) of A. m. ligustica workers’ midguts were conducted by bioinformatic approaches based on previously gained miRNA and mRNA omics data. 【Method】Significant host DEmiRNAs were screened out by comparison of miRNA omics data from A. m. ligustica workers’ midguts at 7 d and 10 d post N. ceranae infection (AmT1, AmT2) and corresponding uninfected midguts (AmCK1, AmCK2). DEmRNAs of pathogen were screened out through comparison of mRNA omics data from N. ceranae infecting A. m. ligustica worker’s midgut (NcT1 and NcT2) and pure fungal spores (NcCK). mRNAs and DEmRNAs of N. ceranae targeted by significant host DEmiRNAs were predicted using TargetFinder software. GO and KEGG database annotations of aforementioned targets were conducted using related bioinformatics tools. On basis of our previous findings, pathogen DEmRNAs associated with spore wall protein, polar tube protein, ricin B lectin, ATP/ADP translocase, ABC transporters and glycolysis/gluconeogenesis, and their target significant DEmiRNAs of host were filtered out, followed by construction and investigation of regulatory network. 【Result】In AmCK1 vs AmT1 comparison group, 48 significantly up-regulated miRNAs and 36 significantly down-regulated miRNAs could respectively target 1 345 and 1 046 mRNAs of N. ceranae; additionally, 47 significantly up-regulated miRNAs and 34 significantly down-regulated miRNAs of host could target 584 significantly down-regulated mRNAs and 265 significantly up-regulated mRNAs in NcCK vs NcT1; these targets were involved in 19 and 22 functional terms as well as 66 and 64 pathways. In AmCK2 vs AmT2 comparison group, 56 significantly up-regulated miRNAs and 51 significantly down-regulated miRNAs could respectively target 1 260 and 1 317 mRNAs of N. ceranae, additionally, 52 significantly up-regulated miRNAs and 49 significantly down-regulated miRNAs could target 587 significantly down-regulated mRNAs and 336 significantly up-regulated mRNAs in NcCK vs NcT2, which were engaged in 20 and 23 functional terms as well as 64 and 65 pathways. Further, eight common significantly up-regulated miRNAs and one common significantly down-regulated miRNA in AmCK1 vs AmT1 and AmCK2 vs AmT2 comparison groups could respectively target 144 common significantly down-regulated mRNAs and 10 common significantly up-regulated mRNAs in NcCK vs NcT1 and NcCK vs NcT2 comparison groups, which could be annotated to 18 and 13 functional terms as well as 38 and seven pathways. Moreover, host significantly up-regulated miRNAs in AmCK1 vs AmT1 and AmCK2 vs AmT2 could target pathogen significantly down-regulated mRNAs in NcCK vs NcT1 and NcCK vs NcT2, associated with RNAi, virulence factors such as polar tube protein, spore wall protein and ricin B lectin, glycolysis/gluconeogenesis and MAPK signal pathway. 【Conclusion】Complex target binding relationship and potential cross-kingdom regulatory relationship exist between host DEmiRNAs and pathogen DEmRNAs during the infection of A. m. ligustica worker with N. ceranae; host DEmiRNAs are likely to inhibit or degrade pathogen DEmRNAs associated with RNAi, virulence factor/infection factor, glycolysis/gluconeogenesis pathway, ATP/ADP translocase, ABC transporters, and MAPK signal pathway to affect N. ceranae infection and proliferation.

