Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4342-4354.doi: 10.3864/j.issn.0578-1752.2020.21.004


Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize

DING XiangPeng(),LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin()   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-05-11 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11
  • Contact: Bin ZHAO;


【Objective】 The effects of different fertilization depths of controlled-release urea on nitrogen absorption and utilization were investigated, and then the suitable fertilization depth for achieving high, efficient and stable yield of controlled- release urea in the Huang-Huai-Hai summer maize area was determined.【Method】 Zhengdan958 was selected as the test variety under field conditions, and seven treatments were set, including no nitrogen fertilizer (CK), surface application (DP0), furrow dressing depth of 5 cm (DP5), 10 cm (DP10), 15 cm (DP15), 20 cm (DP20) and 25 cm (DP25). The effects of urea application depth on growth, yield and nitrogen utilization of summer maize were studied systematically.【Result】Under the same amount of controlled-release urea application, the yield of summer maize was significantly affected by fertilization depth. The yield of summer maize increased at first and then decreased with the increase of basal fertilization depth. Moreover, the relationship between maize yield and fertilization depth in the summer of 2013 and 2014 conformed to the quadratic curve and the correlation between them reached a significant level as well. The theoretical fertilization depth that obtained the highest yield was 12.5 cm and 12.2 cm in 2013 and 2014, respectively. While in actual production, the DP15 treatment produced the highest yield with no significant difference between DP15 and DP10 treatment, with a significant increase of 16.72% and 16.50%, separately, compared with CK (P<0.05). Compared with DP0, nitrogen harvest index, partial nitrogen productivity, nitrogen agronomic efficiency and nitrogen utilization rate of summer maize all showed a trend of first increasing and then decreasing with the increase of basal fertilization depth. The agricultural efficiency of nitrogen fertilizer and the utilization rate of nitrogen fertilizer fit the quadratic curve. The nitrogen harvest index and nitrogen fertilizer agronomic efficiency were the largest under DP10 treatment in two years, achieving to 61.91% and 6.68 kg·kg-1, respectively, however, the highest nitrogen fertilizer efficiency was 47.27 kg·kg-1 and 46.97% under DP15 treatment, respectively. Compared with DP0, fertilization depth of 10 cm and 15 cm could increase soil nitrate and ammonium nitrogen content and reduce nitrogen loss. The mean value of nitrogen accumulation after flowering was 38.93% and 41.88% in 2013 and 2014, respectively, which promoted the post-flowering nitrogen accumulation and significantly increased the total nitrogen uptake above-ground by 20.45% and 22.36%, respectively. Correlation analysis showed that summer maize yield was significantly positively correlated with dry matter accumulation, total nitrogen accumulation, partial nitrogen productivity, nitrogen agronomic efficiency and nitrogen use efficiency, and significantly negatively correlated with nitrogen grain production efficiency.【Conclusion】 In nitrogen application rate of 225 kg N·hm-2, controlled release urea one-time basal application depth in 10 to 15 cm could significantly improve nitrogen absorption accumulation of summer maize, increase nitrogen use efficiency, reduce nitrogen loss, improve the dry matter accumulation, eventually obtain higher grain yield. Furthermore, it also realized higher production and efficiency, and could be used as controlled release urea suitable fertilization depth for summer maize sowing and manuring simultaneously.

Key words: summer maize, controlled release urea, base application depth, nitrogen use efficiency, yield

Fig. 1

Changes of rainfall and temperature during the growth period of summer maize in 2013 and 2014"

Table 1

Effects of controlled release urea and fertilization depth on yield and yield components of summer maize"

Ear length
Bald tip length
Kernel number per spike
Weight of 1000-kernels (g)
Harvest index
2013 CK 15.97c 0.54a 518.26d 271.4b 8902.5d 0.43b
DP0 16.24b 0.31ab 540.94c 283.7ab 9954.0bc 0.49ab
DP5 16.74b 0.17b 544.79bc 285.0ab 10137.5b 0.51a
DP10 17.22a 0.19b 572.71a 291.8a 10443.0a 0.52a
DP15 17.11a 0.21b 579.26a 295.6a 10492.5a 0.52a
DP20 16.91a 0.12b 562.93ab 286.4a 10308.3ab 0.51a
DP25 16.61b 0.19b 526.83cd 280.3b 9855.0c 0.48ab
2014 CK 16.40a 0.17a 527.73c 301.8c 9315.0d 0.47b
DP0 17.04a 0.11ab 558.13b 307.0bc 10122.0c 0.48b
DP5 16.84a 0.10ab 561.53b 317.0ab 10406.5b 0.52ab
DP10 17.12a 0.03b 579.33a 323.3a 10780.5a 0.55a
DP15 17.04a 0.07ab 576.26a 326.2a 10790.5a 0.55a
DP20 16.81a 0.15a 567.48ab 319.6a 10526.2ab 0.54a
DP25 16.63a 0.09ab 556.75b 306.5bc 10040.5c 0.51ab
方差分析 ANOVA
年份(Y) NS ** ** ** ** NS
施肥深度(D) ** ** ** ** ** *
年份×施肥深度(Y×D) NS ** * * NS NS

