Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 782-794.doi: 10.3864/j.issn.0578-1752.2020.04.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields

ShiChao WANG1,2,ZhiHao YAN1,JinYu WANG1,ShengChang HUAI1,HongLiang WU1,TingTing XING1,HongLing YE1,ChangAi LU1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ National Engineering Laboratory for Improving Arable Land/Key Laboratory of Soil Quality, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021
  • Received:2019-05-16 Accepted:2019-06-26 Online:2020-02-16 Published:2020-03-09
  • Contact: ChangAi LU E-mail:luchangai@caas.cn

Abstract:

【Objective】Soil microbial biomass carbon & nitrogen (N) (SMBC & SMBN) and water soluble organic carbon & nitrogen (DOC & DON) are the active pools in soil, which are essential indexes for assessing soil carbon and nitrogen turnover and nutrient availability for providing scientific information and guidelines and nitrogen management under straw returning in rice-wheat rotation system. The objective of the study was to investigate the effects of straw incorporation, nitrogen application rate and basal/topdressing ratios of nitrogen fertilizers on the SMBC, SMBN, DOC, DON, ROC and AN at paddy field, so as to explicit the optimal nitrogen rate and basal/topdressing ratios of nitrogen fertilizers under the straw incorporation condition. 【Method】A 4-year field experiment with straw incorporation matched with nitrogen fertilizer was conducted in rice cropping system from 2012 to 2015 in Jingmen city, Hubei Province. Three field experiments including different nitrogen application, straw incorporation combined with nitrogen fertilization and different ratios of base N to dressing N. Field experiments included: (1) different nitrogen rates, including No N fertilizer (N0), Optimal N fertilizer (165 kg N·hm -2, N165), the farmer common N rate (195 kg N·hm -2, N195); (2) different straw incorporation combined with nitrogen fertilization: straw removal (CK), straw incorporation (wheat straw incorporation before rice transplanting, S), straw incorporation matched with farmer common N rate (SN), straw incorporation matched with optimal N rate (SF), SF plus straw decomposing microbial inoculants (SM); (3) three basal/topdressing ratios of nitrogen fertilizers in the shooting and heading stage: 7﹕3﹕0 (R1), 5﹕3﹕2 (R2); 10﹕0﹕0 (R3). 【Result】The results showed that the SMBC content significantly increased at rice jointing stage and the DOC content obviously decreased after the maturity under the SN treatment. The DON content increased under the SF treatment at rice jointing stage. DON and ROC contents decreased under the SM treatments at the maturity and jointing stage. The AN content increased in the SF treatment at rice heading and grain filling stage. Appropriate N application rate (165 kg N·hm -2) was favorable to increasing the DON and AN in soil. However, the DON and AN contents decreased under high application rate of N fertilizer (195 kg N·hm -2). The higher proportion of topdressing fertilizer increased the SMBN and ROC contents at rice jointing stage, but had no impacts on the SMBC and DOC contents. 【Conclusion】Nitrogen rate and basal/topdressing ratios were main factor for determining active soil carbon and nitrogen contents under straw incorporation in Paddy field. Appropriate nitrogen fertilizer could increase SMBC, AN, and DON contents, and the higher topdressing fertilizer could also increase active soil carbon and nitrogen contents during rice growth stage.

Key words: paddy field, straw incorporation, nitrogen application rate, basal/topdressing ratios of nitrogen fertilizers, soil microbial biomass carbon/nitrogen (SMBC/SMBN), water soluble organic carbon/nitrogen (DOC/DON)

Table 1

Treatments and fertilizer application rate in field experiment"

