Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (19): 3778-3788.doi: 10.3864/j.issn.0578-1752.2017.19.014

• HORTICULTURE • Previous Articles     Next Articles

Effects of Endogenous NO on Reactive Oxygen Metabolism and Photosynthetic Characteristics of Cucumber Seedlings Under Salt Stress

YANG JianJun, ZHANG GuoBin, YU JiHua, HU LinLi, LUO ShiLei, NIU Tong, ZHANG Jing   

  1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070
  • Received:2017-05-02 Online:2017-10-01 Published:2017-10-01

Abstract: 【Objective】 The objective of this study is to investigate the physiological and biochemical regulation mechanism and regulation pathway of endogenous NO in cucumber seedlings under salt stress. 【Method】The effects of nitric oxide synthase inhibitor (L-NAME, Nω-nitro-L-arginine methyl ester hydrochloride), nitrate reductase inhibitor (tungstate) and nitric oxide scavenger (cPTIO, 4-carboxypheny-4,4,5,5-tetramethy limidazoline-1-oxyl-3-oxidepotass-ium salt) on cucumber seedlings under salt stress were studied. The contents of NO, active oxygen metabolism, photosynthetic parameters and chlorophyll fluorescence parameters were used in discussing the results. 【Result】Salt stress increased endogenous NO content in the leaves of cucumber seedlings. The application of 200 μmol?L-1 L-NAME, 100 μmol?L-1 tungstate and 200 μmol?L-1cPTIO inhibited the activities of antioxidant enzymes (SOD, POD and POD) in cucumber seedlings under salt stress. Malondialdehyde (MDA) content, superoxide anion free radical (O2·-) production rate and plasma membrane permeability were increased, and the contents of free proline (Pro) and soluble protein were decreased. Peroxidation increased the damage of cucumber seedlings under salt stress. At the same time, the gas exchange parameters Pn, Gs, Tr, Ci, and the chlorophyll fluorescence parameters Fv/Fm, ΦPSⅡ, qP also decreased. However, the NPQ significantly increased, leading to leaf photosynthetic mechanism damage, and the leaf photosynthetic rate decreased. 【Conclusion】Under the salt stress, the change of endogenous NO could directly regulate the antioxidant capacity of cucumber seedlings, alleviate the damage of lipid peroxidation and damage to photosynthetic organs, and the active oxygen metabolism and photosynthetic characteristics of cucumber seedlings are mainly controlled by nitric oxide synthase pathway.

Key words: cucumber seedlings, salt stress, NO, photosynthetic physiology, active oxygen metabolism