Fig. 2

Fitting curve between different fertilization depth of controlled release urea and yield of summer maize"

Fig. 3

Effects of different fertilization depths of controlled release urea on dry matter accumulation of summer maize V6: Jointing stage; V12: Trumpeting stage; R1: Silking stage; R2: Filling stage; R3: Milking stage; R5: Dough stage; R6: Maturity stage. The same as below"

Fig. 4

Effects of different fertilization depths of controlled release urea on nitrogen accumulation of summer maize"

Table 2

Effects of different fertilization depths of controlled release urea on nitrogen use efficiency of summer maize"

NHI (kg·kg-1)
NPFP (kg·kg-1)
NAE (kg·kg-1)
NUE (%)
氮素籽粒生产效率 NGPE (kg·kg-1)
2013 CK 0.61a 60.50a
DP0 0.52bc 44.24a 4.67c 27.37c 47.69bc
DP5 0.50c 45.23a 5.67b 36.74b 45.60bc
DP10 0.61a 46.41a 6.85a 43.77a 42.51bc
DP15 0.59ab 46.63a 7.07a 47.15a 41.43c
DP20 0.61a 46.21a 6.65a 42.00a 43.03bc
DP25 0.52bc 43.80a 4.23c 23.10c 49.49b
2014 CK 0.58ab 57.50a
DP0 0.50c 41.40b 4.92c 24.27c 48.11b
DP5 0.55bc 46.32ab 5.74b 34.20b 44.39bc
DP10 0.62a 47.14ab 6.51a 44.70a 41.06c
DP15 0.60ab 47.91a 6.27ab 46.80a 40.13c
DP20 0.55bc 47.67ab 5.83ab 36.90b 43.37bc
DP25 0.48c 45.51ab 4.11d 21.00c 48.94b
方差分析 ANOVA
年份(Y) NS ** ** ** **
施肥深度(D) ** ** ** ** **
年份×施肥深度(Y×D) NS ** * * NS

Fig. 5

Fitting equation between different fertilization depth of controlled release urea and nitrogen agronomic efficiency and nitrogen use efficiency"

Fig. 6

Effects of different fertilization depths of controlled release urea on soil nitrate nitrogen and ammonium nitrogen (2014)"

Table 3

Correlation of summer maize yield and its components with total dry matter accumulation, total nitrogen accumulation and nitrogen use efficiency"

