Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1424-1438.doi: 10.3864/j.issn.0578-1752.2021.07.009


Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China

PENG BiLin1,2,LI MeiJuan1,HU XiangYu1,ZHONG XuHua1(),TANG XiangRu2,LIU YanZhuo1,LIANG KaiMing1,PAN JunFeng1,HUANG NongRong1,FU YouQiang1,HU Rui1   

  1. 1Rice Research Institute of Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology for Rice Breeding, Guangzhou 510640
    2College of Agriculture, South China Agricultural University, Guangzhou 510642
  • Received:2020-07-10 Accepted:2020-08-31 Online:2021-04-01 Published:2021-04-22
  • Contact: XuHua ZHONG


【Objective】 Simplified nitrogen managements (SNMs) are labor saving methods and could make more profits in rice (Oryza sativa L.) cultivation. In view of labor shortage, high labor cost and low fertilizer utilization in rice cultivation of China, the aim of this study was to explore a simplified and efficient application of nitrogen featured by “one basal-dressing and one top-dressing”, so that the amount and frequency of nitrogen application could be reduced, and the profit of rice planting could be improved. 【Method】In order to study the effects of SNMs on the grain yield, dry matter production, nitrogen use efficiency, and grain quality of double-cropping rice in South China, the field experiment was conducted by a conventional indica rice variety of Wu-Shan-Si-Miao, which was designed by a completely randomized block with four replicates. In 2018, 6 treatments were established, i.e. no nitrogen (N0), three-control fertilization (TC), TC with nitrogen reduction (RTC), and 3 simplified nitrogen managements (SNM1, SNM2, and SNM3). In 2019, 6 treatments were also established, i.e. no nitrogen (N0), three-control fertilization (TC), famers’ fertilizer practice (FP), and 3 simplified nitrogen managements (SNM2, SNM4, and SNM5). 【Result】 In the later growing season of 2018, the grain yield of SNM2 was not significantly different from that of TC, but the yields of both treatments were significantly higher than those of RTC, SNM1, and SNM3. In 2019, the grain yields of SNM2, SNM4 and SNM5 were also not significantly different from that of TC. However, compared with FP, the yields of those treatments were increased by 7.36%-7.51%, which was mainly due to the spikelet number per panicle was improved in 2019. And the panicle numbers, spikelet number per panicle, seed setting rate, and 1000-grain weight of SNM2 were not significantly different from TC (except for 1000-grain weight in 2019) for both seasons. In 2018, the nitrogen recovery rate (RE), agronomy use efficiency (AE), physiological use efficiency (PE), nitrogen harvest index (NHI) of SNM2 were all not significantly differed from that of TC, while the partial factor production (PFPN) of SNM2 was significantly higher than that of TC, and the RE, AE, and PFPN of the SNM1 and SNM3 were obviously lower than that of SNM2. In 2019, the 5 nitrogen utilization indexes (RE, AE, PE, NHI and PFPN) of the 3 SNMs were not significantly different with those of TC, but the RE, AE and PFPN of those treatments were all significantly higher than that of FP. The number of spikelets per unit area, biomass, and nitrogen uptake of the SNMs were all higher than those of FP. In addition, the chalky rice rate of SNM2 was significantly lower than that of TC, but other grain quality of SNMs was not significantly different from that of FP and TC in 2018. 【Conclusion】 The grain yield and nitrogen use efficiency of SNM2, which had 10% less nitrogen application and with only basal application and one topdressing in nitrogen management, was similar with TC. However, SNM2 had significantly higher grain yield and nitrogen use efficiency than FP. Additionally, the appearance quality of SNM2 was significantly improved, while the milling quality, cooking and eating quality were not significantly changed. Thus, it could be widely adopted in rice production in South China for its simplified cultivation.

