Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 179-192.doi: 10.3864/j.issn.0578-1752.2023.01.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses

WANG YiDan1(),YANG FaLong1,CHEN DiShi2,XIANG Hua1,REN YuPeng1()   

  1. 1. College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041
    2. Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu 610041
  • Received:2021-09-22 Accepted:2022-01-23 Online:2023-01-01 Published:2023-01-17
  • Contact: YuPeng REN E-mail:872502834@qq.com;renyupeng1986@163.com

Abstract:

【Objective】 The aim of this study was to establish a one-step multiplex real-time RT-PCR method to simultaneously detect and quantify five swine diarrhea related viruses, PEDV, GARV, PDCoV, SADS-CoV and PTV, so as to provide an efficient and sensitive tool for rapid diagnosis and epidemiological investigation of porcine diarrhea. 【Method】The ORF3 gene sequences of several genotypes of PEDV were analyzed, and then the primers and probes were designed for detection of PEDV field strains by referring to the ORF3 genes, which contained deletion mutations in attenuated strains. The 5'-end conserved region of NSP5 genes of GARV G3, G4, G5 and G9 strains were analyzed for design of probes and primers. The specific primers and probes targeting to the conserved regions of PDCoV M, PTV 5'UTR and SADS-CoV N genes were designed for detection of the pathogens. The ROC curves were completed by referring to parameters that were set in RStudio. The specificity value, sensitivity value, and areas under the curves (AUC) and Youden value were calculated according to ROC curves to determine the cut-off CT value.The amplified fragments were cloned into pEASY-T1 vector. The standards prepared through in vitro transcription were named as cRNA-PEDV, cRNA-GARV, cRNA-PDCoV, cRNA-PTV and cRNA-SADS-CoV. The sensitivity, specificity and repeatability of one-step multiplex real-time RT-PCR were evaluated. Coincidence rate between this and another similar method were compared in the detection of clinical samples. 【Result】 Both the annealing temperature and optimal concentrations of primers and probes were obtained for detection of the five pathogens. According to the ROC curve, the CT cut off values for detection of PEDV, GARV, PDCoV, PTV, and SADS-CoV were set as 35.78, 34.25, 34.98, 34.60, and 35.70, respectively. The detection sensitivity of this method for the five pathogens could reach 1×102 copies/μL. The standard curves had a good linear relationship and the amplification efficiency was between 96.3% and 104%. The established method could not detect the PEDV vaccine strains and other swine infecting viruses and bacteria including TGEV, CSFV, PRV, PRRSV, S.choleraesuis, P.multocida, E.coli, S.suis and S.aureus. The repeatability test showed the range of intra-assay and inter-assay coefficients of variability: 0.22% to 3.08% and 0.89% to 4.0%, respectively. The detection coincidence rates of the established detection method and another similar method for the five pathogens in 242 clinical samples were 97.9%, 98.8%, 100%, 98.3% and 100% for PEDV, GARV, PDCoV, PTV and SADS-CoV, respectively. The Kappa values were all higher than 0.9. The method had advantage over a commercial diagnostic kit for detection of PEDV wild strains in accuracy. Detection results with clinical samples showed that positive rates of PEDV, GARV, PDCoV and PTV was 10.7% (26/242), 13.6% (33/242), 18.2% (44/242) and 14.5% (35/242), respectively, demonstrating the prevalence state of the four pathogens in Sichuan province in the years. SADS-CoV was not detectable in any areas, but the phenomenon of coinfection with different diarrhea causing viruses was common. Therefore, it was necessary to strengthen the surveillance of several porcine diarrhea viruses in Sichuan province for preventive control. 【Conclusion】In this study, a one-step multiplex real-time RT-PCR was established for simultaneous detection of PEDV wild strains, PDCoV, SADS-COV and GARV, PTV multiple genotypes, which provided an efficient and sensitive tool for the differential diagnosis and epidemiological investigation of swine diarrhea disease.

