Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4634-4645.doi: 10.3864/j.issn.0578-1752.2020.22.010

• SOIL & FERTILIZER?WATER-SAVING IRRIGATION?AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields

XIANG Wei1,WANG Lei1,LIU TianQi1,LI ShiHao1,ZHAI ZhongBing3,LI ChengFang1,2,*()   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University/Key Laboratory of Crop Physiology, Ecology and Cultivation in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070
    2 Yangtze University/ Collaborative Innovation Center of Major Grain Crops in Hubei Province, Jingzhou 434023, Hubei
    3 Modern Agriculture Exhibition Center in Southeast Hubei Province, Wuxue 435415, Hubei
  • Received:2020-03-21 Accepted:2020-05-28 Online:2020-11-16 Published:2020-11-28
  • Contact: ChengFang LI E-mail:lichengfang@126.com

Abstract:

【Objective】Biochar has been widely used in agricultural production due to large specific surface area and high concentrations in a variety of nutrients. The aim of this study was to investigate effects of biochar plus Inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields, so as to provide a scientific basis for the proper use of biochar.【Method】A 2-years field trials in Huanqiao town Wuxue city were set up to investigate the effects of biochar combined with different amounts of inorganic nitrogen on CH4 and N2O emissions, grain yield and nitrogen use efficiency from paddy fields. Four treatments included no nitrogen (CK), conventional inorganic nitrogen (180 kg·hm -2) (IF), conventional inorganic nitrogen+10 t·hm -2 biochar (IF+C), and 30% reduction of inorganic nitrogen+10 t·hm -2 biochar (RIF+C). The CH4 and N2O emission fluxes from paddy soils were determined by static chamber-gas chromatography method, and the grain yield was also determined.【Result】(1) There were obvious seasonal trends in CH4 and N2O emissions during the rice growing seasons of 2018 and 2019. The CH4 fluxes peaked at the tillering and heading panicle stages, and the N2O fluxes peaked just after N fertilization and field drainage. The CH4 fluxes ranged from 0.01 mg·m -2·h -1 to 48.97 mg·m -2·h -1in 2018 and 0.36 mg·m -2·h -1 to 18.08 mg·m -2·h -1in 2019, and the N2O fluxes were -0.002-0.17 mg·m -2·h -1 in 2018, and 0.01-0.28 mg·m -2·h -1in 2019. Average CH4 fluxes were 6.17-7.16 mg·m -2·h -1in 2018 and 5.16-5.83 mg·m -2·h -1in 2019, and average N2O fluxes were 0.02-0.04 mg·m -2·h -1in 2018 and 0.05-0.08 mg·m -2·h -1 in 2019. (2) Compared with CK, the application of inorganic nitrogen fertilizers did not affect CH4 emissions, but increased N2O emissions by 32.6%-113.0%. Compared with IF, biochar treatments (IF+C and RIF+C) did not affect CH4 emissions, but significantly decreased N2O emissions by 33.4%-43.1% in 2018 and by 37.0%-39.5% in 2019. There was no difference in global warming potential (GWP) between IF and biochar treatments. No significant differences in CH4 and N2O emissions were observed between IF+C and RIF+C. CH4 emissions played in a dominant in GWP, accounting for 84.4%-95.2% of the seasonal GWP. (3) Nitrogen fertilization significantly increased rice grain yields by 4.0%-6.0%. Compared with IF treatment, biochar treatments (IF+C and RIF+C) significantly increased rice grain yield by 9.9%-11.9%. There was no significant difference in rice grain yield between IF+C and RIF+C. Compared with IF treatment, IF+C and RIF+C treatment significantly increased nitrogen use efficiency by 7.7%-8.1%. Nitrogen partial productivity under RIF+C was increased by 57.1% and 52.3% in two years, respectively. 【Conclusion】The treatment of biochar + 30% reduction of inorganic nitrogen was a sustainable agronomic measure to effectively reduce N2O emission and to increase rice yield and nitrogen use efficiency in rice fields. However, the mitigating effect of biochar on greenhouse gas emission from rice fields should be further studied.