Key words: double-cropping rice in South China, simplified nitrogen managements, grain yield, nitrogen use efficiency, dry matter production

Table 1

Field weather conditions in cropping seasons of 2018 and 2019"

Growth stage
Average daily highest temperature (℃)
Average daily lowest temperature (℃)
Late season of 2018
移栽-穗分化始期 Transplanting-Panicle initiation 292.8 32.2 24.8 173
穗分化始期-抽穗期 Panicle initiation-Heading 55.8 31.2 21.9 203
抽穗-成熟期 Heading-Maturity 136.8 25.6 17.7 126
Early season of 2019
移栽-穗分化始期 Transplanting-Panicle initiation 754.0 26.8 20.9 114
穗分化始期-抽穗期 Panicle initiation-Heading 383.8 30.5 24.5 139
抽穗-成熟期 Heading-Maturity 358.2 33.3 25.8 191

Table 2

Experimental design"

Total N input (kg·hm-2)
氮肥运筹比例Nitrogen fertilizer operation ratios (%)
Early tillering
Late tillering
Remaining leaf age 3.5
Remaining leaf age 2.5
Remaining leaf age 1.5
Heading stage
Late season of 2018
No nitrogen application
N0 0
Three controls
TC 180 40 20 30 10
Three controls with reduced nitrogen input
RTC 162 40 20 30 10
Simplified nitrogen management 1
SNM1 162 40 60
Simplified nitrogen management 2
SNM2 162 40 60
Simplified nitrogen management 3
SNM3 162 40 60
Early season of 2019
No nitrogen application
N0 0
Farmers’ practice
FP 180 30 20 30 20
Three controls
TC 150 40 20 30 10
Simplified nitrogen management 2
SNM2 135 40 60
Simplified nitrogen management 4
SNM4 150 40 60
Simplified nitrogen management 5
SNM5 135 50 50


Grain yield
Panicle number
(×104 hm-2)
Spikelets per panicle
Seed setting rate
1000-grain weight (g)
Late season of 2018
N0 4.45±0.09c 203.7±4.2d 147.6±9.8ab 75.45±1.97c 22.98±0.17bc
TC 8.10±0.18a 306.8±14.9a 153.7±2.4a 81.15±1.63ab 23.25±0.06b
RTC 7.39±0.12b 271.4±4.0b 153.6±2.5a 81.93±0.80a 22.90±0.25bc
SNM1 7.36±0.14b 304.7±7.7a 136.7±5.5b 78.03±0.90bc 22.60±0.16c
SNM2 7.92±0.23a 309.4+4.0a 156.1±5.0a 80.43±0.35ab 22.93±0.24bc
SNM3 7.25±0.15b 238.0±4.5c 154.3±3.5a 80.83±0.48ab 23.93±0.29a
F值(F value) 74.28** 29.57** 2.43ns 4.52* 8.22**
Early season of 2019
N0 4.79±0.11c 170.8±8.4b 168.1±3.4c 86.09±1.34a 21.33±0.14bc
FP 6.79±0.27b 226.0±5.7a 168.4±3.7c 85.79±0.61a 21.86±0.09a
TC 7.46±0.05a 246.4±14.2a 178.8±2.1ab 88.35±1.32a 21.76±0.08a
SNM2 7.29±0.20ab 226.6±7.0a 184.0±3.3ab 87.38±0.56a 21.44±0.10bc
SNM4 7.30±0.13ab 241.7±3.1a 177.7±1.1b 87.94±0.46a 21.27±0.08c
SNM5 7.30±0.14ab 229.7±10.7a 186.9±4.3a 88.21±0.69a 21.58±0.07ab
F值(F value) 33.61** 11.09** 6.99** 1.60ns 5.48**

Fig. 1

Number of tillers under different nitrogen managements at different growth stages Different lowercase letters indicate significantly different among treatments at 0.05 probability level. MT, PI, HD, and MA stand for mid-tilling, panicle initial, heading, and maturity stages, respectively. The same as below"

Table 4

Leaf SPAD value and canopy light transmittance under different nitrogen managements"

