Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (20): 3961-3971.doi: 10.3864/j.issn.0578-1752.2018.20.014

• TECHNIQUE APPLICATION • Previous Articles     Next Articles

Studying the Fate and Recovery Efficiency of Controlled Release Urea in Paddy Soil Using 15N Tracer Technique

PengFei LI1(), XiaoKun LI1(), WenFeng HOU1, Tao REN1, RiHuan CONG1, ChangWen DU2, LieHuo XING3, ShaoHua WANG3, JianWei LU1   

  1. 1College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center, Huazhong Agricultural University,Wuhan 430070
    2The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    3Wuxue Bureau of Agriculture, Wuxue 435400, Hubei
  • Received:2018-01-19 Accepted:2018-05-25 Online:2018-10-16 Published:2018-10-16

Abstract:

【Objective】The purpose of this paper was to compare the characteristics of nitrogen (N) transformation in soil-plant system between controlled release urea and conventional urea under optimum nitrogen, phosphorus and potassium rates, and to explore the utilization potential of controlled release urea-N and its effect on reducing N loss, and to study quantitatively on the fate and recovery efficiency of controlled release urea in paddy soil, thus providing basis for the efficient application of controlled release fertilizer. 【Method】A field microplot experiment was employed with three N fertilizer treatments (no N applied, CK; 15N labelled conventional powder urea, U; 15N labelled controlled release urea, CRU) to study fertilizer N uptake, distribution and translocation in rice, fertilizer N fate and recovery efficiency in paddy soil. 【Result】Dry matter and 15N accumulation of stem and sheath by rice plants increased gradually along with the progress of rice growth, and reached the maximum at anthesis. Compared with U treatment, the dry matter of stem by rice plants in CRU treatment at anthesis increased by 13.8%, that of sheath was not significantly changed, and 15N accumulation of stem and sheath by rice plants in CRU treatment increased by 62.5% and 25.5%, respectively, then decreased due to the continuous transfer of dry matter and 15N of vegetative organs to grain. With the senescence of the leaves falling off, the dry matter and 15N accumulation of leaves decreased gradually from the heading stage, reaching the minimum at maturity. Dry matter and 15N accumulation of panicles increased from the booting stage, reaching the maximum at maturity. At maturity, compared with U treatment, the dry matter and 15N accumulation of stem, sheath, panicles, and aboveground by rice plants in CRU treatment increased by 17.3%, 13.2%, 3.5%, 3.7% and 25.0%, 20.0%, 15.8%, 13.3%, respectively, while those of leaves decreased by 14.6% and 15.2%, respectively. From anthesis to maturity, the dry matter and 15N translocation, translocation efficiency and contribution efficiency to grain in CRU treatment were 286.78 g·m-2, 32.3%, 30.8% and 2.69 g·m-2, 67.2%, 83.8%, respectively, slightly increased compared to U treatment, but not statistically significant. However, the nutrient supply from filling to maturity was abundant in CRU treatment, which promoted the grain filling rate of rice, and promoted the dry matter accumulation in grains, the assimilation of nitrogen, and the rapid transfer of nutrients from vegetative organs to grains. Compared with U, grain yield and N uptake of rice plants increased slightly, but there was no statistically significant difference; CRU treatment increased 15N accumulation by 13.3%, improved 15N use efficiency by 3.2 percentage points, increased N derived from 15N fertilizer by 2.9 percentage points, increased soil 15N residual rate by 0.9 percentage points, improved total 15N recovery efficiency by 4.0 percentage points, and reduced 15N loss by 4.0 percentage points. Regardless of application of controlled release urea or conventional urea, soil N was the main source of N for growth and development of rice, and the N from soil was more than 70% during rice growth period. The residual amount of fertilizer nitrogen in soil decreased significantly with the increase of soil depth. After harvest, fertilizer 15N mainly remained in the 0-20 cm soil layer, accounting for 78% of the total residue. The second was 20-40 cm and 40-60 cm soil layer, and the fertilizer 15N residue in the two soil layers was similar, accounting for about 19% of the total residue. Below 60 cm soil layer, there was still a trace amount of fertilizer 15N residue, accounting for less than 4% of the total residue. 【Conclusion】 Controlled release urea could improve dry matter and N accumulation, and increase the dry matter and N translocation after anthesis (especially from filling to maturity), and reduce the loss of fertilizer nitrogen while maintaining grain yield and improving fertilizer nitrogen use efficiency.