Key words: biochar, CH4, N2O, global warming potential, nitrogen use efficiency, rice yield

Table 1

Basic physical and chemical properties of biochar used"

pH 全氮
Total N
(%)
全碳
Total C
(%)
比表面积
Specific surface area (m2·g-1)
灰分
Ash
(%)
孔径
Pore diameter (nm)
9.45 1.02 44.81 27.31 5.11 8.12

Fig. 1

Changes in N2O emission fluxes from paddy fields under different treatments in 2018 and 2019"

Fig. 2

Changes of N2O emission fluxes under different treatments in rice seasons of 2018 and 2019"

Table 2

Repeated measurements analysis of variance of CH4 and N2O emission fluxes under different treatments in 2018 and 2019"

气体
Gas
处理
Treatment
2018 2019
df MS F P df MS F P
CH4 时间 Time 12 420.63 7.57 <0.001 12 74.19 3.31 <0.001
处理 Treatment 4 74.62 1.34 0.263 4 9.38 0.42 0.74
时间×处理 Time×Treatment 48 156.33 7.44 <0.001 48 6.22 0.39 0.76
N2O 时间 Time 12 0.015 8.32 <0.001 12 0.031 9.5 <0.001
处理 Treatment 4 0.01 5.589 0.001 4 0.006 1.72 0.17
时间×处理 Time×Treatment 48 0.003 1.90 0.009 48 0.005 1.62 0.04

Table 3

Changes in cumulative greenhouse gas emissions, GWP and yield from rice fields under different treatments"

年份
Year
处理
Treatment
CH4累积排放量
Cumulative CH4 emission (kg·hm-2)
N2O累积排放量
Cumulative N2O emission (kg·hm-2)
综合增温潜势
Global warming potential (kg·hm-2)
水稻产量
Yield (t·hm-2)
2018 CK 77.62±5.27 a 0.39±0.01 b 2275.53±151.57 a 8.99±0.22 b
IF 76.84±5.42 a 0.82±0.17 a 2369.47±108.77 a 9.33±0.15 b
IF+C 84.93±4.67 a 0.50±0.03 b 2510.01±130.66 a 9.69±0.26 ab
RIF+C 78.66±1.71 a 0.48±0.00 b 2330.26±47.84 a 10.26±0.35 a
2019 CK 58.45±9.80 a 0.73±0.06 ab 1829.64±258.60 a 8.76±0.21 c
IF 57.12±4.14 a 0.96±0.02 a 1855.01±115.35 a 9.29±0.23 bc
IF+C 59.51±5.65 a 0.61±0.04 b 1827.38±167.35 a 10.31±0.30 a
RIF+C 62.04±5.88 a 0.58±0.07 b 1891.93±179.76 a 9.83±0.18 ab

Table 4

Changes in rice nitrogen uptake, nitrogen utilization and fertilizer partial productivity of different treatments under different treatments"

