Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (9): 1831-1845.doi: 10.3864/j.issn.0578-1752.2022.09.012

• HORTICULTURE • Previous Articles     Next Articles

The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1

LIN XinYing1(),WANG PengJie1,YANG RuXing2,*(),ZHENG YuCheng1,CHEN XiaoMin1,ZHANG Lei2,SHAO ShuXian1,YE NaiXing1,*()   

  1. 1College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science at Universities in Fujian, Fuzhou 350002
    2Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013
  • Received:2021-09-02 Revised:2021-11-01 Online:2022-05-01 Published:2022-05-19
  • Contact: RuXing YANG,NaiXing YE E-mail:12565769@qq.com;ynxtea@126.com;649745878@qq.com

Abstract:

【Objective】 The aim of this study was to analyze metabolic and transcriptional mechanism of etiolated variation in tea plant, and to explore the albino mutation of a new homotheanine tea cultivar Fuhuang 1 and its formation mechanism of homotheanine. 【Method】 The experimental materials were Fuan Dabaicha and Fuhuang 1. The combined analysis of ultramicroelectron microscopy, widely targeted metabolism, targeted metabolomics and transcriptomics was used to clarify the pigments, metabolism and transcriptome data related to the albino tea.【Result】The results of ultrastructure showed that the chloroplast thylakoids of Fuhuang 1 was filamentous, with irregular arrangement of basal granule lamellae and many abnormal vesicles. Chlorophyll a and chlorophyll b content, chlorophyll a/b ratio, SGR gene expression and light-harvesting chlorophyll a/b protein (LHC) expression were significantly reduced in yellow leaves. Although the total content of carotenoids did not change significantly, the content of each component changed significantly. Zeaxanthin was the only component with significant increase, and the expression of its regulatory gene VDE was significantly up-regulated, and the content of other components decreased. Compared with Fuan Dabaicha, 680 differentially expressed genes (DEGs) and 57 significantly changed metabolites (SCMs) were identified in Fuhuang 1. KEGG enrichment analysis showed that SCMs and DEGs were significantly enriched in pathways related to amino acid biosynthesis, glutathione metabolism and TCA cycle. In addition, the pathways related to carbon and nitrogen metabolism were also activated. A total of 19 free amino acids were identified by targeted determination. The free amino acid content of Fuhuang 1 was 97.13 mg∙g-1, which was significantly higher than that of Fuan Dabaicha. Theanine content was 66.90 mg∙g-1, accounting for 68.89% of amino acids, while the content of arginine was 8.46 mg∙g-1, which was 56.4 times as more as that of Fuan Dabaicha. The expression levels of GOGAT and GLU, which regulated amino acid synthesis, were up-regulated in Fuhuang 1 by 1.17 and 3.17 times higher than that in Fuan Dabaicha. 【Conclusion】 The leaf color of Fuhuang 1 was mainly influenced by chlorophyll, carotenoids and flavonoids. The combined action of SGR and the four LHCs might also affect chloroplast biogenesis to regulate leaf color. The content of theanine in Fuhuang 1 was significantly higher than that in Fuan Dabaicha. The main reason was that the up-regulation of ubiquitination-related protein hydrolase activity and the enhanced protein degradation ability. The biosynthesis of chlorophyll and other nitrogen-containing molecules was reduced, the carbon skeleton in yellow leaves was lacking, amino and nitrogen resources were stored more effectively. The activation of nitrogen metabolism associated with amino acid synthesis led to the accumulation of glutamate, one of the precursors of theanine synthesis. Theanine accumulated significantly in yellow leaves.

Key words: tea plant, Fuhuang 1(Camellia sinensis), albino, metabolomics, transcriptomics, omics technology

Supplementary table 1

Primer sequences"

Fig. 1

The phenotypic characteristics and leaf cell ultrastructure of Fuan Dabaicha and Fuhuang 1 a1-a4: The phenotype and ultrastructure of Fuan Dabaicha; b1-b4: The phenotype and ultrastructure of Fuhuang 1; SG: Starch granules; Ch: Chloroplast; CW: Cell wall; Th: Thylakoid; Gr: Grana; Va: Vacuole; OG: Osmophilic granule"

Supplementary table 2

Fuan Dabaicha and Fuhuang 1 significantly different metabolites"

Supplementary fig. 1

Multivariate statistical analysis of metabolites from Fuan Dabaicha and Fuhuang 1 a: PCA; b: OPLS-DA."