试验
Experiment
处理
Treatment
基肥 Basal fertilizers(kg·hm-2 追肥
Top-dressed nitrogen (kg·hm-2)
N P2O5 K2O 秸秆
Straw
菌剂
Microbial inoculants
秸秆配施氮肥
Straw incorporation combined with nitrogen fertilization
小麦秸秆移除 Wheat straw removal (CK) 195 60 90 0 0 0
小麦秸秆全量还田 Wheat straw incorporation (S) 0 60 90 4500 0 0
全量秸秆+习惯施氮量
Straw incorporation matched with farmer common N rate (SN)
136.5 60 90 4500 0 58.5
全量秸秆+推荐施氮量
Straw incorporation matched with optimal N rate (SF)
115.5 60 90 4500 0 49.5
全量秸秆+推荐施氮量+腐熟菌剂
SF plus straw decomposing microbial inoculants (SM)
115.5 60 90 4500 30 49.5
氮肥用量
Nitrogen rate
不施氮肥 No nitrogen fertilizer (N0) 0 60 90 4500 0 0
总施氮量为165 kg·hm-2 Optimal nitrogen fertilizer (N165) 115.5 60 90 4500 0 49.5
总施氮量为195 kg·hm-2 Farmer common nitrogen rate (N195) 136.5 60 90 4500 0 58.5
氮肥基追比
Basal/topdressing ratio of nitrogen fertilizer
小麦秸秆全量还田,基施:拔节期:抽穗期氮肥施用比例为7﹕3﹕0
Basal/topdressing ratios of nitrogen fertilizers in the shooting and heading stage: 7﹕3﹕0 (R1)
115.5 60 90 4500 0 49.5
小麦秸秆全量还田,基施:拔节期:抽穗期氮肥施用比例为5﹕3﹕2 R2
Basal/topdressing ratios of nitrogen fertilizers in the shooting and heading stage: 5﹕3﹕2 (R2)
82.5 60 90 4500 0 82.5
小麦秸秆全量还田,基施:拔节期:抽穗期氮肥施用比例为10﹕0﹕0 R3
Basal/topdressing ratios of nitrogen fertilizers in the shooting and heading stage: 10﹕0﹕0 (R3)
165 60 90 4500 0 0

Table 2

SMBC and SMBN contents under straw incorporation matched with nitrogen fertilizer (mg·kg-1)"

测定
项目
Index
处理
Treatment
采样时期 Growth stage 平均值
Average
返青期
Regreening
拔节期
Shooting
分蘖期
Tillering
抽穗期
Heading
灌浆期
Grain-filling
成熟期
Maturity
SMBC CK 1314.1±479.0a 203.2±83.2b 1833.9±763.1a 3186.3±510.3a 1840.8±1185.5a 2349.8±1082.2a 1788.0a
S 1871.7±332.6a 674.3±492.9ab 997.1±577.4a 2252.5±1539.7a 3290.9±1248.4a 815.2±771.7a 1650.3a
SN 1170.0±667.2a 1217.6±900.8a 1310.6±492.0a 1245.4±551.5a 2905.6±1590.9a 1580.6±1686.9a 1571.6a
SF 1414.0±505.7a 965.8±518.9ab 1926.6±1885.6a 1585.5±1690.7a 1833.5±1017.4a 2278.2±2227.5a 1667.3a
SM 1947.4±526.4a 604.8±588.6ab 1213.7±782.2a 1602.3±530.0a 2384.8±749.0a 1455.0±934.2a 1534.7a
平均值 Average 1543.4B 733.1C 1456.4BC 1974.4AB 2451.1A 1695.8AB
SMBN CK 35.0±3.1a 14.1±6.1a 22.5±3.7a 36.4±30.6a 23.0±1.6a 29.2±19.6a 26.7a
S 25.5±2.8a 37.0±33.7a 20.6±11.3a 39.9±6.0a 17.2±8.1a 13.1±8.1a 25.6a
SN 26.9±9.5a 12.4±3.3a 12.5±5.8a 16.5±10.9a 20.7±12.1a 16.8±7.4a 17.6a
SF 37.2±19.9a 44.6±22.7a 16.2±10.3a 23.3±22.6a 22.1±6.9a 18.0±9.5a 26.9a
SM 35.0±3.1a 28.2±14.1a 30.9±25.1a 30.2±16.8a 25.8±15.9a 22.0±16.0a 28.7a
平均值 Average 31.9A 27.2A 20.5A 29.3A 21.8A 19.8A

Table 3

DOC and DON contents under straw incorporation matched with nitrogen fertilizer (mg·kg-1)"