Key words: Apis mellifera ligustica, Nosema ceranae, microRNA, cross-kingdom regulation, regulatory network, immune defense

Fig. 1

Regulatory networks of significant DEmiRNAs in A. m. ligustica workers’ midguts and their target significant DEmRNAs in N. ceranae"

Fig. 2

Regulatory networks of common significantly up-regulated (down-regulated) miRNAs in AmCK1 vs AmT1 and AmCK2 vs AmT2 and their target significantly down-regulated (up-regulated) mRNAs in NcCK vs NcT1 and NcCK vs NcT2"

Fig. 3

GO database annotation of significantly down-regulated (up-regulated) mRNAs in NcCK vs NcT1 and NcCK vs NcT2 targeted by significantly up-regulated (down-regulated) miRNAs in AmCK1 vs AmT1 and AmCK2 vs AmT2"

Fig. 4

Regulatory networks of significant DEmiRNAs in AmCK1 vs AmT1 and their target DEmRNAs associated with virulence factor/infection factor in NcCK vs NcT1"

Table 1

Summary of N. ceranae virulence factor/infection factor-associated down-regulated mRNAs in NcCK vs NcT1 targeted by significantly up-regulated miRNAs in AmCK1 vs AmT1"

差异表达miRNA
DEmiRNA
差异表达mRNA
DEmRNA
差异表达mRNA的log2FC
log2FC of DEmRNA
差异表达mRNA的P
P value of DEmRNA
Nr数据库描述
Description in Nr database
ame-miR-6052 XM_002996297.1 -10.4546 0.0802 蓖麻毒素B凝集素 Ricin B lectin
miR-196-x XM_002996297.1 -10.4546 0.0802 蓖麻毒素B凝集素 Ricin B lectin
miR-16-y XM_002995069.1 -1.7206 2.6275E-25 ABC转运蛋白 ABC transporter
miR-16-y XM_002996253.1 -3.6539 1.2369E-118 ABC转运蛋白 ABC transporter
miR-20-x XM_002996675.1 -1.9081 5.2746E-22 ABC转运蛋白 ABC transporter
miR-21-y XM_002996253.1 -3.6539 1.2369E-118 ABC转运蛋白 ABC transporter
miR-28-y XM_002996253.1 -3.6539 1.2369E-118 ABC转运蛋白 ABC transporter
miR-30-y XM_002996675.1 -1.9081 5.2746E-22 ABC转运蛋白 ABC transporter
miR-374-y XM_002995069.1 -1.7206 2.6275E-25 ABC转运蛋白 ABC transporter
miR-374-y XM_002996253.1 -3.6539 1.2369E-118 ABC转运蛋白 ABC transporter
miR-590-y XM_002996675.1 -1.9081 5.2746E-22 ABC转运蛋白 ABC transporter
miR-8212-y XM_002996253.1 -3.6539 1.2369E-118 ABC转运蛋白 ABC transporter
novel-m0007-5p XM_002996675.1 -1.9081 5.2746E-22 ABC转运蛋白 ABC transporter
miR-144-x XM_002996538.1 -3.6489 8.2034E-116 ATP/ADP转位酶 ATP/ADP translocase
miR-454-y XM_002996538.1 -3.6489 8.2034E-116 ATP/ADP转位酶 ATP/ADP translocase
ame-miR-193 XM_002996794.1 -1.1738 1.1394E-08 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-100-y XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-144-x XM_002996794.1 -1.1738 1.1394E-08 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-16-y XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-193-y XM_002996794.1 -1.1738 1.1394E-08 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-221-y XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-222-y XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-767-x XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-8232-x XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
novel-m0007-5p XM_002995703.1 -2.3880 1.2790E-52 糖酵解/糖异生 Glycolysis/gluconeogenesis
miR-16-y XM_002996061.1 -5.8896 2.4289E-21 MAPK信号通路 MAPK signaling pathway
miR-29-y XM_002995842.1 -2.6200 1.1211E-28 MAPK信号通路 MAPK signaling pathway
novel-m0007-5p XM_002995842.1 -2.6200 1.1211E-28 MAPK信号通路 MAPK signaling pathway

Table 2

Summary of host up-regulated miRNAs in AmCK1 vs AmT1 targeting virulence factor/infection factor-associated pathogen significantly down-regulated mRNAs in NcCK vs NcT1"