Key words: one-step multiple TaqMan real-time RT-PCR, swine diarrhea related virus, differential diagnosis, cut off value

Table 1

Bacterial and viral strains and clinical samples"

病原 Pathogen 样本类型 Sample type 来源 Source 1) 总数 Total
PEDV SCXM 核酸 Nucleic acid a 1
PEDV SWUN-D1 核酸 Nucleic acid a 1
PEDV SWUN-D2 核酸 Nucleic acid a 1
GARV G3 核酸 Nucleic acid a 1
GARV G5 核酸 Nucleic acid a 1
GARV G9 核酸 Nucleic acid a 1
PDCoV 核酸 Nucleic acid a 1
PTV 3 核酸 Nucleic acid a 1
PTV 6 核酸 Nucleic acid a 1
PEDV CV777 疫苗株 Vaccine strains b 1
PEDV AJ1102 疫苗株 Vaccine strains c 1
TGEV 核酸 Nucleic acid a 1
CSFV 核酸 Nucleic acid a 1
PRV 核酸 Nucleic acid d 1
PRRSV SCMY2018 分离株 Isolated strains d 1
S.choleraesuis SWUN-A6 分离株 Isolated strains a 1
P.multocida SWUN-MY 分离株 Isolated strains a 1
E.coli SC-09 分离株 Isolated strains a 1
S.suis SWUN-10 分离株 Isolated strains a 1
S.aureus SWUN-C2 分离株 Isolated strains a 1

Table 2

Primers for amplifying the target gene of GARV, PEDV, PDCOV, PTV and SADS-CoV"

病原
Pathogen
基因
Gene
引物序列
Primer sequence (5′-3′)
片段长度
Size (bp)
PEDV
ORF3
F: TGTTGTAGGGGTCCTAGACTTC 887
R: CTATACAAACGCCCTATAGGTG
GARV NSP5 F: ATGTCTCTCAGCATTGACGTA 630
R: GAGTGGGGAGCTCCCTAGTGT
PDCoV M F: ATGTCTGACGCAGAAGAGTG 974
R: CTACTGGTGCGGCCATGATAG
PTV 5'UTR F: ACTCGTTACGCAAGTTTTGG 348
R: CAAAGTACAGACGGTCAGCC
SADS-CoV N F: ATGGCCACTGTTAATTGGG 1113
R: ATCCACCATCTCAACCTCC

Table 3

Primers and probes designed for real-time RT-qPCR"

病原
Pathogen
基因
Gene
引物及探针序列
Primer and probe (5′-3′)
片段长度
Size (bp)
PEDV ORF3 F: TTTAAAGCGTCTTCTTTGMG 177
R: ATTTTTATAGCGCCAKGAG
P: VIC- CTGTCRTYKTTCTTTATCGCCCACTT-BHQ1
GARV NSP5 F: GGTAGGAGTGAACAGTACA 140
R: GYGTYGATGAATCCATAG
P: ROX-TTAAGACAAATGCAGAYGCTGGCG-BHQ2
PDCoV M F: CACATGGCTCCAATTCTC 198
R: TGGATCGCTGTTTGATTC
P: FAM-TCGTTAAGCATGGCAAGCTCAAGCT-BHQ1
PTV 5'UTR F: AAYTGTCACCRGGTAYTG 151
R: TGYATTCCSATACAGGAA
P: CY5-AGAAGAGCAAGTACTCCTGACTGGG-BHQ2
SADS-CoV N F: AATGAAGGTCCCCAAGAC 166
R: AGGATTTTGGGAAACTGG
P: Cy5.5-ATGCTGATGCCCCAGTGTTCACT- BHQ3

Fig. 1

The ROC curves of one-step multiple TaqMan real-time RT-PCR a. PEDV; b. GARV; c. PDCoV; d. PTV; e. SADS-CoV"

Fig. 2

The standard curves of one-step multiple TaqMan real-time RT-PCR a. PEDV;b. GARV;c. PDCoV;d. PTV;e. SADS-CoV"

Fig. 3

The sensitivity amplification curve of one-step multiple TaqMan real-time RT-PCR a. PEDV; b. GARV; c. PDCoV; d. PTV; e. SADS-CoV"

Table 4

Sensitivity of one-step multiple TaqMan real-time RT-PCR"

浓度
Concentration (copies/μL)
CT值 Cycle threshold value
PEDV GARV PDCoV PTV SADS-CoV
1×108 15.24 15.13 15.43 12.83 14.54
1×107 20.36 18.01 17.73 15.73 17.55
1×106 22.8 21.49 22.23 18.75 21.01
1×105 26.52 24.54 25.1 22.31 24.42
1×104 29.52 27.74 28.44 25.87 27.68
1×103 32.55 31.91 31.01 28.88 31.31
1×102 34.84 34.19 34.91 32.82 35.00
1×101 None None None None 37.42

Table 5

The repeatability of one-step multiple TaqMan real-time RT-PCR"