SPAD值SPAD value 透光率Canopy light transmittance (%)
分蘖中期MT 穗分化始期PI 抽穗期HD 穗分化始期PI 抽穗期HD 成熟期MA
Late season of 2018
N0 36.88±0.23b 35.58±0.63c 35.93±0.4c 56.93±4.17a 34.08±1.29a
TC 41.03±0.27a 38.43±0.92b 39.98±0.21b 30.18±2.13bc 12.18±0.70c
RTC 41.13±0.55a 38.40±0.44b 38.70±0.91b 32.53±2.19bc 12.98±0.51bc
SNM1 41.10±0.37a 41.11±0.48a 38.28±0.89b 26.53±1.59c 10.65±1.10c
SNM2 40.73±0.27a 36.58±0.46c 42.38±0.32a 35.85±1.68b 12.00±0.65c
SNM3 40.98±0.23a 37.23±0.5bc 39.98±0.31b 34.83±2.65b 15.68±0.98b
F值(F value) 26.27** 9.98** 15.27** 23.99** 123.74**
Early season of 2019
N0 39.80±0.39c 34.91±0.51c 37.88±0.36b 55.05±1.35a 30.68±3.29a 17.92±0.79a
FP 41.49±0.41a 40.85±0.89a 38.66±1.04b 25.06±1.33c 10.88±2.14b 7.54±0.77b
TC 41.32±0.13ab 38.97±1.19ab 41.84±0.43a 34.66±2.17b 9.99±1.06b 7.63±0.59b
SNM2 40.76±0.38abc 37.92±0.43b 42.60±0.65a 38.82±2.44b 6.99±0.59b 7.46±0.49b
SNM4 40.23±0.62bc 38.97±0.39ab 42.51±0.66a 41.53±3.54b 6.33±0.69b 6.55±0.54b
SNM5 40.67±0.36abc 37.08±1.25bc 42.00±0.19a 37.48±1.86b 10.56±1.67b 7.94±0.76b
F值(F value) 2.76ns 4.89** 13.63** 17.46** 25.33** 50.65**

Table 5

Source-sink characteristics of rice under different nitrogen managements"

叶面积指数Leaf area index 单位面积颖花数
Number of spikelets per unit area (×106 hm-2)
Grain-leaf ratio
Late season of 2018
N0 0.33±0.02b 1.34±0.03d 1.57±0.05d 300.6±2.08e 1.94±0.21a
TC 0.65±0.04a 2.79±0.17b 4.66±0.16a 471.2±2.05a 1.02±0.08bc
RTC 0.61±0.02a 2.43±0.15c 4.07±0.05b 417.0±1.15bc 1.03±0.03bc
SNM1 0.64±0.04a 3.13±0.10a 4.64±0.25a 415.3±0.72bc 0.90±0.08c
SNM2 0.62±0.11a 2.35±0.05c 3.97±0.18b 482.3±1.06a 1.23±0.04b
SNM3 0.65±0.09a 2.30±0.04c 3.40±0.14c 366.8±0.50d 1.09±0.06bc
F值(F value) 3.33* 34.29** 51.55** 25.13** 14.38**
Early season of 2019
N0 0.33±0.03b 1.39±0.09d 2.10±0.12b 288.0±1.95c 1.37±0.03a
FP 0.37±0.01ab 2.87±0.11a 4.22±0.47a 381.3±1.75b 0.93±0.07c
TC 0.38±0.03ab 2.39±0.09b 3.86±0.11a 439.8±2.19a 1.15±0.08b
SNM2 0.38±0.02ab 2.08±0.07c 4.53±0.38a 416.4±0.86ab 0.94±0.08c
SNM4 0.38±0.02ab 2.05±0.04c 4.34±0.13a 429.3±0.30a 1.00±0.03bc
SNM5 0.44±0.05a 2.18±0.08bc 3.78±0.19a 428.2±1.48a 1.14±0.06b
F值(F value) 1.24ns 28.47** 8.77** 15.85** 6.86**