差异表达miRNA ID
DEmiRNA ID
差异表达miRNA的log2FC
log2FC of DEmiRNA
差异表达miRNA的P
P value of DEmiRNA
AmCK1组中的TPM值
TPM in AmCK1 group
AmT1组中的TPM值
TPM in AmT1 group
ame-miR-6052 11.7271 0.0021 0.0010 3.3900
miR-196-x 2.3757 0.0012 3.2800 17.0233
miR-16-y 2.7925 0.0421 0.5100 3.5333
miR-20-x 1.9111 0.0500 2.2733 8.5500
miR-21-y 2.2041 0.0000 12.6300 58.1967
miR-28-y 1.6298 0.0072 7.7467 23.9733
miR-30-y 2.1421 0.0034 6.3900 28.2067
miR-374-y 4.7301 0.0009 0.2033 5.3967
miR-590-y 3.6286 0.0325 0.1900 2.3500
miR-8212-y 11.4683 0.0036 0.0010 2.8333
novel-m0007-5p 2.9010 0.0223 0.4900 3.6600
miR-144-x 4.2291 0.0307 0.3933 7.3767
miR-454-y 3.5531 0.0306 0.2033 2.3867
ame-miR-193 3.1393 0.0039 0.9167 8.0767
miR-100-y 3.3495 0.0003 1.0367 10.5667
miR-193-y 2.8593 0.0049 0.8833 6.4100
miR-221-y 1.3376 0.0444 9.6667 24.4300
miR-222-y 1.8682 0.0000 100.1467 365.6167
miR-767-x 4.7167 0.0011 0.2033 5.3467
miR-8232-x 3.7159 0.0226 0.1900 2.4967
miR-29-y 1.5049 0.0014 29.6800 84.2333

Fig. 5

Regulatory networks of significant DEmiRNAs in AmCK2 vs AmT2 and their target DEmRNAs associated with virulence factor/infection factor in NcCK vs NcT2"