年份
Year
处理
Treatment
吸氮量
Nitrogen uptake (kg·hm-2)
氮肥利用率
Nitrogen use efficiency (%)
氮肥偏生产力
Nitrogen agronomic efficiency (kg·kg-1)
2018 CK 78.46±5.77 c
IF 135.80±4.26 b 31.85±4.10 b 51.82±0.82 b
IF+C 149.58±3.04 a 39.51±2.93 a 52.78±1.42 b
RIF+C 129.40±1.24 b 40.42±1.70 a 81.40±2.75 a
2019 CK 80.5±7.29 c
IF 134.69±5.25 b 30.13±2.92b 51.82±0.82 b
IF+C 148.63±0.50 a 37.85±0.47 a 52.78±1.42 b
RIF+C 128.62±3.14 b 38.16±4.31 a 81.40±2.75 a
[1] STOCKER T, QIN D, PLATTNER G K, TIGNOR M, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of the Intergovernmental Panel on Climate Change of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013.
[2] SMITH P, MARTINO D, CAI Z C, GWARY D, JANZEN H, KUMAR P, MCCARL B, OGLE S, MARA F, RICE C, SCHOLES B, SIROTENKO C, HOWDEN M, MCALLISTER T, PAN G, ROMANENKOV V, SCHNEIDER U, TOWPRAYOON S . Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2006,118(1):6-28.
doi: 10.1016/j.agee.2006.06.006
[3] FENG Y F, SUN H J, XUE L H, LIU Y, GAO Q, LU P K, YANG L Z . Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 2017,168:1277-1284.
doi: 10.1016/j.chemosphere.2016.11.151 pmid: 27919533
[4] WROBEL-TOBISZEWSKA A, BOERSMA M, SARGISON J, ADAMS P, SINGH B, FRANKS S, BRICH C J, CLOSE C . Nutrient changes in potting mix and eucalyptus nitens leaf tissue under macadamia biochar amendments. Journal of Forestry Research, 2018,29(2):383-393.
doi: 10.1007/s11676-017-0437-0
[5] LEIGH D. BURREL, ZEHETNER F, RAMPAZZO N, WIMMER B, SOIA G . Long-term effects of biochar on soil physical properties. Geoderma, 2016,282:96-102.
doi: 10.1016/j.geoderma.2016.07.019
[6] HENSLEY M D, GU S, HAGAN E B . Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 2011,15(8):3539-3551.
doi: 10.1016/j.rser.2011.05.010
[7] 陈温福, 张伟明, 孟军 . 农用生物炭研究进展与前景. 中国农业科学, 2013,46(16):3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
CHEN W F, ZHANG W M, MENG J . Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013,46(16):3324-3333. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.16.003
[8] LAIRD D, FLEMING P, WANG B Q, HORTON R, KARLEN D . Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma, 2010,158(3):436-442.
doi: 10.1016/j.geoderma.2010.05.012
[9] MIZUTA K, MATSUMOTO T, HATATE Y, KEIICHI N, TOMOKI N . Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 2004,95(3):255-257.
doi: 10.1016/j.biortech.2004.02.015 pmid: 15288267
[10] MARK P, MCHENRY . Soil organic carbon, biochar, and applicable research results for increasing farm productivity under Australian agricultural conditions. Communications in Soil Science and Plant Analysis, 2011,42(10):1187-1199.
doi: 10.1080/00103624.2011.566963
[11] OLMO M, ALBURQUERQUE J A, BARRON V, CAMPILLO M C, CALLARDO A, FUENTES M, VILLAR R . Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 2014,50(8):1177-1187.
doi: 10.1007/s00374-014-0959-y
[12] 曲晶晶, 郑金伟, 郑聚锋, 张旭辉, 李恋卿, 潘根兴, 纪雄辉, 余喜初 . 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响. 生态与农村环境学报, 2012,28(3):288-293.
QU J J, ZHENG J W, ZHENG J F, ZHANG X H, LI L Q, PAN G X, JI X H, YU X C . Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice. Journal of Ecology and Rural Environment, 2012,28(3):288-293. (in Chinese)
[13] 张爱平, 刘汝亮, 高霁, 张晴雯, 陈哲, 惠锦卓, 杨世琦, 杨正礼 . 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响. 植物营养与肥料学报, 2015,21(5):1352-1360.
doi: 10.11674/zwyf.2015.0531
ZHANG A P, LIU R L, GAO J, ZHANG Q W, CHEN Z, Hui J Z, YANG S Q, YANG Z L . Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia yellow river irrigation region. Journal of Plant Nutrition and Fertilizer, 2015,21(5):1352-1360. (in Chinese)
doi: 10.11674/zwyf.2015.0531