Fig. 2

Aboveground total dry weight under different nitrogen managements at different growth stagesTR and Total stand for transplanting stage and total above ground dry weight, respectively"

Fig. 3

Regression analysis between grain yield and total dry weight (A, B, and C), and nitrogen accumulation (D, E, and F) during different growth stages*and** indicate significant difference(P<0.05)and extremely significant difference(P<0.01)"

Fig. 4

Nitrogen uptake under different nitrogen management at different growth stage"

Table 6

Nitrogen use efficiency of rice under different nitrogen managements"

RE (%)
AE (kg·kg-1)
PE (kg·kg-1)
PFPN (kg·kg-1)
NHI (%)
Late season of 2018
TC 38.63±3.11a 20.29±0.97ab 53.23±3.48b 45.01±0.97b 72.55±0.67ab
RTC 31.46±2.27b 18.16±0.72bc 58.49±4.29ab 45.62±0.72b 73.76±0.76a
SNM1 26.49±1.33b 17.95±0.87bc 67.98±2.97a 45.40±0.87b 70.28±0.46b
SNM2 43.48±2.44a 21.41±1.42a 49.93±5.07b 48.87±1.42a 72.78±1.58ab
SNM3 28.16±1.17b 17.31±0.93c 62.05±5.24ab 44.77±0.93b 73.33±0.13a
F值(F value) 9.95** 3.49* 2.63ns 3.22ns 2.22ns
Early season of 2019
FP 20.62±4.56b 11.95±1.52b 67.12±14.06a 38.34±1.52b 68.78±2.30a
TC 33.98±4.74a 18.19±0.30a 56.93±8.41a 49.85±0.30a 68.47±1.63a
SNM2 32.32±4.76a 17.52±1.48a 56.68±6.55a 52.71±1.48a 69.37±0.75a
SNM4 33.65±0.72a 17.73±0.90a 52.88±3.64a 49.40±0.89a 71.38±1.78a
SNM5 27.04±3.97ab 17.89±1.02a 70.76±11.76a 53.08±1.02a 70.79±1.28a
F值(F value) 2.47ns 4.48* 0.62ns 23.17** 0.56ns

Table 7

Correlation analysis between nitrogen use efficiency and nitrogen uptake at different growth stages"

生长期Growth stage 氮肥吸收利用率RE 氮肥农学利用率AE 氮肥偏生产力PFPN
移栽-穗分化始期 (Transplanting-Panicle initiation) -0.195 -0.019 -0.474**
穗分化始期-抽穗期 (Panicle initiation-Heading) 0.309* 0.364* 0.540**
抽穗-成熟期 (Heading-Maturity) 0.490** -0.073 -0.039
总吸氮量 Total nitrogen accumulation 0.930** 0.404** 0.210

Table 8

Rice grain quality under different nitrogen managements"

碾磨品质 Milling quality 蒸煮食味品质 Cooking & eating 外观品质Apparent quality
Brown rice rate
Milled rice rate
Head rice
Amylose content
Gel consistency
Chalky grain rate (%)
Grain length (mm)
length / width
Late season
of 2018
TC 81.75±0.12a 73.60±0.31a 68.48±0.73a 16.75±0.28a 61.00±1.47a 10.00±2.04a 1.30±0.30a 6.58±0.02bc 3.30±0.00a
SNM1 81.35±0.17a 73.03±0.12a 66.68±0.54a 17.03±0.14a 60.50±1.94a 5.00±0.71c 0.68±0.11b 6.55±0.03c 3.30±0.00a
SNM2 81.50±0.38a 73.23±0.46a 67.43±1.03a 16.83±0.13a 59.50±1.19a 6.25±1.6bc 0.53±0.13b 6.65±0.03b 3.30±0.00a
SNM3 81.60±0.12a 72.95±0.18a 67.58±0.41a 16.93±0.18a 58.25±1.31a 7.50±0.96b 0.63±0.10b 6.78±0.02a 3.33±0.03a
F值(F value) 0.55ns 0.93ns 0.99ns 0.33ns 0.62ns 8.39** 5.73* 16.33** 1.00ns
Early season
of 2019