Key words: controlled release urea, 15N tracer technique, fate of nitrogen, nitrogen use efficiency, paddy field

Table 1

Dry matter accumulation and distribution of different parts of rice plants at different growth stages"

处理 Treatment 取样时期
Sampling stage
干物质量 Dry matter (g·m-2)
茎 Stem 鞘 Sheath 叶 Leaf 籽粒 Grain 穗轴 Cob 穗 Panicle 合计 Total
U 孕穗期 Booting 32.45c (7.1) 179.52c (39.3) 219.33b (48.0) 25.97e (5.7) 457.27d
抽穗期 Heading 128.47b (15.4) 248.91b (29.8) 282.95a (33.9) 127.24d (15.2) 47.42c (5.7) 174.66d (20.9) 834.99c
开花期 Anthesis 242.49a (17.6) 301.50a (21.9) 265.28a (19.3) 518.20c (37.6) 50.13c (3.6) 568.33c (41.2) 1377.60b
灌浆期 Filling 143.61b (9.7) 253.03b (17.1) 196.15bc (13.3) 827.28b (55.9) 60.14b (4.1) 887.42b (60.0) 1480.21a
成熟期 Maturity 130.89b (8.9) 196.16c (13.3) 191.73c (13.0) 892.38a (60.4) 65.95a (4.5) 958.33a (64.9) 1477.11a
CRU 孕穗期 Booting 51.22d* (8.3) 283.40a* (46.2) 244.82b* (39.9) 34.11e* (5.6) 613.55d*
抽穗期 Heading 201.80b* (21.1) 265.89a* (27.8) 285.74a (29.9) 156.57d* (16.4) 45.84c (4.8) 202.41d* (21.2) 955.84c*
开花期 Anthesis 275.86a* (19.2) 289.80a (20.2) 266.67ab (18.6) 548.43c* (38.2) 54.98b* (3.8) 603.41c* (42.0) 1435.74b
灌浆期 Filling 142.73c (9.2) 282.71a* (18.2) 209.83c* (13.5) 858.15b (55.2) 60.56a (3.9) 918.71b (59.1) 1553.98a*
成熟期 Maturity 153.57c* (10.0) 222.08b* (14.5) 163.72d* (10.7) 930.62a (60.8) 61.17a* (4.0) 991.79a (64.8) 1531.16a

Table 2

15N accumulation and distribution of different parts of rice plants at different growth stages"

处理
Treatment
取样时期
Sampling stage
15N积累量 15N accumulation (g·m-2)
茎Stem 鞘Sheath 叶Leaf 籽粒Grain 穗轴Cob 穗Panicle 合计Total
U 孕穗期 Booting 0.08c (2.4) 0.71b (21.1) 2.46a (73.2) 0.11e (3.3) 3.36c
抽穗期 Heading 0.22b (5.5) 0.83b (20.9) 2.47a (62.2) 0.34d (8.6) 0.11a (2.8) 0.45d (11.4) 3.97b
开花期 Anthesis 0.32a (6.2) 0.98a (19.1) 2.10b (40.9) 1.61c (31.4) 0.12a (2.3) 1.73c (33.7) 5.13a
灌浆期 Filling 0.12c (3.5) 0.54c (15.7) 0.62c (18.1) 2.07b (60.3) 0.08b (2.3) 2.15b (62.6) 3.43c
成熟期 Maturity 0.28a (7.0) 0.40d (10.0) 0.46d (11.5) 2.77a (69.4) 0.08b (2.0) 2.85a (71.4) 3.99b
CRU 孕穗期 Booting 0.14c* (3.3) 1.16ab* (27.4) 2.79a* (65.8) 0.15e* (3.5) 4.24b*
抽穗期 Heading 0.37b* (7.8) 1.12b* (23.7) 2.51b (53.2) 0.54d* (11.4) 0.18b* (3.8) 0.72d* (15.2) 4.72b*
开花期 Anthesis 0.52a* (8.3) 1.23a* (19.7) 2.04c (32.7) 2.23c* (35.7) 0.22a* (3.5) 2.45c* (39.2) 6.24a*
灌浆期 Filling 0.18c* (3.8) 0.80c* (16.8) 0.93d* (19.5) 2.74b* (57.4) 0.12c* (2.5) 2.86b* (59.9) 4.77b*
成熟期 Maturity 0.35b* (7.7) 0.48d* (10.6) 0.39e* (8.6) 3.21a* (71.0) 0.09d* (2.0) 3.30a* (73.0) 4.52b*