[14] ASAI H, SAMSON B K, STEPHAN H M, STEPHAN H M, HAEFELE M, SONGYIKHANGSUTHOR K, HOMMA K, KIYONO Y, INOUE Y, SHIRAIWA T, HORIE T . Biochar amendment techniques for upland rice production in northern Laos 1. soil physical properties, leaf SPAD and grain yield. Field Crops Research, 2009,111(1/2):81-84.
doi: 10.1016/j.fcr.2008.10.008
[15] FENG Y Z, XU Y P, YU Y C, XIE Z B, LIN X G . Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 2011,46:80-88.
doi: 10.1016/j.soilbio.2011.11.016
[16] XIE Z B, XU Y P, LIU G, ZHU J G, TU C, JAMES E, AMONETTE , CADISCH G, JEAN W H Y, HU S J. Impact of biochar application on nitrogen of rice, greenhouse gas emission and soil organic dynamics in two paddy soil of China. Plant and Soil, 2013,370:527-540.
doi: 10.1007/s11104-013-1636-x
[17] 李露, 周自强, 潘晓健, 李博, 熊正琴 . 氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响. 植物营养与肥料学报, 2015,21(5):1095-1103.
doi: 10.11674/zwyf.2015.0501
LI L, ZHOU Z Q, PAN X J, LI B, XIONG Z Q . Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system. Journal of Plant Nutrition and Fertilizer, 2015,21(5):1095-1103. (in Chinese)
doi: 10.11674/zwyf.2015.0501
[18] 廖萍, 眭锋, 汤军, 曾勇军, 吴自明, 石庆华, 黄山 . 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018,32(9):1821-1830.
LIAO P, SUI F, TANG J, ZENG Y J, WU Z M, SHI Q H, HUANG S . Effects of biochar amendment on the global warming potential and greenhouse gas intensity in a double rice-cropping system. Journal of Nuclear Agricultural Sciences, 2018,32(9):1821-1830. (in Chinese)
[19] 张斌, 刘晓雨, 潘根兴, 郑聚锋, 池忠志, 李恋卿, 张旭辉, 郑金伟 . 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化. 中国农业科学, 2012,45(23):4844-4853.
doi: 10.3864/j.issn.0578-1752.2012.23.011
ZHANG B, LIU X Y, PAN G X, ZHENG J F, CHI Z Z, LI L Q, ZHANG X H, ZHENG J W . Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles. Scientia Agricultura Sinica, 2012,45(23):4844-4853. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.23.011
[20] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000: 44-49.
BAO S D. Soil and Agrochemistry Analysis. Beijing: China Agriculture Press, 2000: 44-49. (in Chinese)
[21] 董玉兵, 吴震, 李博, 许欣, 熊正琴 . 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响. 植物营养与肥料学报, 2017,23(5):1258-1267.
DONG Y B, WU Z, LI B, XU X, XIONG Z X . Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system. Journal of Plant Nutrition and Fertilizer, 2017,23(5):1258-1267. (in Chinese)
[22] LI C F, ZHANG Z S, GUO L J, CAI M L, CAO C G . Emissions of CH4, and CO2, from double rice cropping systems under varying tillage and seeding methods. Atmospheric Environment, 2013,80(12):438-444.
doi: 10.1016/j.atmosenv.2013.08.027
[23] CONRAD R . Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 2007,96:1-63.
[24] JEFFERY S, VERHEIJEN F, KAMMANN C, ABALOS D . Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology & Biochemistry, 2016,101:251-258.
[25] LIU T Q, LI S H, GUO L G, CAO C G, LI C F, ZHAI Z B, ZHOU J Y, MEI YM, KE H J . Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. Journal of Cleaner Production, 2020,263:121322.
doi: 10.1016/j.jclepro.2020.121322
[26] 刘芳, 李天安, 樊小林 . 华南地区覆膜旱种稻田甲烷排放及其与土壤水分和温度的关系. 农业工程学报, 2013,29:110-116.
LIU F, LI T A, FAN X L . Methane emission and its relationship with soil temperature and moisture during rice growth in film mulching upland rice field in south China. Transactions of the Chinese Society of Agricultural Engineering, 2013,29:110-116. (in Chinese)
[27] SCHIMEL J . Global change: rice, microbes and methane. Nature, 2000,403(6768):375-377.
doi: 10.1038/35000325 pmid: 10667774
[28] FAN D J, LIU T Q, SHENG F, LI S H, CAO C G, LI C F. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields. Biology and Fertility of Soils, 2020, https://doi.org/10.1007/s00374-020-01447-y .
doi: 10.1007/s00374-013-0808-4 pmid: 26069355