病原
Pathogen
稀释倍数
Dilution (copies/μL)
组内 Intra-assay 组间 Inter-assay
Ct值Ct value (mean ± SD) 变异系数 CV (%) Ct值Ct value (mean ± SD) 变异系数 CV (%)
GARV 1×108 15.04±0.18 1.22% 15.27±0.09 1.99%
1×105 24.58±0.05 0.22% 24.29±0.047 0.89%
1×102 32.59±0.75 2.31% 33.03±0.099 0.95%
PEDV 1×108 15.33±0.41 2.64% 15.76±0.11 2.07%
1×105 25.44±0.27 1.06% 25.53±0.19 1.69%
1×102 33.93±0.75 2.20% 34.14±0.03 0.47%
PDCoV 1×108 14.38±0.35 2.46% 14.65±0.29 3.68%
1×105 22.43±0.46 2.04% 23.46±0.88 4.00%
1×102 35.03±0.68 1.95% 34.82±0.13 1.03%
PTV 1×108 12.97±0.22 1.71% 13.19±0.23 3.66%
1×105 23.3±0.41 1.76% 23.05±0.04 0.91%
1×102 30.01±0.13 0.42% 31.51±1.43 3.80%
SADS-CoV 1×108 14.98±0.46 3.08% 14.99±0.07 1.78%
1×105 24.82±0.29 1.16% 25.06±0.037 0.77%
1×102 35.34±0.45 1.28% 35.68±0.13 1.00%

Fig. 4

The specificity of one-step multiple TaqMan real-time RT-PCR 1. PEDV SCXM Strain; 2. PEDV SWUN-D1 Strain; 3. PDCoV; 4. PEDV SWUN-D2 Strain; 5-7. GARV (G3, G5, G9 type); 8. cRNA-SADS-CoV; 9-10. PTV (3, 6 type); 11-30. PEDV (CV777 Strain, AJ1102 Strain), TGEV, CSFV, PRV, PRRSV, S.choleraesuis, P.multocida, E.coli, S.suis, S.aureus, healthy pigs, ddH2O"

Table 6

The agreement between one-step multiple TaqMan real-time RT-PCR and other methods in analysis of known samples."

其他同类方法 The reference detection method 符合率
Coincidence rate (%)
Positive Negative Total
一步法多重 TaqMan 荧光定量RT-PCR
One-step multiple TaqMan real-time RT-PCR for simultaneous detection of five swine diarrhea viruses
PEDV Positive 26 0 26 97.9% (k=0.9)
Negative 5 211 216
Totals 31 211 242
GARV Positive 30 3 33 98.8% (k =0.95)
Negative 0 209 209
Totals 30 212 242
PDCoV Positive 44 0 44 100% (k =1)
Negative 0 198 198
Totals 44 198 242
PTV Positive 31 4 35 98.3% (k =0.93)
Negative 0 207 207
Totals 31 211 242
SADS-CoV Positive 0 0 0 100% (k =1)
Negative 0 0 242
Totals 0 242 242

Table 7

Positive rates detected from the clinical samples"