测定
项目
Index
处理
Treatment
采样时期 Growth stage 平均值
Average
返青期
Regreening
拔节期
Shooting
分蘖期
Tillering
抽穗期
Heading
灌浆期
Grain-filling
成熟期
Maturity
DOC CK 592.0±141.6a 788.1±164.8a 956.3±116.6a 1156.6±355.6a 831.3±357.1a 843.8±268.0a 861.4a
S 621.1±46.3a 567.7±98.1a 1628.0±274.3a 1035.4±741.5a 755.7±146.1a 541.6±324.9ab 858.2a
SN 488.3±95.4a 702.8±109.8a 1183.7±264.6a 1193.7±489.7a 882.6±154.5a 541.1±352.6ab 832.0a
SF 617.6±134.0a 766.7±233.2a 1055.6±255.5a 1086.9±381.9a 695.4±245.2a 690.7±235.2ab 818.8a
SM 805.9±224.1a 518.9±484.2a 1081.8±163.4a 1367.1±265.4a 908.6±333.9a 308.4±48.7b 831.8a
平均值Average 625.0B 668.8B 1181.1A 1168.0A 814.7B 585.1B
DON CK 8.8±2.7a 9.7±4.3b 13.2±7.5a 13.0±1.0a 15.4±3.3a 12.9±2.3ab 12.1a
S 10.5±4.7a 10.3±3.0ab 17.3±5.2a 14.8±3.8a 13.9±2.5a 10.5±2.4b 12.9a
SN 11.3±4.9a 13.7±6.4ab 17.1±2.2a 16.2±1.8a 15.5±2.2a 10.1±3.5ab 14.0a
SF 16.0±12.3a 16.1±2.0a 14.2±2.2a 12.6±3.7a 13.6±2.5a 8.7±2.3b 13.5a
SM 17.5±1.7a 11.8±1.8ab 13.2±2.9a 14.3±1.9a 18.8±2.8a 7.7±1.5a 13.9a
平均值Average 12.9AB 12.3AB 15.0A 14.2A 15.4A 10.0B

Table 4

ROC and AN contents under straw incorporation matched with nitrogen fertilizer (mg·kg-1)"

测定项目
Index
处理
Treatment
采样时期 Growth stage 平均值
Average
返青期
Regreening
拔节期
Shooting
分蘖期
Tillering
抽穗期
Heading
灌浆期
Grain-filling
成熟期
Maturity
ROC CK 5.2±0.4a 4.6±0.1a 4.5±0.3a 5.0±0.3a 4.5±0.4a 4.0±0.2a 4.6a
S 5.1±0.5a 4.5±0.4a 4.8±0.4a 5.1±0.6a 4.1±0.2a 4.1±0.2a 4.6a
SN 5.0±0.3a 4.9±0.2a 4.7±0.2a 5.0±0.4a 4.4±0.4a 4.2±0.4a 4.7a
SF 5.2±0.1a 4.6±0.2a 5.0±0.2a 5.5±0.4a 4.6±0.4a 4.3±0.3a 4.9a
SM 5.5±0.4a 4.1±0.4b 5.0±0.4a 5.0±0.3a 4.5±0.3a 4.4±0.3a 4.7a
平均值Average 5.2A 4.6BC 4.8B 5.1A 4.4CD 4.2D
AN CK 8.2±2.9a 18.8±4.5a 11.3±3.5a 10.2±0.2c 5.0±2.3b 22.6±11.0a 12.7a
S 20.0±11.8a 26.9±12.2a 10.4±2.1a 11.2±0.9bc 10.9±5.9ab 10.9±12.5a 15.0a
SN 16.9±4.0a 29.9±19.2a 11.9±3.9a 14.3±2.4a 13.4±6.1ab 18.1±26.4a 17.4a
SF 18.1±19.8a 32.6±17.2a 11.7±0.2a 12.8±2.0ab 15.1±3.1a 5.1±1.0a 15.9a
SM 28.5±18.9a 27.2±14.4a 13.8±3.9a 11.7±0.9bc 13.4±7.1ab 31.1±30.5a 20.9a
平均值Average 18.3B 27.0A 11.8B 12.0B 11.6B 17.6B