[29] WANG J Y, PAN X J, LIU Y L, ZHANG XL, XIONG Z Q . Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil, 2012,360:287-298.
doi: 10.1007/s11104-012-1250-3
[30] KNOBLAUCH C, MAARIFAT A, PFEIFFER E, HAEFELE S . Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology and Biochemistry, 2011,43(9):1768-1778.
doi: 10.1016/j.soilbio.2010.07.012
[31] SINGLA A, INUBUSHI K . Effect of biochar on CH4 and N2O emission from soils vegetated with paddy. Paddy and Water Environment, 2014,12(1):239-243.
doi: 10.1007/s10333-013-0357-3
[32] ZHANG A, BIAN R, PAN G, CUI L, HUSSAIN Q, LI L, ZHENG J, ZHENG J, ZHNAG X, HAN X, YU X . Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Research, 2012,127:153-160.
doi: 10.1016/j.fcr.2011.11.020
[33] 谢军飞, 李玉娥 . 农田土壤温室气体排放机理与影响因素研究进展. 中国农业气象, 2002(4):48-53.
XIE J F, LI Y E . A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Chinese Journal of Agrometeorology, 2002(4):48-53. (in Chinese)
[34] SONG X Z, PAN G X, ZHANG C, ZHANG L, WANG H L. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis. Ecosystem Health and Sustainability, 2016, 2(2): 10.1002/ehs2.1202.
[35] 程功, 刘廷玺, 李东方, 段利民, 王冠丽 . 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响. 中国生态农业学报(中英文), 2019,27(07):1004-1014.
CHENG G, LIU T X, LI D F, DUAN L M, WANG G L . Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions. Chinese Journal of Eco-Agriculture, 2019,27(7):1004-1014. (in Chinese)
[36] ZHANG A F, CUI L Q, PAN G X, LI L Q, HUSSAIN Q, ZHANG X H, ZHENG J W, CROWLEY D . Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 2010,139:469-475.
doi: 10.1016/j.agee.2010.09.003
[37] 刘杰云, 邱虎森, 沈健林, 汤宏, 王聪 . 不同生物质炭对稻田土壤CH4排放的影响研究进展. 生态与农村环境学报, 2016,32(4) : 525-530.
LIU J Y, QIU H S, SHEN J L, TANG H, WANG C . Research progress on the effects of different biomass charcoal on soil CH4 emissions in paddy fields. Journal of Ecology and Rural Environment, 2016,32(4) : 525-530. (in Chinese)
[38] 宋开付, 于海洋, 张广斌, 徐华, 吕世华, 马静 . 川中丘陵区覆膜再生稻田N2O排放规律研究. 农业环境科学学报, 2019,38(6):1381-1387.
SONG K F, YU H Y, ZHANG G B, XU H, LÜ S H, MA J . N2O emissions from ratoon paddy fields covered with plastic film mulching in the hilly area of central Sichuan, China. Journal of Agro-Environment Science, 2019,38(6):1381-1387. (in Chinese)
[39] YUAN J H, XU R K, ZHANG H . The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 2011,102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018
[40] CASE S D C, MCNAMARA N P, REAY D S, STOTT A W, GRANT H K, WHITAKER J . Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biology & Biochemistry, 2015,81(2):178-185.
doi: 10.1016/j.soilbio.2014.11.012
[41] 吴震, 董玉兵, 熊正琴 . 生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响. 应用生态学报, 2018,29(1):141-148.
doi: 10.13287/j.1001-9332.201801.028 pmid: 29692022
WU Z, DONG Y B, XIONG Z Q . Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system. Chinese Journal of Applied Ecology, 2018,29(1):141-148. (in Chinese)
doi: 10.13287/j.1001-9332.201801.028 pmid: 29692022
[42] 刘玉学, 王耀锋, 吕豪豪, 陈义, 唐旭, 吴春艳, 钟哲科, 杨生茂 . 生物质炭化还田对稻田温室气体排放及土壤理化性质的影响. 应用生态学报, 2013,24(8):2166-2172.
LIU Y X, WANG Y F, LÜ H H, CHEN Y, TANG X, WU C Y, ZHONG Z K, YANG S M . Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties. Chinese Journal of Applied Ecology, 2013,24(8):2166-2172. (in Chinese)
[43] 罗晓琦, 冯浩, 刘晶晶, 张阿凤 . 生物炭施用下中国农田土壤N2O排放的Meta分析. 中国生态农业学报, 2017,25(09):1254-1265.
LUO X Q, FENG H, LIU J J, ZHANG A F . Meta-analysis on farmland soil N2O emissions under biochar application in China. Chinese Journal of Eco-Agriculture, 2017, 25(9):1254-1265. (in Chinese)
[44] DONG D, FENG Q, MCGROUTHER K, YANG M, WANG H L, WU W X . Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 2015,15(1):153-162.
doi: 10.1007/s11368-014-0984-3