Dry accumulation amount
Total N accumulation
产量 Yield 1
Dry accumulation amount
0.990** 1
Total N accumulation
0.981** 0.993** 1
氮肥偏生产力 NPFP 0.943** 0.896** 0.869* 1
氮肥农学效率 NAE 0.998** 0.990** 0.981** 0.943** 1
氮肥利用率 NUE 0.981** 0.993** 0.998** 0.869* 0.981** 1
氮素籽粒生产效率 NGPE -0.993** -0.996** -0.997** -0.905** -.993** -0.997** 1
[1] WANG S J, LUO S S, YUE S C, SHEN Y F, LI S Q. Fate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmland. Nutrient Cycling in Agroecosystems, 2016,105:129-140.
[2] ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LU Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(21):8375-8380.
doi: 10.1073/pnas.1210447110 pmid: 23671096
[3] CAMERON K C, DI H J, MOIR J L. Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology, 2013,162:145-173.
[4] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[5] PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China. Plant Production Science, 2009,12(1):3-8.
[6] PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by site-specific N management: A review. Agronomy for Sustainable Development, 2010,30:649-656.
doi: 10.1051/agro/2010002
[7] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014,514(7523):486-489.
pmid: 25186728
[8] KETTERING J, RUIDISCH M, GAVIRIA C, OK Y S, KUZYAKOV Y. Fate of fertilizer 15N in intensive ridge cultivation with plastic mulching under a monsoon climate. Nutrient Cycling in Agroecosystems, 2013,95(1):57-72.
[9] PATIL M D, DAS B S, BARAK E, BHADORIA P B S, POLAK A. Performance of polymer-coated urea in transplanted rice: Effect of mixing ratio and water input on nitrogen use efficiency. Paddy Water Environ, 2010,8(2):189-198.
[10] 王宜伦, 卢艳丽, 刘举, 苏瑞光, 马龙, 谭金芳, 白由路. 专用缓释肥对夏玉米产量及养分吸收利用的影响. 中国土壤与肥料, 2015(1):29-32.
WANG Y L, LU Y L, LIU J, SU R G, MA L, TAN J F, BAI Y L. Effects of special slow-release fertilizer on yield and nutrient absorption and utilization of summer maize. Soils and Fertilizers Sciences in China, 2015(1):29-32. (in Chinese)
[11] 张民, 史衍玺, 杨守祥, 杨越超. 控释和缓释肥的研究现状与进展. 化肥工业, 2001,28(5):27-30.
ZHANG M, SHI Y X, YANG S X, YANG Y C. Research status and progress of controlled-release and slow-release fertilizer. Chemical Fertilizer Industry, 2001,28(5):27-30. (in Chinese)
[12] 侯云鹏, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 王立春, 尹彩侠. 不同缓/控释氮肥对春玉米氮素吸收利用、土壤无机氮变化及氮平衡的影响. 中国农业科学, 2018,51(20):3928-3940.
HOU Y P, LI Q, KONG L L, QIN Y B, WANG M, YU L, WANG L C, YIN C X. Effects of different slow/controlled release nitrogen fertilizers on spring maize nitrogen uptake and utilization, soil inorganic nitrogen and nitrogen balance. Scientia Agricultura Sinica, 2018,51(20):3928-3940. (in Chinese)
[13] 冯小杰, 战秀梅, 王雪鑫, 陈坤, 彭靖, 韩晓日. 包膜尿素不同配比减施对土壤无机氮含量及玉米氮素吸收的影响. 中国农业科学, 2019,52(10):1733-1745.
FENG X J, ZHAN X M, WANG X X, CHEN K, PENG J, HAN X R. Effects of soil inorganic nitrogen and nitrogen absorbing by maize under the reduced application of coated urea at different proportions. Scientia Agricultura Sinica, 2019,52(10):1733-1745. (in Chinese)
[14] 周丽平, 杨俐苹, 白由路, 卢艳丽, 王磊. 夏玉米施用不同缓释化处理氮肥的效果及氮肥去向. 中国农业科学, 2018,51(8):1527-1536.
ZHOU L P, YANG L P, BAI Y L, LU Y L, WANG L. Effects of different slow-released nitrogen fertilizers on summer maize and nitrogen fate in the field. Scientia Agricultura Sinica, 2018,51(8):1527-1536. (in Chinese)
[15] 赵斌, 董树亭, 王空军, 张吉旺, 刘鹏. 控释肥对夏玉米产量及田间氨挥发和氮素利用率的影响. 应用生态学报, 2009,20(11):2678-2684.