Fig. 1

Content of SMBN in soil under the different nitrogen fertilization treatments"

Fig. 2

Content of DON in soils under the different nitrogen fertilization treatments Capital letters show comparison between different growth stages, different letters mean significance at 5% level. The same as below"

Fig. 3

Content of AN in soils under the different nitrogen fertilization treatments"

Fig. 4

Contents of SMBC and SMBN in soils under different nitrogen application time treatments"

Fig. 5

Content of ROC and AN in soils under the different nitrogen application time treatments"

Fig. 6

Content of DOC and DON in soils under the different nitrogen application time treatments"

[1] 李玲, 朱捍华, 苏以荣, 肖和艾, 黄道友, 吴金水 . 稻草还田和易地还土对红壤丘陵农田土壤有机碳及其活性组分的影响. 中国农业科学, 2009,42(3):926-933.
LI L, ZHU H H, SU Y R, XIAO H A, HUANG D Y, WU J S . Effects of rice straw incorporation in situ and ex situ on soil organic C and active organic C in agricultural soils in red soil hilly region. Scientia Agricultura Sinica, 2009,42(3):926-933. (in Chinese)
[2] 王德建, 常志州, 王灿, 张刚, 张斯梅 . 稻麦秸秆全量还田的产量与环境效应及其调控. 中国生态农业学报, 2015,23(9):1073-1082.
WANG D J, CHANG Z Z, WANG C, ZHANG G, ZHANG S M . Regulation and effect of 100% straw return on crop yield and environment. Chinese Journal of Eco-Agriculture, 2015,23(9):1073-1082. (in Chinese)
[3] EMBACHER A, ZSOLNAY A, GATTINGER A, MUNCH J C . The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma, 2008,148(1):63-69.
[4] XU M G, LOU Y L, SUN X L, WANG W, BANIYAMUDDIN M, ZHAO K . Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils, 2011,47(7):745-752.
[5] VERESOGLOU S D, CHEN B D, MATTHIAS C R . Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 2012,46:53-62.
[6] 许轲, 刘萌, 陈京都, 顾海燕, 戴其根, 马克强, 江峰, 何理 . 麦秸秆全量还田对稻田土壤溶解有机碳含量和水稻产量的影响. 应用生态学报, 2015,26(3):430-436.
XU K, LIU M, CHEN J D, GU H Y, DAI Q G, MA K Q, WANG F, HE L . Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield. Chinese Journal of Applied Ecology, 2015,16(2):430-436. (in Chinese)
[7] JONES D L, HEALEY J R, WILLETT V B, FARRAR J F, HODGE A . Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biology and Biochemistry, 2005,37(3):413-423.
[8] TIAN K, ZHAO Y C, XU X H, HAI N, HUANG B A, DENG W J . Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture, Ecosystems & Environment, 2015,204:40-50.
[9] ZHANG W J, XU M G, WANG X J, HUANG Q H, NIE J, LI Z Z, LI S L, SEON W H, KYEONG B L . Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments, 2012,12(4):457-470.
[10] 曾骏, 郭天文, 于显枫, 董博 . 长期施肥对土壤活性有机碳和碳库管理指数的影响. 土壤通报, 2011,42(4):812-815.
ZENG J, GUO T W, YU X F, DONG B . Effect of fertilization on soil active C and C pool management index. Chinese Journal of Soil Science, 2011,42(4):812-815. (in Chinese)
[11] 王丹丹, 周亮, 黄胜奇, 李成芳, 曹凑贵 . 耕作方式与秸秆还田对表层土壤活性有机碳组分与产量的短期影响. 农业环境科学学报, 2013,32(4):735-740.
WANG D D, ZHOU L, HUANG S Q, LI C F, CAO C G . Short-term effects of tillage practices and wheat-straw returned to the field on topsoil labile organic carbon fractions and yields in central China. Journal of Agro-Environment Science, 2013,32(4):735-740. (in Chinese)
[12] HAO Z P, CHRISTIE P, ZHENG J, LI L, CHEN Q, WANG J G . Excessive nitrogen inputs in intensive greenhouse cultivation may influence soil microbial biomass and community composition. Communications in Soil Science and Plant Analysis, 2009,40(15/16):2323-2337.