Table 3

Dry matter and 15N translocation, translocation efficiency and contribution efficiency to grain of rice at different growth stages after anthesis"

处理
Treatment
时期
Stages
干物质转运量
Day matter translocation (g·m-2)
转运效率
Translocation efficiency (%)
对籽粒的贡献率
Contribution efficiency to grain (%)
15N转运量
15N translocation
(g·m-2)
15N转运效率
15N translocation efficiency (%)
对籽粒的贡献率
Contribution efficiency to grain (%)
U 开花期—灌浆期 Anthesis-Filling 206.47 24.0 23.1 2.15 61.1 77.7
开花期—成熟期 Anthesis-Maturity 274.66 32.0 30.8 2.30 65.3 83.0
CRU 开花期—灌浆期 Anthesis-Filling 191.50 21.6 20.6 1.97 49.3 61.5
开花期—成熟期 Anthesis-Maturity 286.78 32.3 30.8 2.69 67.2 83.8

Table 4

The percentage of 15N derived from fertilizer (Ndff) and soil (Ndfs) of rice"

处理 Treatment 产量
Yield
(g·m-2)
植株吸氮量
Total N uptake
(g·m-2)
来自肥料的氮
N from fertilizer
(g·m-2)
较U处理增加Increase(%) Ndff
(%)
较U处理增加百分点Increase percentage points 来自土壤的氮
N from soil
(g·m-2)
较CRU处理增加Increase(%) Ndfs
(%)
较CRU处理增加百分点Increase percentage points 激发氮量
Stimulated N
(g·m-2)
较CRU处理增加Increase(%)
CK 768.35b 9.09b 9.09b 100.0a
U 892.38a 16.50a 3.99 24.2 12.51a 3.1 75.8b 2.9 3.42 12.5
CRU 930.62a 16.65a 4.52 13.3 27.1 2.9 12.13a 72.9b 3.04

Table 5

15N balance and fate in paddy rice"

处理 Treatment 施氮量
N applied
(g·m-2)
15N吸收量
15N uptake
(g·m-2)
氮肥利用率
N recovery efficiency (%)
土壤残留
Residual in soil
根系吸收
Uptake by root
总回收
Total recovery
氮损失
N loss
差减法
Difference method
15N示踪法
15N tracer method
15N
残留量
15N residue
15N残留率
15N residue rate (%)
15N吸收量
15N uptake
(g·m-2)
15N利用率
15N use efficiency
(%)
15N总
回收量
15N recovery
15N总
回收率
15N recovery rate (%)
15N
损失量
15N loss
(g·m-2)
15N损失率15N loss
rate
(%)
U 16.5 3.99b 44.9a 24.2b 1.50b 9.1b 0.28a 1.7a 5.77b 35.0b 10.7a 65.0a
CRU 16.5 4.52a 45.8a 27.4a 1.65a 10.0a 0.26a 1.6a 6.43a 39.0a 10.1a 61.0a

Fig. 1

Residual of fertilizer 15N in soil profile"