[1] GALLAI N, SALLES J M, SETTELE J, VAISSIERE B E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 2009,68(3):810-821.
[2] WITTNER M, WEISS L M. The Microsporidia and Microsporidiosis. John Wiley & Sons, Inc., 1999.
[3] MARTÍN-HERNÁNDEZ R, BARTOLOMÉ C, CHEJANOVSKY N, CONTE Y L, DALMON A, DUSSAUBAT C, GARCÍA-PALENCIA P, MEANA A, PINTO M A, SOROKER V, HIGES M. Nosema ceranae in Apis mellifera: A 12 years postdetection perspective. Environmental Microbiology, 2018,20(4):1302-1329.
[4] MAYACK C, NATSOPOULOU M E, MCMAHON D P. Nosema ceranae alters a highly conserved hormonal stress pathway in honeybees. Insect Molecular Biology, 2015,24(6):662-670.
[5] EVANS J D, HUANG Q. Interactions among host-parasite microRNAs during Nosema ceranae proliferation in Apis mellifera. Frontiers in Microbiology, 2018,9:698.
[6] BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
pmid: 14744438
[7] ZHANG L, HOU D X, CHEN X, LI D H, ZHU L Y, ZHANG Y J, LI J, BIAN Z, LIANG X Y, CAI X, et al. Exogenous plant miR168a specifically targets mammalian LDLRAP1: Evidence of cross- kingdom regulation by microRNA. Cell Research, 2012,22(1):107-126.
pmid: 21931358
[8] ZHU K, LIU M H, FU Z, ZHOU Z, KONG Y, LIANG H W, LIN Z G, LUO J, ZHENG H Q, WAN P, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 2017,13(8):e1006946.
pmid: 28829772
[9] CUI C L, WANG Y, LIU J N, ZHAO J, SUN P L, WANG S B. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nature Communications, 2019,10(1):4298.
pmid: 31541102
[10] MAYORAL J G, HUSSAIN M, JOUBERT D A, ITURBE-ORMAETXE I, O’NEILL S L, ASGARI S. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(52):18721-18726.
[11] HINAS A, WRIGHT A J, HUNTER C P. SID-5 is an endosome- associated protein required for efficient systemic RNAi in C. elegans. Current Biology, 2012,22(20):1938-1943.
pmid: 22981770
[12] BUCHER G, SCHOLTEN J, KLINGLER M. Parental RNAi in Tribolium (Coleoptera). Current Biology, 2002,12(3):R85-R86.
[13] XU H J, CHEN T, MA X F, XUE J, PAN P L, ZHANG X C, CHENG J A, ZHANG C X. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 2013,22(6):635-647.
doi: 10.1111/imb.12051 pmid: 23937246
[14] CHENG L, SHARPLES R A, SCICLUNA B J, HILL A F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles, 2014,3:23743.
[15] VAN DER POL E, BOING A N, HARRISON P, STURK A, NIEUWLAND R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 2012,64(3):676-705.
doi: 10.1124/pr.112.005983 pmid: 22722893
[16] ZHANG T, ZHAO Y L, ZHAO J H, WANG S, JIN Y, CHEN Z Q, FANG Y Y, HUA C L, DING S W, GUO H S. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016,2(10):16153.
[17] SANNIGRAHI M K, SHARMA R, SINGH V, PANDA N K, RATTAN V, KHULLAR M. Role of host miRNA Hsa-miR-139-3p in HPV-16-induced carcinomas. Clinical Cancer Research, 2017,23(14):3884-3895.
doi: 10.1158/1078-0432.CCR-16-2936 pmid: 28143871
[18] HUANG Q, LI W, CHEN Y, RETSCHNIG-TANNE G, YANEZ O, NEUMANN P, EVANS J D. Dicer regulates Nosema ceranae proliferation in honeybees. Insect Molecular Biology, 2019,28(1):74-85.
[19] 付中民, 陈华枝, 刘思亚, 祝智威, 范小雪, 范元婵, 万洁琦, 张璐, 熊翠玲, 徐国钧, 陈大福, 郭睿. 意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答. 中国农业科学, 2019,52(17):3069-3082.
FU Z M, CHEN H Z, LIU S Y, ZHU Z W, FAN X X, FAN Y C, WAN J Q, ZHANG L, XIONG C L, XU G J, CHEN D F, GUO R. Immune responses of Apis mellifera ligustia to Nosema ceranae stress. Scientia Agricultura Sinica, 2019,52(17):3069-3082. (in Chinese)
[20] 熊翠玲, 陈华枝, 祝智威, 王杰, 范小雪, 蒋海宾, 范元婵, 万洁琦, 卢家轩, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 基于small RNA组学分析揭示意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答机制. 微生物学报, 2020,60(7):1458-1478.
XIONG C L, CHEN H Z, ZHU Z W, WANG J, FAN X X, JIANG H B, FAN Y C, WAN J Q, LU J X, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Unraveling the mechanism underlying the immune responses of Apis mellifera ligustica to Nosema ceranae stress based on small RNA omics analyses. Acta Microbiologica Sinica, 2020,60(7):1458-1478. (in Chinese)