[45] 陈琳, 乔志刚, 李恋卿, 潘根兴 . 施用生物质炭基肥对水稻产量及氮素利用的影响. 生态与农村环境学报, 2013,29(5):671-675.
CHEN L, QIAO Z G, LI L Q, PAN G X . Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2013,29(5):671-675. (in Chinese)
[46] 宋大利, 习向银, 黄绍敏, 张水清, 袁秀梅, 黄伏森, 刘阳, 王秀斌 . 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响. 植物营养与肥料学报, 2017,23(2):369-379.
SONG D L, XI X Y, HUANG S M, ZHANG S Q, YUAN X M, HUANG F S, LIU Y, WANG X B . Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2017, 23(2):369-379. (in Chinese)
[47] LI B, FAN C H, ZHANG H, CHEN Z Z, SUN LY, XIONG Z Q . Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment, 2015,100:10-19.
doi: 10.1016/j.atmosenv.2014.10.034
[48] 张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010(11):2713-2717.
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010(11):2713-2717. (in Chinese)
[49] 高悦, 张爱平, 杜章留, 刘汝亮, 洪瑜, 胡世民, 杨正礼 . 优化施氮条件下添加生物炭对宁夏灌区土壤条件和水稻生长的影响. 中国农业气象, 2019,40(5):327-336.
GAO Y, ZHANG A P, DU Z L, LIU R L, HONG Y, HU S M, YANG Z L . Effects of biochar on soil conditions and rice growth in Ningxia irrigated area under optimized nitrogen application conditions. Chinese Journal of Agrometeorology, 2019,40(5):327-336. (in Chinese)
[50] QIN X, LI Y, HONG W, LIU C, LI J L, WAN Y F, GAO Q Z, FAN F L, LIAO Y L . Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Science of the Total Environment, 2016,569:1390-1401.
[51] DONG H B, YAO Z S, ZHENG X H, MEI B L, XIE B H, WANG R, DENG J, CUI F, ZHU J G . Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmospheric Environment, 2011,45:1095-1101.
doi: 10.1016/j.atmosenv.2010.11.039
[52] PITTELKOW C M, ADVIENTO-BORBE M A, HILL J E, KESSEL C V, BRUCE A,. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems & Environment, 2013,177:10-20.
[53] LAIRD D A, FLEMING P, DAVIS D D, HORTON R, WANG B Q, DOUGLAS L, KARLEN. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010,158(3/4):443-449.
doi: 10.1016/j.geoderma.2010.05.013
[54] HAEFELE S M, KONBOON Y, WONGBOON W, AMARANTE S, MAARIFAT A A, PFEIFFER E M, KNOBLAUCH C . Effects and fate of biochar from rice residues in rice-based systems. Field Crop Research, 2011,121(3):430-440.
doi: 10.1016/j.fcr.2011.01.014
[55] 王悦满, 冯彦房, 杨林章, 刘杨, 侯朋福, 李辉信, 薛利红 . 水热及裂解生物炭对水稻产量及氮素利用率的影响. 生态与农村环境学报, 2018,34(8):755-761.
WANG Y M, FENG Y F, YANG L Z, LIU Y, HOU P F, LI H X, XUE L F . Effects of hydrochar and pyrochar on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2018,34(8):755-761. (in Chinese)
[56] 眭锋, 廖萍, 黄山, 曾勇军, 石庆华 . 施用生物炭对双季水稻产量和氮素吸收的影响. 核农学报, 2018,32(10):2062-2068.
SUI F, LIAO P, HUANG S, ZENG Y J, SHI Q H . Effects of biochar amendment on yield and nitrogen uptake in a double rice-cropping system. Journal of Nuclear Agricultural, 2018,32(10):2062-2068. (in Chinese)
[57] 王智慧, 唐春, 赵长江, 杨克军, 李佐同, 王洪义, 殷大伟 . 生物炭与肥料配施对土壤养分及玉米产量的影响. 玉米科学, 2018,26(6):146-151, 159.
WANG Z H, TANG C, ZHAO C J, YANG K J, LI Z T, WANG H Y, YIN D W . Effects of biochar and chemical fertilizer interaction on soil nutrient and maize yield. Journal of Maize Sciences, 2018,26(06):146-151,159. (in Chinese)
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[5] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[6] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[7] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[8] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[9] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[10] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[11] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[12] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[13] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[14] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[15] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!