[1] 程式华, 李建. 现代中国水稻. 北京: 金盾出版社, 2007: 1-8.
CHENG S H, LI J. Modern Chinese Rice.Beijing: Golden Shied Press, 2007: 1-8. (in Chinese)
[2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017.
NBS. China Statistical Yearbook. Beijing: China Statistical Publishing House, 2017. (in Chinese)
[3] LINQUIST B A, LIU L J, VAN KESSEL C, VAN GROENIGEN K J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta- analysis of yield and nitrogen uptake.Field Crops Research, 2013, 154: 246-254.
doi: 10.1016/j.fcr.2013.08.014
[4] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland Buresh, Christian Witt.提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9): 1095-1103.
PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, ROLAND B, CHRISTIAN W.Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China.Scientia Agricultura Sinica, 2002, 35(9): 1095-1103. (in Chinese)
[5] ZHU Z L, CHEN D L.Nitrogen fertilizer use in China - Contributions to food production, impacts on the environment and best management strategies.Nutrient Cycling in Agroecosystems, 2002, 63: 117-127.
[6] PENG S B, BURESH R J, HUANG J L, YANG J C, ZOU Y B, ZHONG X H, WANG G H, ZHANG F S.Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crops Research, 2006, 96: 37-47.
[7] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S.Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 3041-3046.
[8] 赵萍萍, 王宏庭, 郭军玲, 李丽. 氮肥用量对夏玉米产量、收益、农学效率及氮肥利用率的影响. 山西农业科学, 2010, 38(11): 43-46, 80.
ZHAO P P, WANG H T, GUO J L, LI L.Influence to the rate of nitrogen fertilizer application on summer maize yield, net return, agronomic efficiency and nitrogen use recovery.Journal of Shanxi Agricultural Sciences, 2010, 38(11): 43-46, 80. (in Chinese)
[9] 林晶晶, 李刚华, 薛利红, 张巫军, 许慧阁, 王绍华, 杨林章, 丁艳锋. 15N示踪的水稻氮肥利用率细分. 作物学报, 2014, 40(8): 1424-1434.
LIN J J, LI G H, XUE L H, ZHANG W J, XU H G, WANG S H, YANG L Z, DING Y F.Subdivision of nitrogen use efficiency of rice based on 15N tracer.Acta Agronomica Sinica, 2014, 40(8): 1424-1434. (in Chinese)
[10] GAUDIN R.The kinetics of ammonia disappearance from deep- placed urea supergranules (USG) in transplanted rice: The effects of split USG application and PK fertilizer.Paddy and Water Environment, 2012, 10: 1-5
[11] LIU T Q, FAN D J, ZHANG X X, CHEN J, LI C F, CAO C G.Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China.Field Crops Research, 2015, 184: 80-90.
[12] 张福锁. 我国肥料产业与科学施肥战略研究报告. 北京: 中国农业大学出版社, 2008.
ZHANG F S.Strategy of Chinese Fertilizer Industry and Scientific Application. Beijing: Chinese Agricultural University Press, 2008. (in Chinese)
[13] 郑圣先, 聂军, 熊金英, 肖剑, 罗尊长, 易国英. 控释肥料提高氮素利用率的作用及对水稻效应的研究. 植物营养与肥料学报, 2001, 7(1): 11-16.
ZHENG S X, NIE J, XIONG J Y, XIAO J, LUO Z C, YI G Y.Study on role of controlled release fertilizer in increasing the efficiency of nitrogen utilization and rice yield.Plant Nutrition and Fertilizer Science, 2001, 7(1): 11-16. (in Chinese)
[14] TRENKEL M E.Improving Fertilizer Use Efficiency. Controlled- Release Stabilized Fertilizers in Agriculture. Paris: International Fertilizer Industry Association, 1997: 7-27.
[15] 杜学初, 谭德水, 江丽华, 刘兆辉. 缓/控释氮肥对主要粮食作物及环境影响研究进展. 农学学报, 2014, 4(6): 27-31.
DU X C, TAN D S, JIANG L H, LIU Z H.Research advances in effects of slow/controlled-release nitrogen fertilizer on major food cop and environment.Journal of Agriculture, 2014, 4(6): 27-31. (in Chinese)
[16] LI P F, LU J W, HOU W F, PAN Y H, WANG Y, KHAN M R, REN T, CONG R H, LI X K.Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea.Environmental Science and Pollution Research, 2017, 24: 11722-11733.
[17] LI P F, LU J W, WANG Y, WANG S, HUSSAIN S, REN T, CONG R H, LI X K.Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea.Agriculture, Ecosystems and Environment, 2018, 251: 78-87.