[13] ZAHIR S, AHMAD S R, HIDAYAT U R . Soil microbial biomass and activities as influenced by green manure legumes and n fertilizer in rice-wheat system. Pakistan Journal of Botany, 2010,42(4):2589-2598.
[14] VANCE E D, BROOKES, P C, JENKINSON D S . An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987,19(6):703-707.
[15] BROOKES P C, LANDMAN A, PRUDEN G, JENKINSON D S . Chloroform fumigation and the release of soil nitrogen: a rapild direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985,17(6):837-842.
[16] 杨绒, 赵满兴, 周建斌 . 过硫酸钾氧化法测定溶液中全氮含量的影响条件研究. 西北农林科技大学学报(自然科学版), 2005,33(12):107-111.
YAN R, ZHAO M X, ZHOU J B . Effects of different conditions on the determination of total nitrogen in solution by persulfate oxidation method. Journal of Northwest A&F University (Natural Science Edition), 2005,33(12):107-111. (in Chinese)
[17] 周建斌, 李生秀 . 碱性过硫酸钾氧化法测定溶液中全氮含量氧化剂的选择. 植物营养与肥料学报, 1998,4(3):299-304.
ZHOU J B, LI S X . Choosing of a proper oxidizer for alkaline persulfate oxidation to determining total nitrogen in solution. Plant Nutrition and Fertilizer Science, 1998,4(3):299-304. (in Chinese)
[18] BLAIR G J, LEFROY R D B, LISE L . S soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995,46:1459-1466.
[19] 鲍士旦 . 土壤农化分析. 北京:中国农业出版社, 2000.
BAO S D. Soil Agro-chemistry Analysis. Beijing:China Agriculture Press, 2000. (in Chinese)
[20] JACKSON L E, CALDERON F J, STEENWERTH K L, SCOW K M, ROLSTON D E . Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma, 2003,114(3/4):305-317.
[21] 李贵桐, 赵紫娟, 黄元仿, 李保国 . 秸秆还田对土壤氮素转化的影响. 植物营养与肥料学报, 2002,8(2):162-167.
LI G T, ZHAO Z J, HUANG Y F, LI B G . Effect of straw returning on soil nitrogen transformation. Plant Nutrition and Fertilizer Science, 2002,8(2):162-167. (in Chinese)
[22] SPEDDING T A, HAMEL C, MEHUYS G R, MADRAMOOTOO C A . Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry, 2004,36(3):499-512.
[23] GARDENAS A, AGREN G, BIRD J A, CLARHOLM M, HALLIN S, KATTERER T, KNICKER H . Knowledge gaps in soil carbon and nitrogen interactions - From molecular to global scale. Soil Biology and Biochemistry, 2011,43(4):702-717.
[24] LEMKE R L, VANDENBYGAART A J, CAMPBELL C A, LAFOND G P, GRANT B . Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agriculture, Ecosystems & Environment, 2010,135(1/2):42-51.
[25] LEBAUER D S, TRESEDER K K . Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008,89(2):371-379.
[26] 曾宪楠, 王麟, 孙羽, 宋秋来, 冯延江, 袁媛 . 水稻秸秆还田下氮肥对土壤有机碳及碳库管理指数的影响. 黑龙江农业科学, 2016(5):41-44.
ZENG X N, WANG L, SUN Y, SONG Q L, FENG Y J, YUAN Y . Effect of N fertilizer application on soil organic carbon and carbon pool management index under rice straw returning. Heilongjiang Agricultural Science, 2016(5):41-44. (in Chinese)
[27] 谭立敏, 吴昊, 李卉, 周萍, 李科林, 王久荣, 葛体达, 袁红朝, 吴金水 . 不同施氮量下水稻分蘖期光合碳向土壤碳库的输入及其分配的量化研究:13C连续标记法. 环境科学, 2014,35(5):1933-1938.
TAN L M, WU H, LI H, ZHOU P, LI K L, WANG J R, GE T D, YUAN H Z, WU J S . Input and distribution of rice photosynthesized carbon in the tillering stage under different nitrogen application following continuous13C labeling. Environmental Science, 2014,35(5):1933-1938. (in Chinese)
[28] 杨馨逸, 刘小虎, 韩晓日, 段鹏鹏, 朱玉翠, 齐文 . 不同品种小麦下土壤微生物量和可溶性有机物对不同施氮量的响应. 中国农业科学, 2016,49(7):1315-1324.