FP 80.93±0.84a 71.43±0.71a 60.40±0.35a 15.67±0.15a 77.33±1.33a 8.67±1.67a 1.17±0.37a 6.27±0.03a 3.20±0.00a
TC 81.03±0.61a 71.70±0.31a 63.70±0.85a 15.57±0.03a 78.00±0.58a 5.33±0.67a 0.57±0.09a 6.27±0.03a 3.20±0.00a
SNM2 80.27±0.35a 71.17±0.45a 62.97±2.14a 15.63±0.12a 76.00±2.00a 4.00±1.15a 0.57±0.15a 6.30±0.00a 3.20±0.00a
SNM4 80.77±0.13a 71.80±0.21a 63.10±0.81a 15.40±0.10a 75.33±0.88a 6.33±1.45a 0.93±0.24a 6.33±0.03a 3.20±0.00a
SNM5 80.57±0.29a 71.70±0.25a 62.20±1.39a 15.20±0.26a 75.33±1.33a 5.00±0.58a 0.77±0.09a 6.27±0.03a 3.17±0.03a
F值(F value) 0.32ns 1.00ns 0.30ns 1.40ns 0.68ns 2.67ns 2.53ns 2.29ns 1.00ns
[1] Food and Agriculture Organization of the United Nations(FAO): Statistical databases, 2020. .
[2] 李逸勉, 叶延琼, 章家恩, 李韵. 广东省水稻产业发展现状与对策分析. 中国农学通报, 2013,29(20):73-82.
LI Y M, YE Y Q, ZHANG J E, LI Y. Analysis on the development status and countermeasures of rice industry in Guangdong province. Chinese Agricultural Science Bulletin, 2013,29(20):73-82. (in Chinese)
[3] 陈风波, 杨永富, 陈垚垚. 广东省种粮大户机械化生产现状及发展前景分析. 现代农业装备, 2019,40(3):2-8, 26.
CHEN F B, YANG Y F, CHEN Y Y. Mechanization of rice production for large rice farmers in Guangdong province. Modern Agricultural Equipment, 2019,40(3):2-8, 26. (in Chinese)
[4] 钟旭华, 黄农荣, 郑海波, 彭少兵 , BURESH R J. 水稻“三控”施肥技术规程. 广东农业科学, 2007(5):13-15, 43.
ZHONG X H, HUANG N R, ZHENG H B, PENG S B, BURESH R J. Specification for the “three controls” nutrient management technology for irrigated rice. Guangdong Agricultural Sciences. 2007(5):13-15, 43. (in Chinese)
[5] 应霄, 陈伟, 姚桂华. 水稻缓控肥“一基一追”的新型施肥方式探索. 南方农业, 2019,13(21):21-23.
YING X, CHEN W, YAO G H. Fertilization of rice under a new regime of “one basal-dressing and one topdressing” using slow- releasing controlled fertilizers. South China Agriculture, 2019,13(21):21-23. (in Chinese)
[6] 林晶晶. 水稻对基蘖穗肥氮素的吸收利用差异及适宜比例的研究[D]. 南京: 南京农业大学, 2014.
LIN J J. Studies on absorption and utilization and optimum proportion of nitrogen of basic, tillering and panicle fertilizer in rice[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[7] PENG S B, CASSMAN K G . Upper thresh holds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal, 1998,90(2):178-185.
[8] 丁艳锋, 赵长华, 王强盛. 穗肥施用时期对水稻氮素利用及产量的影响. 南京农业大学学报, 2003,26(4):5-8.
DING Y F, ZHAO C H, WANG Q S. Effect of application stage of panicle fertilizer on rice grain yield and the utilization of nitrogen. Journal of Nanjing Agricultural University, 2003,26(4):5-8. (in Chinese)
[9] 吉志军. 稻米品质形成对氮素穗肥的响应及生理机制[D]. 南京: 南京农业大学, 2004.
JI Z J. Response of rice grain quality formation to panicle nitrogen fertilizer and the mechanism underlying[D]. Nanjing: Nanjing Agricultural University, 2004. (in Chinese)
[10] 刘元辉, 郭耀杰, 黄云, 胡剑峰, 任万军. 氮肥后移对不同基因型杂交籼稻碾米与外观品质的影响. 西南农业学报, 2012,25(6):2121-2124.