Fig. 2

Widely targeted metabolism analysis of metabolites from Fuan Dabaicha and Fuhuang 1"

Fig. 3

SCMs KEGG enrichment analysis of Fuan Dabaicha and Fuhuang 1"

Table 1

The quality of the transcriptome data of Fuan Dabaicha and Fuhuang 1"

样本名称
Sample
原始序列
Raw read
过滤序列
Clean read
过滤碱基
Clean base (G)
整体测序错误率
Error rate (%)
Q20
(%)
Q30
(%)
GC含量
GC content (%)
GF-1 47303628 46072126 6.91 0.03 96.65 90.46 44.83
GF-2 47291032 46122320 6.92 0.03 96.37 89.87 44.58
GF-3 57641310 56256308 8.44 0.03 96.27 89.63 44.70
YF-1 46752324 45637674 6.85 0.03 96.47 90.07 44.41
YF-2 45390834 44391162 6.66 0.03 95.62 88.54 44.39
YF-3 46546464 45474928 6.82 0.03 96.54 90.23 44.64
合计 Total 290925592 283954518 42.6

Fig. 4

KEGG enrichment analysis of DEGs"

Fig. 5

Verification of expression levels of 11 differentially expressed genes"

Supplementary table 3

Changes of genes related to chlorophyll synthesis pathway in Fuan Dabaicha and Fuhuang 1"

Supplementary table 4

Changes of carbon and nitrogen related metabolites of Fuan Dabaicha and Fuhuang 1"

Fig. 6

The pigment contents of Fuan Dabaicha and Fuhuang 1 A: Chlorophyll a, chlorophyll b, total chlorophyll content, chlorophyll a/b and total carotenoid content; B: The content of carotenoids. * indicate significant difference at the P<0.05 level"

Fig. 7

Pigment biosynthesis pathways and the expression levels of related DEGs in Fuan Dabaicha and Fuhuang 1 A: Chlorophyll biosynthesis pathways; B: Carotenoid biosynthesis pathways; C: Flavonoid biosynthesis pathways. Red represents up-regulated genes/metabolites, green represents down-regulated genes/metabolites. The heat map indicates the expression level of all DEGS related to the pathway, which is generated by log2 conversion from the average value calculated by three repeated samples. CAO: Chlorophyll a oxygenase; NOL: Chlorophyll b reductase; HCAR: 7-hydroxymethyl chlorophyll a reductase; DVR: Divinylchlorophyll a 8-vinyl reductase; POR: Protochlorophyll reductase; EARS: Glutamyl tRNA synthetase; SGR: Magnesium dehydrogenase; PSY: Octahydro lycopene synthase; PDS: Octahydro lycopene dehydrogenase; LCYE: ε-Lycopene cyclase; ZEP: Zeaxanthin cyclooxygenase; VDE: Violaxanthin de epoxidase; NCED: 9-cis-epoxy carotenoid dioxygenase; CHS: Chalcone synthase; CHI: Chalcone isomerase; F3H: Flavonoid 3 β-hydroxylase; F3′5′H: Flavonoid 3', 5'-hydroxylase; DFR: Dihydroflavanol 4-reductase; ANS: Anthocyanidin reductase. The same as below"

Fig. 8

Pathway related to photosynthetic protein and expression analysis of related DEGs in Fuan Dabaicha and Fuhuang 1 A: Photosynthesis-antenna proteins; B: Protein processing in endoplasmic reticulum. GlcI: Mannosyl oligosaccharide glucosidase; GlcII: Mannosyl oligosaccharide α-1, 3-glucosidase; Climp63: Cytoskeleton associated protein 4; CNX: Calnexin; ERP57: Protein disulfide isomerase A3; CRT: Calreticulin; UGGT: UDP glucose: glycoprotein glucosyltransferase; VIP36: Lectin, mannose binding 2; ERGL: Lectin, mannose binding 1; Sec: Regulatory element binding protein; Ero1: ERO1 α protein; PDIs:Protein disulfide isomerase; OS9: OS-9 protein; XTP3B: Protein disulfide isomerase A1; TRAP: Transposon associated protein subunit α; Bap31: B cell receptor associated protein 31; NEF: Heat shock protein 110; DOA1: Phospholipase A-2 activating protein; Otu1: Ubiquitin thioesterase; LHCA, LHCB: Chlorophyll a/b binding protein; Hsp20, Hsp40, Hsp70, Hsp90: Heat shock protein; sHSF: Heat shock transcription factor; Png1: Peptide-n4-(N-acetyl)-β-Glucosamine asparaginase; ERManI: Mannosyl oligosaccharide α-1, 2-mannosidase; SAR1: GTP binding protein; RAD23: Ultraviolet excision repair protein; SWP1, WBP1: Oligoglycan transferase; Ubx, APC3, PCHY1: Ubiquitin mediated proteolytic enzymes; UBE3: Ring type E3 ubiquitin transferase; UBP: Ubiquitin specific protease"

Table 2

Content of amino acids in Fuan Dabaicha and Fuhuang 1 (mg∙g-1)"