YANG X Y, LIU XIAO H, HAN X R, DUAN P P, ZHU Y C, QI W . Responses of soil microbial biomass and soluble organic matter to different application rates of N: A comparison between Liaochun 10 and Liaochun 18. Scientia Agricultura Sinica, 2016,49(7):1315-1324. (in Chinese)
[29] LOVELL R D, JARVIS S C, BARDGETT R D . Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology and Biochemistry, 1995,27:969-975.
[30] LIANG C, BALSER T C . Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 2011,9(1):75.
[31] ZHONG Y Q W, YAN WM, SHANGGUAN ZP . Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biology and Biochemistry, 2015,91:151-159.
[32] LI F L, LIU M, LI Z P, JIANG C Y, HAN F X, CHE Y P . Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Applied Soil Ecology, 2013,64:1-6.
[33] TIAN X F, HU H W, DING Q D, SONG M H, XU X L, ZHENG Y, GUO L D . Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biology and Fertility of Soils, 2013,50(4):703-713.
[34] 石玉, 于振文 . 施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响. 生态学报, 2006,26(11):3661-3669.
SHI Y, YU Z W . Effects of nitrogen fertilizer rate and ratio of base and topdressing on yield of wheat, content of soil nitrate and nitrogen balance. Acta Ecologica Sinica, 2006,26(11):3661-3669. (in Chinese)
[35] 林晶晶, 李刚华, 薛利红 . 15N示踪的水稻氮肥利用率细分. 作物学报, 2014,40(8):1424-1434
LIN J J, LI G H, XUE L H . Subdivision of nitrogen use efficiency of rice based on 15N tracer. Acta Agronomica Sinica, 2014,40(8):1424-1434. (in Chinese)
[1] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[2] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[3] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[4] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[5] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[6] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[7] CHAI RuShan,XU Yue,CHENG QiPeng,WANG QingYun,MA Chao,YE XinXin,ZHANG LiGan,GAO HongJian. Nutrient Resource Quantity of Main Crop Straw and Utilization Potential Under Straw Returning in Anhui Province [J]. Scientia Agricultura Sinica, 2021, 54(1): 95-109.
[8] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[9] GAO ChunHua,FENG Bo,CAO Fang,LI ShengDong,WANG ZongShuai,ZHANG Bin,WANG Zheng,KONG LingAn,WANG FaHong. Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4365-4375.
[10] JIANG Ying,WANG ZhengYu,LIAN HongLi,WANG MeiJia,SU YeHan,TIAN Ping,SUI PengXiang,MA ZiQi,WANG YingYan,MENG GuangXin,SUN Yue,LI CongFeng,QI Hua. Effects of Tillage and Straw Incorporation Method on Root Trait at Silking Stage and Grain Yield of Spring Maize in Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3071-3082.
[11] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[12] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
[13] GAI XiaPu,LIU HongBin,YANG Bo,WANG HongYuan,ZHAI LiMei,LEI QiuLiang,WU ShuXia,REN TianZhi. Responses of Crop Yields, Soil Carbon and Nitrogen Stocks to Additional Application of Organic Materials in Different Fertilization Years [J]. Scientia Agricultura Sinica, 2019, 52(4): 676-689.
[14] REN KeYu,DUAN YingHua,XU MingGang,ZHANG XuBo. Effect of Manure Application on Nitrogen Use Efficiency of Crops in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2983-2996.
[15] PENG XianLong,WANG Wei,ZHOU Na,LIU HaiYang,LI PengFei,LIU ZhiLei,YU CaiLian. Analysis of Fertilizer Application and Its Reduction Potential in Paddy Fields of Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!