[21] CHEN D F, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, WAN J Q, XIONG C L, ZHENG Y Z, GUO R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
[22] 熊翠玲, 耿四海, 周丁丁, 石彩云, 郭意龙, 陈大福, 郑燕珍, 徐国钧, 张曦, 郭睿. 感染意大利蜜蜂工蜂的东方蜜蜂微孢子虫及其纯化孢子的高表达基因分析. 上海交通大学学报(农业科学版), 2019,37(2):6-13.
XIONG C L, GENG S H, ZHOU D D, SHI C Y, GUO Y L, CHEN D F, ZHENG Y Z, XU G J, ZHANG X, GUO R. Analysis of highly expressed genes in Nosema ceranae infecting the midguts of Apis mellifera ligustica worker and purified fungal spores. Journal of Shanghai Jiaotong University (Agricultural Science), 2019,37(2):6-13. (in Chinese)
[23] 周倪红, 王海朋, 周丁丁, 付中民, 祝智威, 范元婵, 张曦, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 意大利蜜蜂工蜂中肠响应东方蜜蜂微孢子虫胁迫的可变剪接基因分析. 福建农林大学学报(自然科学版), 2020,49(3):372-379.
ZHOU N H, WANG H P, ZHOU D D, FU Z M, ZHU Z W, FAN Y C, ZHANG X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. Analysis on the response of alternatively splicing genes in Apis mellifera ligustica workers’ midguts to Nosema ceranae stress. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020,49(3):372-379. (in Chinese)
[24] 耿四海, 周丁丁, 范小雪, 蒋海宾, 祝智威, 王杰, 范元婵, 王心蕊, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 转录组分析揭示东方蜜蜂微孢子虫侵染意大利蜜蜂的分子机制. 昆虫学报, 2020,63(3):294-308.
GENG S H, ZHOU D D, FAN X X, JIANG H B, ZHU Z W, WANG J, FAN Y C, WANG X R, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Transcriptomic analysis reveals the molecular mechanism underlying Nosema ceranae infection of Apis mellifera ligustica. Acta Entomologica Sinica, 2020,63(3):294-308. (in Chinese)
[25] 耿四海, 石彩云, 范小雪, 王杰, 祝智威, 蒋海宾, 范元婵, 陈华枝, 杜宇, 王心蕊, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 微小RNA介导东方蜜蜂微孢子虫侵染意大利蜜蜂工蜂的分子机制. 中国农业科学, 2020,53(15):3187-3204.
GENG S H, SHI C Y, FAN X X, WANG J, ZHU Z W, JIANG H B, FAN Y C, CHEN H Z, DU Y, WANG X R, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. The mechanism underlying microRNAs-mediated Nosema ceranae infection to Apis mellifera ligustica worker. Scientia Agricultura Sinica, 2020,53(15):3187-3204. (in Chinese)
[26] 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018,51(21):4197-4209.
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F. Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018,51(21):4197-4209. (in Chinese)
[27] LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009,10(3):R25.
[28] FRIEDLANDER M R, MACKOWIAK S D, LI N, CHEN W, RAJEWSKY N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012,40(1):37-52.
doi: 10.1093/nar/gkr688 pmid: 21911355
[29] CHEN H Z, DU Y, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. A comprehensive transcriptome data of normal and Nosema ceranae- stressed midguts of Apis mellifera ligustica workers. Data in Brief, 2019,26:104349.
pmid: 31516938
[30] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, KUMAR D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49:660-670.
[31] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[32] ALLEN E, XIE Z X, GUSTAFSON A M, CARRINGTON J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2): 207-221.
pmid: 33857425
[33] SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3): 431-432.
pmid: 33876181
[34] HUANG Q, CHEN Y P, WANG R W, CHENG S, EVANS J D. Host-parasite interactions and purifying selection in a microsporidian parasite of honey bees. PLoS ONE, 2016,11(2):e0147549.
[35] CORNMAN R S, CHEN Y P, SCHATZ M C, STREET C, ZHAO Y, DESANY B, EGHOLM M, HUTCHISON S, PETTIS J S, LIPKIN W I, EVANS J D. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathogens, 2009,5(6):e1000466.
pmid: 19503607
[36] PALDI N, GLICK E, OLIVA M, ZILBERBERG Y, AUBIN L, PETTIS J, CHEN Y P, EVANS J D. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Applied and Environmental Microbiology, 2010,76(17):5960-5964.
pmid: 20622131
[37] PELIN A, SELMAN M, ARIS-BROSOU S, FARINELLI L, CORRADI N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology, 2015,17(11):4443-4458.
doi: 10.1111/1462-2920.12883 pmid: 25914091
[38] RODRÍGUEZ-GARCÍA C, EVANS J D, LI W, BRANCHICCELA B, LI J H, HEERMAN M C, BANMEKE O, ZHAO Y, HAMILTON M, HIGES M, MARTÍN-HERNÁNDEZ R, CHEN Y P. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. Journal of Experimental Biology, 2018, 221(19): jeb184606.