ZHAO B, DONG S T, WANG K J, ZHANG J W, LIU P. Effects of controlled-release fertilizers on summer maize grain yield field ammonia volatilization and fertilizer nitrogen use efficiency. Chinese Journal of Applied Ecology, 2009,20(11):2678-2684. (in Chinese)
[16] 王苓, 张民, 刘之广, 耿计彪, 刘备. 不同养分释放期控释尿素掺混后的养分释放特征. 化肥工业, 2017,44(5):5-10, 26.
WANG L, ZHANG M, LIU Z G, GENG J B, LIU B. Nutrient release characteristics of controlled release urea with different blending proportions at different nutrient release period. Chemical Fertilizer Industry, 2017,44(5):5-10, 26. (in Chinese)
[17] 肖剑, 郑圣先, 易国英. 控释肥料养分释放动力学及其机理研究第3报土壤水分对包膜型控释肥料养分释放的影响(续完). 磷肥与复肥, 2002,17(6):9-12.
XIAO J, ZHENG S X, YI G Y. Kinetics and mechanism of nutrient release from controlled release fertilizer-Part 3 effect of soil on moisture content on nutrient release of film coated controlled release fertilizer. Phosphate & Compound Fertilizer, 2002,17(6):9-12. (in Chinese)
[18] 何婷婷, 汪有科, 史志鹏. 黄土丘陵山地全年覆膜下土壤温度、水分运移规律研究. 西南农业学报, 2019,32(6):1314-1322.
HE T T, WANG Y K, SHI Z P. Movement law of soil temperature and soil water under annual film mulching in loess hilly region. Southwest China Journal of Agricultural Sciences, 2019,32(6):1314-1322. (in Chinese)
[19] 余琼, 索炎炎, 司贤宗, 张翔, 李亮, 孙艳敏. 不同缓控释肥种类及施用深度对花生养分积累及产质量的影响. 华北农学报, 2020,35(2):152-160.
YU Q, SUO Y Y, SI X Z, ZHANG X, LI L, SUN Y M. Effects of different slow controlled release fertilizers and application depth on nutrient accumulation, yield and quality of peanut. Acta Agriculturae Boreali-Sinica, 2020,35(2):152-160. (in Chinese)
[20] 杨云马, 孙彦铭, 贾良良, 孟春香, 贾树龙. 氮肥基施深度对夏玉米产量、氮素利用及氮残留的影响. 植物营养与肥料学报, 2016,22(3):830-837.
YANG Y M, SUN Y M, JIA L L, MENG C X, JIA S L. Effect of base nitrogen application depth on summer maize yield, nitrogen utilization efficiency and nitrogen residue. Journal of Plant Nutrition and Fertilizer, 2016,22(3):830-837. (in Chinese)
[21] 姜超强, 卢殿君, 王世济, 周健民, 祖朝龙, 王火焰. 夏玉米普通尿素一次施肥位点优化研究. 中国农业科技导报, 2017,19(12):67-74.
JIANG C Q, LU D J, WANG S J, ZHOU J M, ZU C L, WANG H Y. Research on placement site of urea single application in summer maize. Journal of Agricultural Science and Technology, 2017,19(12):67-74. (in Chinese)
[22] 杜玉奎. 施氮深度对夏玉米根系分布及产量形成的影响[D]. 泰安:山东农业大学, 2015.
DU Y K. The effect of depth of nitrogen fertilization on root distribution and the yield formation in maize[D]. Tai’an: Shandong Agricultural University, 2015. (in Chinese)
[23] 刘晓伟, 陈小琴, 王火焰, 卢殿君, 周健民, 陈照明, 朱德进. 根区一次施氮提高水稻氮肥利用效率的效果和原理. 土壤, 2017,49(5):868-875.
LIU X W, CHEN X Q, WANG H Y, LU D J, ZHOU J M, CHEN Z M, ZHU D J. Effects and principle of root-zone one-time N fertilization on enhancing rice (Oryza sativa L.) N use efficiency. Soils, 2017,49(5):868-875. (in Chinese)
[24] 周伟, 吕腾飞, 杨志平, 孙红, 杨莨杰, 陈勇, 任万军. 氮肥种类及运筹技术调控土壤氮素损失的研究进展. 应用生态学报, 2016,27(9):3051-3058.
ZHOU W, LÜ T F, YANG Z P, SUN H, YANG L J, CHEN Y, REN W J. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy. Chinese Journal of Applied Ecology, 2016,27(9):3051-3058. (in Chinese)
[25] 郭金金, 张富仓, 王海东, 闫世程, 郑静, 陈东峰, 李志军. 不同施氮量下缓释氮肥与尿素掺混对玉米生长与氮素吸收利用的影响. 中国农业科学, 2017,50(20):3930-3943.
GUO J J, ZHANG F C, WANG H D, YAN S C, ZHENG J, CHEN D F, LI Z J. Effects of slow-release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake under different nitrogen application rates. Scientia Agricultura Sinica, 2017,50(20):3930-3943. (in Chinese)
[26] ZHENG W K, ZHANG M, LIU Z G, ZHOU H Y, LU H, ZHANG W T, YANG Y C, LI C L, CHEN B C. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Research, 2016,197:52-62.