LIU Y H, GUO Y J, HUANG Y, HU J F, REN W J. Effect of nitrogen fertilizer postponing on milling quality and appearance quality of indica hybrid rice in different genotypes. Southwest China Journal of Agricultural Sciences, 2012,25(6):2121-2124. (in Chinese)
[11] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森 , BURESH R J, WITT C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002,35(9):1095-1103.
PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, BURESH R J, WITT C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002,35(9):1095-1103. (in Chinese)
[12] 赵飞, 李杨, 赵丽华, 向春阳, 裴忠有, 杜锦, 曹高燚, 刘建. 4个粳稻品种在不同种植区的产量和产量构成因素分析. 天津农业科学, 2018,24(6):40-44.
ZHAO F, LI Y, ZHAO L H, XIANG C Y, PEI Z Y, DU J, CAO G Y, LIU J. Analysis of yield and yield component of 4 kinds japonica rice varieties in different region. Tianjin Agricultural Sciences, 2018,24(6):40-44. (in Chinese)
[13] 高良艳, 周鸿飞. 水稻产量构成因素与产量的分析. 辽宁农业科学, 2007(1):26-28.
GAO L Y, ZHOU H F. Relationship between yield component factors and yield in rice. Liaoning Agricultural Sciences, 2007(1):26-28. (in Chinese)
[14] 杨安中, 吴文革, 段素梅, 许有尊, 陈刚. 氮肥运筹方式对超级稻茎蘖动态、后期光合性能及产量的影响. 杂交水稻, 2014,29(5):65-69.
YANG A Z, WU W G, DUAN S M, XU Y Z, CHEN G. Effects of nitrogen application modes on tillering dynamic, photosynthetic performance and grain yield of super hybrid rice. Hybrid Rice, 2014,29(5):65-69. (in Chinese)
[15] 沈淳, 吴炜, 吴雄兴, 杨芳凤, 沈嘉秋, 蒋其根. 不同氮肥运筹对优质水稻“青香软粳”产量和品质的影响. 上海农业科技, 2019(6):90-92.
SHEN C, WU W, WU X X, YANG F F, SHEN J Q, JIANG Q G. Grain yield and quality of high-quality rice variety Qing-Xiang-Ruan- Zhan under different nitrogen management. Shanghai Agricultural Science and Technology, 2019(6):90-92. (in Chinese)
[16] 唐湘如, 黎国喜, 钟克友, 肖立中, 段美洋, 田华, 李武. 双季超级稻强源活库优米栽培技术研究Ⅴ.双季超级稻强源活库优米栽培的理论与技术. 杂交水稻, 2010,25(3):74-78.
TANG X R, LI G X, ZHONG K Y, XIAO L Z, DUAN M Y, TIAN H, LI W. Studies on the cultivation techniques characterized by enhancing source, activating sink and improving quality for double -cropping super rice V. Theory and technology. Hybrid Rice, 2010,25(3):74-78. (in Chinese)
[17] ZHANG Y B, TANG Q Y, ZOU Y B, LI D Q, QIN J Q, YANG S H, CHEN L Y, XIA B, PENG S B . Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research, 2009,114(1):91-98.
[18] 潘圣刚, 黄胜奇, 张帆, 汪金平, 蔡明历, 曹凑贵, 唐湘如, 黎国喜. 超高产栽培杂交中籼稻的生长发育特性. 作物学报, 2011,37(3):537-544.
PAN S G, HUANG S Q, ZHANG F, WANG J P, CAI M L, CAO C G, TANG X R, LI G X. Growth and development characteristics of super-high-yielding mid-season indica hybrid rice. Acta Agronomica Sinica, 2011,37(3):537-544. (in Chinese)
[19] 冯惟珠, 苏祖芳, 杜永林, 周培南, 季春梅. 水稻灌浆期源质量与产量关系及氮素调控的研究. 中国水稻科学, 2000,14(1):27-33.
FENG W Z, SU Z F, DU Y L, ZHOU P N, JI C M. Relationship between source quality and grain yield during filling period in rice and its nitrogen-regulation approach. Chinese Journal of Rice Science, 2000,14(1):27-33. (in Chinese)