[1]    Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 2005, 10: 615-620.
[2]    Munns R.Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell and Environment, 1993, 16: 15-24.
[3]    BAYSAL G, TIPIRDAMAZ R. The effect of salt stress on lipid peroxidation and antioxidative enzyme activities in two cucumber cultivars. Hacettepe Journal of Biology and Chemistry, 2004, 33: 119-129.
[4]    HE J Y, REN Y F, CHEN X L, CHEN H. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and Environmental Safety, 2014, 108: 114-119.
[5]    BAUDOUIN E. The language of nitric oxide signalling. Plant Biology, 2011, 13(2): 233-242.
[6]    BELLIN D, ASAI S, DELLEDONNE M, YOSHIOKA H. Nitric oxide as a mediator for defense responses. Molecular Plant-Microbe Interactions, 2013, 26 (3): 271-277.
[7]    HORCHANI F, PRE´VOT M, BOSCARI A, EVANGELISTI E, MEILHOC E, BRUAND C, RAYMOND P, BONCOMPAGNI E, ASCHI-SMITI S, PUPPO A, BROUQUISSE R. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiology, 2011, 155: 1023-1036.
[8]    YULIYA A K, ALLA I Y, YAROSLAV B B. Cell mechanisms of nitric oxide signaling in plants under abiotic stress conditions. Girdhar Pandey, 2017, 1(1): 371-397.
[9]    QIAO W H, FAN L M. Nitric oxide signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 2008, 50(10): 1238-1246.
[10]   刘建新, 王金成, 王瑞娟, 贾海燕. 外源一氧化氮对渗透胁迫下黑麦草幼苗光合和生物发光特性的影响. 草业学报, 2013, 22(1): 210-216.
Liu J X, Wang J C, Wang R J, Jia H Y. Effects of exogenous nitric oxide on photosynthetic and bioluminescent characteristics in ryegrass seedlings under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 210-216. (in Chinese)
[11]   ZHANG T, CHE F B, ZHANG H,  Pan Y, Xu M Q, Ban Q Y, Han Y, Rao J P. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L. ) fruit. Postharvest Biology and Technology, 2017, 127: 88-98.
[12]   TIAN Q Y, SUN D H, ZHAO M G, ZHANG W H. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytologist, 2007, 174: 322-331.
[13]   杨美森, 王雅芳, 干秀霞, 罗宏海, 张亚黎, 张旺锋. 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响. 中国农业科学, 2012, 45(15): 3058-3067.
YANG M S, WANG Y F, GAN X X, LUO H H, ZHANG Y L, ZHANG W F. Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress. Scientia Agricultura Sinica, 2012, 45(15): 3058-3067. (in Chinese)
[14]   FAN Q J, LIU J H. Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Reports, 2012, 31(1): 145-154.
[15]   NEILL S J, DESIKAN R, CLARKE A, HURST R D, HANCOCK J T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 2002, 53(372): 1237-1247.
[16]   樊怀福, 杜长霞, 朱祝军. 外源NO对低温胁迫下黄瓜幼苗生长、叶片膜脂过氧化和光合作用的影响. 浙江农业学报, 2011, 23(3): 538-542.
FAN H F, DU C X, ZHU Z J. Effects of exogenous nitric oxide on plant growth, membrane lipid peroxidation and photosynthesis in cucumber seedling leaves under low temperature. Acta Agriculturae Zhejiangensis, 2011, 23(3): 538-542. (in Chinese)
[17]   吴旭红, 吕成敏, 冯晶旻. 外源一氧化氮(NO)对低温胁迫下南瓜幼苗氧化损伤的保护效应. 草业学报, 2016, 25(12): 161-169.
WU X H, LV C M, FENG J M. Protective effect of exogenous nitric oxide against oxidative damage in pumpkin seedlings under chilling stress. Acta Prataculturae Sinica, 2016, 25(12): 161-169. (in Chinese)
[18]   闫永庆, 赵奕翔, 杜玉玲, 李丹阳, 潘晨慧, 高梦蕾. 外源NO对盐胁迫下玉竹氧化损伤缓解效应. 东北农业大学学报, 2017, 48(1): 23-32.
YAN Y Q, ZHAO Y X, DU Y L, LI D Y, PAN C H, GAO M L. Effect of exogenous nitric oxide on oxidative damage in Polygonatum odoratum under NaCl stress. Journal of Northeast Agricultural University, 2017, 48(1): 23-32. (in Chinese)
[19]   UCHIDA A, JAGENDORF A T, HIBINO T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163(3): 515-523.
[20]   ZHOU B, GUO Z, XING J, HUANG B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany, 2005, 56(422): 3223-3228.
[21]   PINHEIRO H A, DAMATTA F M, CHAVES A R M, FONTES E P B, LOUREIRO M E. Drought tolerance in relation to protection against oxidative stress in clones of coffea canephora subjected to long-term drought. Plant Science, 2004, 167: 1307-1314.
[22]   LIMA G P P, BRASIL O G, OLIVEIRA A M. Polyamines and peroxidase activity in bean (Phaseolus vulgaris L. ) grown under saline stress. Scientia Agricola, 1999, 56(1): 21-26.
[23]   HAVIR E A, MCHALE N A. Biochemical and development alcharacterization of multiple forms of catalase in tobacco-leaves. Plant Physiology, 1987, 84: 450-500.
[24]   高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 142-231.
Gao J F. Plant Physiology Experiment Guidance. Beijing: Higher Education Press, 2006: 142-231. (in Chinese)
[25]   徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42 (7): 311-312.
XU X J, LI Y C. Comparison of relative conductivity determination methods for two kinds of plants. Journal of Jiangsu Agricultural Sciences, 2014, 42 (7): 311-312. (in Chinese)
[26]   王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990(6): 55-57.
WANG A G, LUO G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, 1990(6): 55-57. (in Chinese)