样本来源
Source
五种猪腹泻病毒检出率 The detection rates of five kinds of porcine diarrhea virus
PEDV GARV PDCoV PTV SADS-CoV
乐至 Lezhi 30% (3/10) 0% (0/10) 40% (4/10) 10% (1/10) 0% (0/10)
雅安 Yaan 19% (4/21) 14.3% (3/21) 0% (0/21) 0% (0/21) 0% (0/21)
恩阳 Enyang 0% (0/10) 30% (3/10) 0% (0/10) 20% (2/10) 0% (0/10)
高坪 Gaoping 0% (0/10) 40% (4/10) 30% (3/10) 30% (3/10) 0% (0/10)
绵阳 Mianyang 9.9% (19/191) 12% (23/191) 19.4% (37/191) 15.2% (29/191) 0% (0/191)
总计 Total 10.7% (26/242) 13.6% (33/242) 18.2% (44/242) 14.5% (35/242) 0% (0/242)
[1] SU M J, LI C Q, QI S S, YANG D, JIANG N, YIN B S, GUO D H, KONG F Z, YUAN D W, FENG L, SUN D B. A molecular epidemiological investigation of PEDV in China: Characterization of co-infection and genetic diversity of S1-based genes. Transboundary and Emerging Diseases, 2020, 67(3): 1129-1140. doi:10.1111/tbed.13439.
doi: 10.1111/tbed.13439 pmid: 31785090
[2] SAENG-CHUTO K, MADAPONG A, KAEOKET K, PIÑEYRO P E, TANTITUVANONT A, NILUBOL D. Coinfection of porcine deltacoronavirus and porcine epidemic diarrhea virus increases disease severity, cell trophism and earlier upregulation of IFN-α and IL12. Scientific Reports, 2021, 11: 3040. doi:10.1038/s41598-021-82738-8.
doi: 10.1038/s41598-021-82738-8
[3] SUN W C, WANG L, HUANG H X, WANG W, CAO L, ZHANG J Y, ZHENG M, LU H J. Genetic characterization and phylogenetic analysis of porcine deltacoronavirus (PDCoV) in Shandong Province, China. Virus Research, 2020, 278: 197869. doi:10.1016/j.virusres.2020.197869.
doi: 10.1016/j.virusres.2020.197869
[4] ZHANG H L, LIANG Q Q, LI B X, CUI X G, WEI X L, DING Q W, WANG Y B, HU H. Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan Province, China. Preventive Veterinary Medicine, 2019, 166: 8-15. doi:10.1016/j.prevetmed.2019.02.017.
doi: S0167-5877(18)30695-0 pmid: 30935509
[5] MAI K, FENG J, CHEN G, LI D, ZHOU L, BAI Y, WU Q, MA J. The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China. Transboundary and Emerging Diseases, 2018, 65(1): 166-173. doi:10.1111/tbed.12644.
doi: 10.1111/tbed.12644 pmid: 28345292
[6] 严瑾, 施开创, 黎宗强, 尹彦文, 陆文俊, 屈素洁. 2017—2019年猪德尔塔冠状病毒广西流行毒株遗传多样性分析. 中国兽医科学, 2020, 50(9): 1147-1158. doi:10.16656/j.issn.1673-4696.2020.0163.
doi: 10.16656/j.issn.1673-4696.2020.0163
YAN J, SHI K C, LI Z Q, YIN Y W, LU W J, QU S J. Genetic diversity of porcine deltacoronavirus in Guangxi Province from 2017 to 2019. Chinese Veterinary Science, 2020, 50(9): 1147-1158. doi:10.16656/j.issn.1673-4696.2020.0163. (in Chinese)
doi: 10.16656/j.issn.1673-4696.2020.0163
[7] FENG Y, XU Z W, ZHU L. Prevalence and phylogenetic analysis of porcine deltacoronavirus in Sichuan Province, China. Archives of Virology, 2020, 165(12): 2883-2889. doi:10.1007/s00705-020-04796-z.
doi: 10.1007/s00705-020-04796-z
[8] YANG T T, LI R C, YAO Q, ZHOU X F, LIAO H Y, GE M, YU X L. Prevalence of Porcine teschovirus genotypes in Hunan, China: Identification of novel viral species and genotypes. The Journal of General Virology, 2018, 99(9): 1261-1267. doi:10.1099/jgv.0.001129.
doi: 10.1099/jgv.0.001129
[9] 王丽瑄, 周群, 付能胜, 曹慧, 何欣怡, 方鹏飞, 胡承哲, 张斌. 藏猪源捷申病毒的检测和遗传演化分析. 畜牧兽医学报, 2021, 52(1): 185-194.
WANG L X, ZHOU Q, FU N S, CAO H, HE X Y, FANG P F, HU C Z, ZHANG B. Detection and genetic evolution of Teschovirus of Tibetan pig origin in Sichuan. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 185-194. (in Chinese)