pmid: 16363121
[39] LIU H, LI M, HE X, CAI S, HE X, LU X. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochimica et Biophysica Sinica, 2016,48(3):246-256.
doi: 10.1093/abbs/gmv140 pmid: 26837419
[40] CAI Y, SHEN J. Modulation of host immune responses to Toxoplasma gondii by microRNAs. Parasite Immunology, 2017,39(2):12417.
[41] ENTWISTLE L J, WILSON M S. MicroRNA-mediated regulation of immune responses to intestinal helminth infections. Parasite Immunology, 2017,39(2):e12406.
[42] GARBIAN Y, MAORI E, KALEV H, SHAFIR S, SELA I. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathogens, 2012,8(12):e1003035.
pmid: 23308063
[43] VIDAU C, PANEK J, TEXIER C, BIRON D G, BELZUNCES L P, GALL M L, BROUSSARD C, DELBAC F, ALAOUI H E. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. Journal of Invertebrate Pathology, 2014,121:89-96.
doi: 10.1016/j.jip.2014.07.002 pmid: 25038465
[44] FIRE A, XU S, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
[45] HANNON G J. RNA interference. Nature, 2002,418(6894):244-251.
pmid: 12110901
[46] NDIKUMANA S, PELIN A, WILLIOT A, SANDERS J L, KENT M, CORRADI N. Genome analysis of Pseudoloma neurophilia: A microsporidian parasite of Zebrafish (Danio rerio). Journal of Eukaryotic Microbiology, 2017,64(1):18-30.
[47] 鲁兴萌, 汪方炜. 家蚕肠球菌对微孢子虫体外发芽的抑制作用. 蚕业科学, 2002,28(2):126-128.
LU X M, WANG F W. Inhibition of cultured supernatant of enterococci strains on germination of Nosema bombycis spores in vitro. Acta Sericologica Sinica, 2002,28(2):126-128. (in Chinese)
[48] YANG D L, PAN L X, PENG P, DANG X Q, LI C F, LI T, LONG M X, CHEN J, WU Y J, DU H H, et al. Interaction between SWP9 and polar tube proteins of the microsporidian Nosema bombycis and function of SWP9 as a scaffolding protein contribute to polar tube tethering to the spore wall. Infection and Immunity, 2017,85(3):e00872-16.
pmid: 28031263
[49] WEIS W, BROWN J H, CUSACK S, PAULSON J C, SKEHEL J J, WILEY D C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 1988,333(6172):426-431.
doi: 10.1038/333426a0 pmid: 3374584
[50] RUOSLAHTI E, PIERSCHBACHER M D. New perspectives in cell adhesion: RGD and integrins. Science, 1987,238(4826):491-497.
[51] LIU H, LI M, CAI S, HE X, SHAO Y, LU X. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochimica et Biophysica Sinica, 2016,48(11):1050-1057.
doi: 10.1093/abbs/gmw093 pmid: 27649890
[52] 刘天明, 申玉龙, 刘庆军, 刘波. 古菌独特的脱氧酮糖酸(ED)葡萄糖酵解途径. 微生物学报, 2008,48(8):1126-1131.
pmid: 18956766
LIU T M, SHEN Y L, LIU Q J, LIU B. The unique Entner-Doudoroff (ED) glycolysis pathway of glucose in Archaea—A review. Acta Microbiologica Sinica, 2008,48(8):1126-1131. (in Chinese)
pmid: 18956766
[53] HIGGINS C F. ABC transporters: From microorganisms to man. Annual Review of Cell Biology, 1992,8:67-113.
pmid: 1282354
[54] HAMEL L P, NICOLE M C, DUPLESSIS S, ELLIS B E. Mitogen- activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. The Plant Cell, 2012,24(4):1327-1351.
pmid: 22517321
[55] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
[56] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[1] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[2] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[3] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[4] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[5] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[6] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[7] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[8] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[9] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[10] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[11] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[12] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[13] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[14] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[15] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!