[27]   CUI J X, ZHOU Y H, DING J G, XIA X J, SHI K, CHEN S C, ASAMI T, CHEN Z X, YU J Q. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell and Environment, 2010, 34(2): 347-358.
[28]   常青山, 张利霞, 杨伟, 周姗姗, 黄青哲, 吕凤娟, 黄玥, 葛淑慧, 张天蒙. 外源NO对NaCl胁迫下夏枯草幼苗抗氧化能力及光合特性的影响. 草业学报, 2016, 25(7): 121-130.
CHANG Q S, ZHANG L X, YANG W, ZHOU S S, HUANG Q Z, LV F J, HUANG Y, GE S H, ZHANG T M. Effects of exogenous nitric oxide on antioxidant activity and photosynthetic characteristics of Prunella vulgaris seedlings under NaCl stress. Acta Prataculturae Sinica, 2016, 25(7): 121-130. (in Chinese)
[29]   ZHANG H, SHEN W B, XU L L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Botanica Sinica, 2003, 45(8): 901-905.
[30]   王丽梅, 胡琳莉, 朱永超, 董爱玲, 廖伟彪, 张国斌, 郁继华. 一氧化氮对弱光下小型大白菜幼苗生长及光合作用的影响. 西北植物学报, 2016, 36(8): 1615-1622.
WANG L M, HU L L, ZHU Y C, DONG A L, LIAO W B, ZHANG G B, YU J H. Influence of nitric oxide on growth and photosynthesis of brassica pekinensis seedlings under low light intensity. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(8): 1615-1622. (in Chinese)
[31]   王文, 陈振德, 罗庆熙. 外源一氧化氮对苯丙烯酸胁迫下黄瓜幼苗生长及活性氧代谢的影响. 中国农业科学, 2010, 43(17): 3677-3683.
WANG W, CHEN Z D, LUO Q X. Effects of exogenous NO on growth and active oxygen metabolism in cucumber seedlings under cinnamic acid stress. Scientia Agricultura Sinica, 2010, 43(17): 3677-3683. (in Chinese)
[32]   时振振, 李胜, 杨柯, 马绍英, 刘会杰, 张品南, 杨晓明. 盐胁迫下豌豆幼苗对内外源NO的生理生化响应. 草业学报, 2014, 23(5): 193-200.
SHI Z Z, LI S, YANG K, MA S Y, LIU H J, ZHANG P N, YANG X M. Physiological and biochemical response of pea seedling to endogenous and exogenous NO under salt stress. Acta Prataculturae Sinica, 2014, 23(5): 193-200. (in Chinese)
[33]   陈世军, 张明生. 植物一氧化氮及其对活性氧代谢的影响. 安徽农业科学, 2008, 36(17): 7116-7118, 7179.
CHEN S J, ZHANG M S. Nitric oxide and its effects on reactive oxygen species metabolism in plants. Journal of Anhui Agricultural Sciences, 2008, 36(17): 7116-7118, 7179. (in Chinese)
[34]   DELLEDONNE M, ZEIER J, MAROCCO A, LAMB C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 13454-13459.
[35]   BELLIN D, ASAI S, DELLEDONNE M, YOSHIOKA H. Nitric oxide as a mediator for defense responses. Molecular Plant-Microbe Interactions, 2013, 26: 271-277.
[36]   王霞, 侯平, 尹林克, 冯大千, 潘伯荣. 水分胁迫对柽柳组织含水量和膜透性的影响. 干旱区研究, 1999, 16(2): 12-15.
WANG X, HOU P, YI L K, FENG D Q, PAN B R. Effect of tissue relative water content and membrane permeation of tamarix under soil-water stress slowly. Arid Zone Research, 1999, 16(2): 12-15. (in Chinese)
[37]   肖雯, 贾恢先, 蒲陆梅. 几种盐生植物抗盐生理指标的研究. 西北植物学报, 2000, 20(5): 818-825.
XIAO W, JIA H X, PU L M. Studies on physiological index of some halophytes. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(5): 818-825. (in Chinese)
[38]   樊怀福, 郭世荣, 焦彦生, 张润花, 李娟. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响. 生态学报, 2007, 27(2): 546-553.
FAN H F, GUO S R, JIAO Y S, ZHANG R H, LI J. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress. Acta Ecologica Sinica, 2007, 27(2): 546-553. (in Chinese) 
[39]   邵瑞鑫, 李蕾蕾, 郑会芳, 张寄阳, 杨慎娇, 马野, 信龙飞, 苏小 雨, 冉午玲, 毛俊, 郑博元, 杨青华. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响. 中国农业科学, 2016, 49(2): 251-259.
SHAO R X, LI L L, ZHENG H F, ZHANG J Y, YANG S J, MA Y, XIN L F, SU X Y, RAN W L, MAO J, ZHENG B Y, YANG Q H. Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress. Scientia Agricultura Sinica, 2016, 49(2): 251-259. (in Chinese)
[40]   车永梅, 唐静, 陈康, 柏素花, 刘新. 一氧化氮对盐胁迫下玉米幼苗叶绿素荧光参数和光合特性的影响. 玉米科学, 2009, 17(3): 91-94.
CHE Y M, TANG J, CHEN K, BAI S H, LIU X. Effects of nitric oxide on chlorophyll fluorescence parameters and photosynthetic characteristics of maize seedling under salt stress. Journal of Maize Sciences, 2009, 17(3): 91-94. (in Chinese)
[41]   吴雪霞, 朱为民, 朱月林, 陈建林. 外源一氧化氮对NaCl胁迫下番茄幼苗光合特性的影响. 植物营养与肥料学报, 2007, 13(6): 1105-1109.
WU X X, ZHU W M, ZHU Y L, CHEN J L. Effects of exogenous nitric oxide on photosynthetic characteristics of tomato seedlings under NaCl stress. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1105-1109. (in Chinese)
[42]   VAN K O, SNEL J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 1990, 25: 147-150.
[43] KALAJI M H, GOLTSEV V N, ?UK-GOLASZEWSKA K, ZIVCAK M, BRESTIC M. Chlorophyll fluorescence: Understanding crop performance-Basics and applications. CRC Press, 2017, 11: 222.
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[3] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[4] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[5] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[6] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[7] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[10] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[11] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[12] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[13] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[14] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[15] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!