[10] MATIAS FERREYRA F, ARRUDA B, STEVENSON G, SCHWARTZ K, MADSON D, YOON K J, ZHANG J Q, PIÑEYRO P, CHEN Q, ARRUDA P. Development of polioencephalomyelitis in cesarean- derived colostrum-deprived pigs following experimental inoculation with either Teschovirus A serotype 2 or serotype 11. Viruses, 2017, 9(7): 179. doi:10.3390/v9070179.
doi: 10.3390/v9070179
[11] 王玉倩, 薛秀花. 实时荧光定量PCR技术研究进展及其应用. 生物学通报, 2016, 51(2): 1-6.
WANG Y Q, XUE X H. The application and development of real-time fluorescent quantitative PCR. Microbiology China, 2016, 51(2): 1-6. (in Chinese)
[12] 罗尚星, 范京惠, 刘宝京, 师乾凯, 侯林杉, 左玉柱. 猪丁型冠状病毒与猪流行性腹泻病毒双重实时荧光定量RT-PCR方法的建立和初步应用. 畜牧兽医学报, 2018, 49(4): 852-858.
LUO S X, FAN J H, LIU B J, SHI Q K, HOU L S, ZUO Y Z. Establishment and application of the real-time reverse transcription quantitative PCR assay for porcine epidemic diarrhea virus and porcine Deltacoronavirus. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(4): 852-858. (in Chinese)
[13] 杨峰, 杨猛超, 周宏超, 许信刚, 张为民, 张琪. 猪流行性腹泻病毒实时荧光定量RT-PCR检测方法的建立及初步应用. 动物医学进展, 2018, 39(7): 1-5. doi:10.16437/j.cnki.1007-5038.2018.07.001.
doi: 10.16437/j.cnki.1007-5038.2018.07.001
YANG F, YANG M C, ZHOU H C, XU X G, ZHANG W M, ZHANG Q. Establishment and preliminary application of real-time qPCR method for detection of PEDV. Progress in Veterinary Medicine, 2018, 39(7): 1-5. doi:10.16437/j.cnki.1007-5038.2018.07.001. (in Chinese)
doi: 10.16437/j.cnki.1007-5038.2018.07.001
[14] PARK S J, MOON H J, LUO Y Z, KIM H K, KIM E M, YANG J S, SONG D S, KANG B K, LEE C S, PARK B K. Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes, 2008, 36(1): 95-104. doi:10.1007/s11262-007-0164-2.
doi: 10.1007/s11262-007-0164-2
[15] 修金生, 陈小权, 王斌, 李涛. 基于SYBR Ⅰ实时荧光定量PCR对猪流行性腹泻病毒野毒和疫苗弱毒鉴别诊断方法的建立. 中国动物传染病学报, 2012, 20(5): 16-21.
XIU J S, CHEN X Q, WANG B, LI T. Development of sybr greenⅰbased real-time RT-PCR for differentiation of wild type porcine epidemic diarrhea virus infected and vaccinated pigs. Chinese Journal of Animal Infectious Diseases, 2012, 20(5): 16-21. (in Chinese)
[16] 宋予震, 董青, 梁中涛, 霍军. PEDV疫苗株与野毒株RT-PCR鉴别诊断方法的建立及临床应用. 中国兽医杂志, 2016, 52(10): 6-8, 11.
SONG Y Z, DONG Q, LIANG Z T, HUO J. Development and clinical application of RT-PCR differential diagnosis method for vaccine strains and wild strains of PEDV. Chinese Journal of Veterinary Medicine, 2016, 52(10): 6-8, 11. (in Chinese)
[17] 周群, 陈小飞, 阚蕊慈, 李玉, 曹慧, 彭艳伶, 张斌. 2017—2019年四川地区猪A群轮状病毒的分子流行病学调查. 中国农业科学, 2021, 54(5): 1063-1072.
ZHOU Q, CHEN X F, KAN R C, LI Y, CAO H, PENG Y L, ZHANG B. Molecular epidemiological investigation of porcine group A Rotavirus in Sichuan from 2017 to 2019. Scientia Agricultura Sinica, 2021, 54(5): 1063-1072. (in Chinese)
[18] 苗艳, 朱庆贺, 陈亮, 李丹, 李阳, 兰世捷, 徐馨, 史同瑞. 猪轮状病毒的分子流行病学研究进展. 动物医学进展, 2020, 41(1): 93-97. doi:10.16437/j.cnki.1007-5038.2020.01.013.
doi: 10.16437/j.cnki.1007-5038.2020.01.013
MIAO Y, ZHU Q H, CHEN L, LI D, LI Y, LAN S J, XU X, SHI T R. Progress on molecular epidemiology of porcine Rotavirus. Progress in Veterinary Medicine, 2020, 41(1): 93-97. doi:10.16437/j.cnki.1007-5038.2020.01.013. (in Chinese)
doi: 10.16437/j.cnki.1007-5038.2020.01.013
[19] ZHOU L, LI Q N, SU J N, CHEN G H, WU Z X, LUO Y, WU R T, SUN Y, LAN T, MA J Y. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transboundary and Emerging Diseases, 2019, 66(5): 2180-2183. doi:10.1111/tbed.13270.