[18] 郑圣先, 刘德林, 聂军, 戴平安, 肖剑. 控释氮肥在淹水稻田土壤上的去向及利用率. 植物营养与肥料学报, 2004, 10(2): 137-142.
ZHENG S X, LIU D L, NIE J, DAI P A, XIAO J.Fate and recovery efficiency of controlled release nitrogen fertilizer in flooding paddy soil.Plant Nutrition and Fertilizer Science, 2004, 10(2): 137-142. (in Chinese)
[19] 张民, 陈宝成, 李成亮, 杨越超, 陈剑秋, 耿计彪, 姜曦龙. 控释肥养分释放与作物养分吸收同步性研究. 第二十二届全国磷复肥行业年会论文集, 2015: 289-305.
ZHANG M, CHEN B C, LI C L, YANG Y C, CHEN J Q, GENG J B, JIANG X L.Study on the synchronization between nutrient release of controlled-release fertilizers and nutrient uptake of crops. The 22nd National Conference on Phosphate and Compound Fertilizer Industry Annual Conference, 2015: 289-305. (in Chinese)
[20] 蒋曦龙, 陈宝成, 张民, 李成亮, 马丽, 陈剑秋. 控释肥氮素释放与水稻氮素吸收相关性研究. 水土保持学报, 2014, 28(1): 215-220.
JIANG X L, CHEN B C, ZHANG M, LI C L, MA L, CHEN J Q.Study on the correlation between nitrogen release dynamics of controlled-release fertilizer and nitrogen uptake of the rice.Journal of Soil and Water Conservation, 2014, 28(1): 215-220. (in Chinese)
[21] 徐明岗, 孙小凤, 邹长明, 秦道珠, 八木一行, 宝川靖和. 稻田控释氮肥的施用效果与合理施用技术. 植物营养与肥料学报, 2005, 11(4): 487-493.
XU M G, SUN X F, ZOU C M, QIN D Z, YAGI K, HOSEN Y.Effects and rational application of controlled-release nitrogen fertilizer.Plant Nutrition and Fertilizer Science, 2005, 11(4): 487-493. (in Chinese)
[22] 唐拴虎, 杨少海, 陈建生, 徐培智, 张发宝, 艾绍英, 黄旭. 水稻一次性施用控释肥料增产机理探讨. 中国农业科学, 2006, 39(12): 2511-2520.
TANG S H, YANG S H, CHEN J S, XU P Z, ZHANG F B, AI S Y, HUANG X.Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yields of rice (Oryza sativa). Scientia Agricultura Sinica, 2006, 39(12): 2511-2520. (in Chinese)
[23] KIRAN J K, KHANIF Y M, AMMINUDDIN H, ANUAR A R.Effects of controlled release urea on the yield and nitrogen nutrition of flooded rice.Communications in Soil Science and Plant Analysis, 2010, 41: 811-819.
[24] GRANT C A, WU R, SELLES F, HARKER K N, CLAYTON G W, BITTMAN S, ZEBARTH B J, LUPWAYI N Z.Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding.Field Crops Research, 2012, 127: 170-180.
[25] GUO C, LI P F, LU J W, REN T, CONG R H, LI X K.Application of controlled-release urea in rice: reducing environmental risk while increasing grain yield and improving nitrogen use efficiency.Communications in Soil Science and Plant Analysis, 2016, 47(9): 1176-1183.
[26] 郑圣先, 聂军, 熊金英, 肖剑, 罗尊长, 易国英. 控释肥料提高氮素利用率的作用及对水稻效应的研究. 植物营养与肥料学报, 2001, 7(01):11-16.
ZHENG S X, NIE J, XIONG J Y, XIAO J, LUO Z C, YI G Y.Study on role of controlled release fertilizer in increasing the efficiency of nitrogen utilization and rice yield.Plant Nutrition and Fertilizer Science, 2001, 7(01): 11-16. (in Chinese)
[27] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30-109.
BAO S D.Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 2000: 30-109. (in Chinese)
[28] 晏娟, 沈其荣, 尹斌, 万新军. 应用15N示踪技术研究水稻对氮肥的吸收和分配. 核农学报, 2009, 23(3): 487-491.
YAN J, SHEN Q R, YIN B, WAN X J.Fertilizer-N uptake and distribution in rice plants using 15N tracer technique.Journal of Nuclear Agricultural Sciences, 2009, 23(3): 487-491. (in Chinese)
[29] 左红娟, 白由路, 卢艳丽, 王磊, 王贺, 王志勇. 基于高丰度15N华北平原冬小麦肥料氮的去向研究. 中国农业科学, 2012, 45(15): 3093-3099.
ZUO H J, BAI Y L, LU Y L, WANG L, WANG H, WANG Z Y.Fate of fertilizer nitrogen applied to winter wheat in north China plain based on high abundance of 15N.Scientia Agricultura Sinica, 2012, 45(15): 3093-3099. (in Chinese)
[30] 辛志远, 王昌全, 申亚珍, 马菲, 周健民, 杜昌文. 水基包衣控释掺混肥料一次性施用对单季稻氮素利用的影响. 农业环境科学学报, 2016, 35(1): 109-114.
XIN Z Y, WANG C Q, SHEN Y Z, MA F, ZHOU J M, DU C W.Effect of single application of water-borne polymer coated controlled- release blend fertilizer on nitrogen utilization in rice.Journal of Agro-Environment Science, 2016, 35(1): 109-114. (in Chinese)