[20] 袁小乐, 潘晓华, 石庆华, 吴建富, 漆映雪. 双季超级稻的干物质生产特性研究. 杂交水稻, 2009,24(5):71-75, 79.
YUAN X Y, PAN X H, SHI Q H, WU J F, QI Y X. Studies on the characteristics of dry matter production in double cropping early and late super rice. Hybrid Rice, 2009,24(5):71-75, 79. (in Chinese)
[21] ARREGUI L M, LASA B, LAFARGA A, IRAÑETA I, BAROJA E, QUEMADA M,. Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. European Journal of Agronomy, 2006,24(2):140-148.
[22] YUAN Z, ATA-UL-KARIM ST, CAO Q, LU Z, CAO W, ZHU Y, LIU X. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 2016,185:12-20.
[23] 王允青, 郭熙盛, 戴明伏. 氮肥运筹方式对杂交水稻干物质积累和产量的影响. 中国土壤与肥料, 2008(2):31-34.
WANG Y Q, GUO X S, DAI M F. Effects of nitrogen application on dry matter accumulation and yield of hybrid rice. Soil and Fertilizer Sciences in China, 2008(2):31-34. (in Chinese)
[24] 范淑秀, 陈温福, 王嘉宇. 高产水稻品种干物质生产特性研究. 辽宁农业科学, 2005(3):6-8.
FAN S X, CHEN W F, WANG J Y. Studies on production characters of dry matter in high-yield rice. Liaoning Agricultural Sciences, 2005(3):6-8. (in Chinese)
[25] 周中林. 探究高产水稻品种干物质生产特性. 农业与技术, 2015,35(18):24.
ZHOU Z L. Characterization of dry matter production in high-yielding varieties of rice. Agriculture and Technology, 2015,35(18):24. (in Chinese)
[26] HUANG M, JIANG L G, XIA B, ZOU Y B, JIANG P, AO H J . Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science, 2013,7(5):600-608.
[27] 吴中福. 不同氮肥施用方式对水稻产量的影响. 农技服务, 2007,24(4):41.
WU Z F. Rice grain yield under different nitrogen managements. Agricultural Technology and Service, 2007,24(4):41. (in Chinese)
[28] 王仕玥. 氮肥不同用量和施用方法对水稻产量性状的影响. 河北农业科学, 2008,12(6):49-50.
WANG S Y. Effects of different nitrogen amounts and application methods on the yield characters of rice. Journal of Hebei Agricultural Sciences, 2008,12(6):49-50. (in Chinese)
[29] 许仁良, 戴其根, 王秀芹, 黄银忠, 吕修涛. 氮肥施用量、施用时期及运筹对水稻氮素利用率影响研究. 江苏农业科学, 2005(2):19-22.
XU R L, DAI Q G, WANG X Q, HUANG Y Z, LÜ X T. Effect of amount, timing and proportion of application on nitrogen use efficiency of rice. Jiangsu Agricultural Sciences, 2005(2):19-22. (in Chinese)
[30] 万靓军, 张洪程, 霍中洋, 林忠成, 戴其根, 许轲, 张军. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响. 作物学报, 2007,33(2):175-182.
WAN J J, ZHANG H C, HUO Z Y, LIN Z C, DAI Q G, XU K, ZHANG J. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agronomica Sinica, 2007,33(2):175-182. (in Chinese)
[31] 何虎, 吴建富, 曾研华, 黄山, 曾勇军. 稻草全量还田下氮肥运筹对双季晚稻产量及其氮素吸收利用的影响. 植物营养与肥料学报, 2014 , 20(4):811-820.
HE H, WE J F, ZENG Y H, HUANG S, ZENG Y J. Effects of nitrogen management on yield and nitrogen utilization of double cropping late rice under total rice straw incorporation. Journal of Plant Nutrition and Fertilizer, 2014,20(4):811-820. (in Chinese)