[27] 张瑞富, 杨恒山, 范秀艳, 张宏宇, 柳宝林, 刘晶. 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018,24(4):880-887.
ZHANG R F, YANG H S, FAN X Y, ZHANG H Y, LIU B L, LIU J. Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage. Journal of Plant Nutrition and Fertilizers, 2018,24(4):880-887. (in Chinese)
[28] 王火焰, 周健民. 根区施肥—提高肥料养分利用效率和减少面源污染的关键和必需措施. 土壤, 2013,45(5):785-790.
WANG H Y, ZHOU J M. Root-zone fertilization-A key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland. Soils, 2013,45(5):785-790. (in Chinese)
[29] 申丽霞, 王璞, 兰林旺, 孙西欢. 施氮对夏玉米碳氮代谢及穗粒形成的影响. 植物营养与肥料学报, 2007,13(6):1074-1079.
SHEN L X, WANG P, LAN L W, SUN X H. Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutrition and Fertilizer Science, 2007,13(6):1074-1079. (in Chinese)
[30] 安景文, 汪仁, 包红静, 解占军, 华丽民. 不同肥料配方一次性施肥对玉米产量和养分吸收的影响. 土壤通报, 2008,39(4):874-877.
AN J W, WANG R, BAO H J, XIE Z J, HUA L M. Effects of basal dressing total fertilizers once with different fertilizer formulas on product and nutrient uptake of maize. Chinese Journal of Soil Science, 2008,39(4):874-877. (in Chinese)
[31] 武鹏, 杨克军, 王玉凤, 张翼飞, 张文超, 吴琼, 陈天宇, 张鹏飞, 庞晨, 王怀鹏, 尹雪巍, 杨丽. 缓释尿素对土壤和玉米植株氮素及干物质和产量的影响. 干旱地区农业研究, 2018,36(5):94-101.
WU P, YANG K J, WANG Y F, ZHANG Y F, ZHANG W C, WU Q, CHEN T Y, ZHANG P F, PANG C, WANG H P, YIN X W, YANG L. The effects of slow-release urea on soil and plant nitrogen content, dry matter and yield of maize. Agricultural Research in the Arid Areas, 2018,36(5):94-101. (in Chinese)
[32] GENG Y H, CAO G J, WANG S H. Nitrogen accumulation characteristics of high yield spring maize in northeast China. International Journal of Plant Production, 2018,12:149-157.
[33] 刘威, 周剑雄, 谢媛圆, 徐祥玉, 袁家富, 徐芳森, 熊汉锋, 熊又升. 控释尿素不同条施深度下鲜食玉米产量和氮素利用效应. 水土保持学报, 2018,32(1):246-251, 258.
LIU W, ZHOU J X, XIE Y Y, XU X Y, YUAN J F, XU F S, XIONG H F, XIONG Y S. Yield and nitrogen utilization efficiency of fresh edible maize under different fertilization depths of control-release urea. Journal of Soil and Water Conservation, 2018,32(1):246-251, 258. (in Chinese)
[34] HE G, WANG Z H, LI F C, DAI J, MA X L, LI Q, XUE C, CAO H B, WANG S, LIU H, LUO L C, HUANG M, MALHI S S. Soil nitrate-N residue, loss and accumulation affected by soil surface management and precipitation in a winter wheat-summer fallow system on dryland. Nutrient Cycling in Agroecosystems, 2016,106(1):31-46.
[35] NKEBIWE P M, WEINMANN M, BAR-TAL A, MULLER T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Research, 2016,196:389-401.
[36] 李宗新, 董树亭, 王空军, 张吉旺, 刘鹏, 王庆成, 刘春晓. 不同肥料运筹对夏玉米田间土壤氮素淋溶与挥发影响的原位研究. 植物营养与肥料学报, 2007,13(6):998-1005.
LI Z X, DONG S T, WANG K J, ZHANG J W, LIU P, WANG Q C, LIU C X. In situ study on influence of different fertilization strategies for summer maize on soil nitrogen leaching and volatilization. Plant Nutrition and Fertilizer Science, 2007,13(6):998-1005. (in Chinese)
[37] HU H Y, NING T Y, LI Z J, HAN H F, ZHANG Z Z, QIN S J, ZHENG Y H. Coupling effects of urea types and subsoiling on nitrogen-water use and yield of different varieties of maize in northern China. Field Crops Research, 2013,142:85-94.
[38] 祝清震, 武广伟, 安晓飞, 陈立平, 孟志军, 赵春江. 基肥定深施用装置排肥口位置与施肥深度关系模型. 农业工程学报, 2018,34(13):8-17.
ZHU Q Z, WU G W, AN X F, CHEN L P, MENG Z J, ZHAO C J. Relationship model of fertilizer outlet location and fertilizer application depth of depth-fixed application device of base-fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(13):8-17. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Full text



No Suggested Reading articles found!