[31] ZHAO C, SHEN Y Z, DU C W, ZHOU J M, WANG H Y, CHEN X Y.Evaluation of waterborne coating for controlled-release fertilizer using wurster fluidized bed.Industrial & Engineering Chemistry Research, 2010, 49(20): 9644-9647.
[32] 申亚珍, 杜昌文, 周健民, 王火焰, 陈小琴. 基于水基反应成膜技术的聚合物包膜肥料的研制. 中国土壤与肥料, 2009(6): 47-51.
SHEN Y Z, DU C W, ZHOU J M, WANG H Y, Development of water-borne polymer coated fertilizer using reacted layer technology.Soils and Fertilizers Sciences in China, 2009(6): 47-51. (in Chinese)
[33] 刘德林, 聂军, 肖剑. 15N标记水稻控释氮肥对提高氮素利用效率的研究. 激光生物学报, 2002, 11(2): 87-92.
LIU D L, NIE J, XIAO J.Study on 15N labeled rice controlled release fertilizer in increasing nitrogen utilization efficiency.Acta Laser Biology Sinica, 2002, 11(2): 87-92. (in Chinese)
[34] KE J, XING X M, LI G H, DING Y F, DOU F G, WANG S H, LIU Z H, TANG S, DING C Q, CHEN L.Effects of different controlled- release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice.Field Crops Research, 2017, 205: 147-156.
[35] 杨俊刚, 曹兵, 徐秋明, 刘存宝. 包膜控释肥料在旱地农田的应用研究进展与展望. 土壤通报, 2010, 41(2): 494-500.
YANG J G, CAO B, XU Q M, LIU C B.Progress and prospect in the application of controlled- release fertilizer in upland field.Chinese Journal of Soil Science, 2010, 41(2): 494-500. (in Chinese)
[36] WANG S Q, ZHAO X, XING G X, YANG Y C, ZHANG M, CHEN H K.Improving grain yield and reducing N loss using polymer-coated urea in southeast China.Agronomy for Sustainable Development, 2015, 35: 1103-1115.
[37] 杨俊刚, 曹兵, 许俊香, 倪小会, 徐秋明, 刘宝存. 15N同位素标记包膜控释肥料及其制备方法: CN 102101810 B[P].2014-01-15.
YANG J G, CAO B, XU J X, NI X H, XU Q M, LIU C B. 15N isotope labeled coated release-control fertilizer and preparation method thereof: CN 102101810 B [P].2014-01-15. (in Chinese)
[38] JENKINSON D S, 杨堽, 胡全才. 肥料氮和土壤氮之间的相互作用——所谓的“激发效应”. 土壤学进展, 1987(6): 27-34.
JENKINSON D S, YANG G, HU Q C.Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’ effect.Advances in Soil Science, 1987(6): 27-34. (in Chinese)
[39] 朱培立, 黄东迈. 土壤氮激发效应的探讨. 中国农业科学, 1994, 27(4): 45-52.
ZHU P L, HUANG D M.Discussion on priming effect of soil nitrogen. Scientia Agricultura Sinica, 1994, 27(4): 45-52. (in Chinese)
[1] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[2] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[3] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[4] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[5] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[6] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[7] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[8] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[9] DING XiangPeng,LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354.
[10] ZOU WenXiu,HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun. Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize [J]. Scientia Agricultura Sinica, 2020, 53(20): 4237-4247.
[11] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[12] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[13] SiYang REN,QingSong ZHANG,TingYu LI,FuSuo ZHANG. Spatiotemporal Variation of Winter Wheat Yield and Nitrogen Management in Five Provinces of North China Plain [J]. Scientia Agricultura Sinica, 2019, 52(24): 4527-4539.
[14] ZHU CongHua, ZHANG YuPing, XIANG Jing, ZHANG YiKai, WU Hui, WANG YaLiang, ZHU DeFeng, CHEN HuiZhe. Effects of Side Deep Fertilization on Yield Formation and Nitrogen Utilization of Mechanized Transplanting Rice [J]. Scientia Agricultura Sinica, 2019, 52(23): 4228-4239.
[15] REN KeYu,DUAN YingHua,XU MingGang,ZHANG XuBo. Effect of Manure Application on Nitrogen Use Efficiency of Crops in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2983-2996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!