[32] 李鸿伟, 杨凯鹏, 曹转勤, 王志琴, 杨建昌. 稻麦连作中超高产栽培小麦和水稻的养分吸收与积累特征. 作物学报, 2013,39(3):464-477.
LI H W, YANG K P, CAO Z Q, WANG Z Q, YANG J C. Characteristics of nutrient uptake and accumulation in wheat and rice with continuous cropping under super-high-yielding cultivation. Acta Agronomica Sinica, 2013,39(3):464-477. (in Chinese)
[33] 王秀斌, 徐新朋, 孙刚, 孙静文, 梁国庆, 刘光荣, 周卫. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013,19(6):1279-1286.
WANG X B, XU X P, SUN G, SUN J W, LIANG G Q, LIU G R, ZHOU W. Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice. Journal of Plant Nutrition and Fertilizer, 2013,19(6):1279-1286. (in Chinese)
[34] 钟旭华, 黄农荣, 郑海波, 彭少兵 , BURESH R J. 不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响. 杂交水稻, 2007,22(4):62-66, 70.
ZHONG X H, HUANG N R, ZHENG H B, PENG S B, BURESH R J. Effect of nitrogen application timing on grain yield, nitrogen uptake and use efficiency of hybrid rice in South China. Hybrid Rice, 2007,22(4):62-66, 70. (in Chinese)
[35] 李刚华, 王惠芝, 王绍华, 王强盛, 郑永美, 丁艳锋. 穗肥对水稻穗分化期碳氮代谢及颖花数的影响. 南京农业大学学报, 2010,33(1):1-5.
LI G H, WANG H Z, WANG S H, WANG Q S, ZHENG Y M, DING Y F. Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle. Journal of Nanjing Agricultural University, 2010,33(1):1-5. (in Chinese)
[36] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015,31(10):132-141.
XU G W, WANG H Z, ZHAI Z H, SUN M, LI Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(10):132-141. (in Chinese)
[37] 董明辉, 唐成. 不同栽培环境对稻米品质的影响. 耕作与栽培, 2005(3):20-22.
DONG M H, TANG C. Grain quality of rice under different cultivating environment. Tillage and Cultivation, 2005(3):20-22. (in Chinese)
[38] WU L L, YUAN S, HUANG L Y, SUN F, ZHU G L, LI G H, FAHAD S H, PENG S B, WANG F . Physiological mechanisms underlying the high-grain yield and high-nitrogen use efficiency of elite rice varieties under a low rate of nitrogen application in China. Frontiers in Plant Science, 2016,7:1024.
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[4] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[5] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[6] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[7] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[8] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[11] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[12] MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
[13] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[14] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[15] TaoTao YANG,JiaXin XIE,Shan HUANG,XueMing TAN,XiaoHua PAN,YongJun ZENG,QingHua SHI,Jun ZHANG,YanHua ZENG. The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347.
Full text



No Suggested Reading articles found!