doi: 10.1111/tbed.13270 pmid: 31207129
[20] CANO-GÓMEZ C, BUITRAGO D, FERNÁNDEZ-PINERO J, FERNÁNDEZ-PACHECO P, MANSILLA C, AGÜERO M, JIMÉNEZ-CLAVERO M A. Evaluation of a fluorogenic real-time reverse transcription-polymerase chain reaction method for the specific detection of all known serotypes of porcine teschoviruses. Journal of Virological Methods, 2011, 176(1/2): 131-134. doi:10.1016/j.jviromet.2011.05.035.
doi: 10.1016/j.jviromet.2011.05.035
[21] ZHOU L, SUN Y, WU J L, MAI K J, CHEN G H, WU Z X, BAI Y, LI D, ZHOU Z H, CHENG J, WU R T, ZHANG X B, MA J Y. Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs. Journal of Virological Methods, 2018, 255: 66-70. doi:10.1016/j.jviromet.2018.02.002.
doi: S0166-0934(17)30719-X pmid: 29427670
[22] SU Y F, LIU Y C, CHEN Y M, XING G X, HAO H F, WEI Q, LIANG Y, XIE W T, LI D L, HUANG H M, DENG R G, ZHANG G P. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Molecular and Cellular Probes, 2018, 37: 6-11. doi:10.1016/j.mcp.2017.10.003.
doi: S0890-8508(17)30102-0 pmid: 29104088
[23] ZHOU X R, ZHANG T S, SONG D P, HUANG T, PENG Q, CHEN Y J, LI A Q, ZHANG F F, WU Q, YE Y, TANG Y X. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Molecular and Cellular Probes, 2017, 33: 36-41. doi:10.1016/j.mcp.2017.02.002.
doi: S0890-8508(17)30014-2 pmid: 28188840
[24] 于新友, 李天芝. 猪瘟病毒和猪繁殖与呼吸综合征病毒一步法双重荧光RT-PCR检测方法的建立及应用. 中国动物检疫, 2018, 35(4): 88-91.
YU X Y, LI T Z. Establishment and application of an one-step fluorescent RT-PCR method for dection of CSFV and PRRSV. China Animal Health Inspection, 2018, 35(4): 88-91. (in Chinese)
[25] 江珊, 李富强, 李秀丽, 王利丽, 郑丽, 张莉, 路超, 鄢明华. 猪德尔塔冠状病毒TaqMan荧光定量PCR检测方法的建立及应用. 动物医学进展, 2019, 40(10): 10-17. doi:10.16437/j.cnki.1007-5038.2019.10.003.
doi: 10.16437/j.cnki.1007-5038.2019.10.003
JIANG S, LI F Q, LI X L, WANG L L, ZHENG L, ZHANG L, LU C, YAN M H. Establishment and application of TaqMan fluorescence quantitative PCR for detecting porcine Deltacoronavirus. Progress in Veterinary Medicine, 2019, 40(10): 10-17. doi:10.16437/j.cnki.1007-5038.2019.10.003. (in Chinese)
doi: 10.16437/j.cnki.1007-5038.2019.10.003
[26] BUSTIN S A, BENES V, GARSON J A, HELLEMANS J, HUGGETT J, KUBISTA M, MUELLER R, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622. doi:10.1373/clinchem.2008.112797.
doi: 10.1373/clinchem.2008.112797 pmid: 19246619
[27] LAAMIRI N, AOUINI R, MARNISSI B, GHRAM A, HMILA I. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology, 2018, 515: 29-37. doi:10.1016/j.virol.2017.11.021.
doi: S0042-6822(17)30400-2 pmid: 29223788
[28] 侯伟, 李连谦, 武文龙, 肖博文. 未成熟粒细胞百分率在重症急性胰腺炎早期评估中的临床价值. 中国普通外科杂志, 2020, 29(3): 341-347. doi:10.7659/j.issn.1005-6947.2020.03.012.
doi: 10.7659/j.issn.1005-6947.2020.03.012
HOU W, LI L Q, WU W L, XIAO B W. Clinical value of immature granulocyte percentage in early evaluation of severe acute pancreatitis. Chinese Journal of General Surgery, 2020, 29(3): 341-347. doi:10.7659/j.issn.1005-6947.2020.03.012. (in Chinese)
doi: 10.7659/j.issn.1005-6947.2020.03.012
[1] WU Yu-Lu-1, CHENG Qun-1, YU Ling-Xue-1, HOU Yi-Xuan-2, WANG Kang-1, LIU Guang-Qing-1, TONG Guang-Zhi-1, ZHOU Yan-Jun-1. Development of a RT-PCR Method for Differentiation of the Wild-Type PEDVs and the Attenuated PEDVs [J]. Scientia Agricultura Sinica, 2013, 46(20): 4370-4377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!