组分
Content
福安大白茶
Fuan Dabaicha
福黄1号
Fuhuang 1
组分
Content
福安大白茶
Fuan Dabaicha
福黄1号
Fuhuang 1
r-氨基丁酸 GABA 0.14±0.00a 0.39±0.37a 缬氨酸 Valine 0.14±0.00b 0.26±0.00a
丙氨酸 Alanine 0.47±0.00a 0.50±0.02a 异亮氨酸 Isoleucine 0.16±0.00b 0.44±0.14a
茶氨酸 Theanine 17.42±0.64b 66.90±2.69a 谷氨酸 Glutamate 2.47±0.15a 4.27±0.35a
脯氨酸 Proline 0.44±0.00b 1.36±0.00a 谷氨酰胺 Glutamine 0.91±0.89b 4.12±0.26a
赖氨酸 Lysine 0.20±0.01b 0.74±0.10a 精氨酸 Arginine 0.15±0.00b 8.46±1.48a
亮氨酸 Leucine 0.15±0.00a 0.46±0.28a 丝氨酸 Serine 1.06±0.06a 1.94±0.13a
天冬氨酸 Aspartate 0.21±0.41b 4.35±0.44a 天冬酰胺 Asparagine 0.15±0.00b 1.32±0.12a
酪氨酸 Tyrosine 0.22±0.00a 0.25±0.02a 组氨酸 Histidine 0.07±0.01b 0.26±0.02a
色氨酸 Tryptophan 0.22±0.01a 0.26±0.01a 甘氨酸 Glycine 0.06±0.01a 0.09±0.02a
苏氨酸 Threonine 0.19±0.01b 0.60±0.04a 总量 Total content 24.88±0.44b 97.13±5.42a

Fig. 9

Pathway related to carbon and nitrogen and expression analysis of related DEGs Glycolysis, Citrate cycle, Assimilatory nitrate reduction, Glutathione metabolism and Biosynthesis of amino acids. GPI: Glucose-6-phosphate isomerase; ALDO: Fructose diphosphate aldolase; PGAM: 2, 3-diphosphoglyceride dependent phosphoglycerate mutase; PPC: Phosphoenolpyruvate carboxykinase; ACLY: Adenosine triphosphate citrate synthase; ADH: Alcohol dehydrogenase; SDHC: Succinate dehydrogenase; glyA: Serine hydroxymethyltransferase; GOGAT: Glutamate synthase; GLU: Glutamine synthetase; GAD: Glutamate decarboxylase; DHAR: Phosphatidylcholine diacylglycerol choline phosphotransferase; PGD: 6-phosphogluconate dehydrogenase; NirA: Ferredoxin nitrite reductase; cynT: Carbon dioxide reversible enzyme"

[1] WANG P J, YU J X, JIN S, CHEN S, YUE C, WANG W L, GAO S L, CAO H L, ZHENG Y C, GU M Y, CHEN X J, SUN Y, GUO Y Q, YANG J F, ZHANG X T, YE N X. Genetic basis of high aroma and stress tolerance in the Oolong tea cultivar genome. Horticulture Research, 2021, 8(1): 107. doi: 10.1038/s41438-021-00542-x.
doi: 10.1038/s41438-021-00542-x
[2] PANG D D, LIU Y F, SUN Y N, TIAN Y P, CHEN L B. Menghai Huangye, a novel albino tea germplasm with high theanine content and a high catechin index. Plant Science, 2021, 311(prepublish): 110997. doi: 10.1016/J.PLANTSCI.2021.110997.
doi: 10.1016/J.PLANTSCI.2021.110997
[3] WANG P J, ZHENG Y C, GUO Y C, LIU B S, JIN S, LIU S Z, ZHAO F, CHEN X J, SUN Y, YANG J F, YE N X. Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of ‘Rougui’. Forests, 2020, 11(2): 229. doi: 10.3390/f11020229.
doi: 10.3390/f11020229
[4] FENG L, GAO M J, HOU R Y, HU X Y, ZHANG L, WAN X C, WEI S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry, 2014, 155: 98-104. doi: 10.1016/j.foodchem.2014.01.044.
doi: 10.1016/j.foodchem.2014.01.044
[5] JIANG X F, ZHAO H, GUO F, SHI X P, YE C, YANG P X, LIU B Y, NI D J. Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’. BMC Plant Biology, 2020, 20(1): 216. doi: 10.1186/s12870-020-02425-0.
doi: 10.1186/s12870-020-02425-0
[6] LI Q, HUANG J N, LIU S Q, LI J, YANG X H, LIU Y S, LIU Z H. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Science, 2011, 9(1): 44. doi: 10.1186/1477-5956-9-44.
doi: 10.1186/1477-5956-9-44
[7] LI N N, YANG Y P, YE J H, LU J L, ZHENG X Q, LIANG Y R. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant. Plant Growth Regulation, 2016, 78(2): 253-262. doi: 10.1007/s10725-015-0090-6.
doi: 10.1007/s10725-015-0090-6
[8] SONG L B, MA Q P, ZOU Z W, SUN K, YAO Y T, TAO J H, KALERI N A, LI X H. Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’. Frontiers in Plant Science, 2017, 8: 803. doi: 10.3389/fpls.2017.00803.
doi: 10.3389/fpls.2017.00803
[9] LI C F, YAO M Z, MA C L, MA J Q, JIN J Q, CHEN L. Differential metabolic profiles during the albescent stages of ‘Anji baicha’ (Camellia sinensis). PLoS ONE, 2017, 10(10): e0139996. doi: 10.1371/journal.pone.0139996.
doi: 10.1371/journal.pone.0139996
[10] MA Q P, LI H, ZOU Z W, ARKORFUL E, LV Q R, ZHOU Q Q, CHEN X, SUN K, LI X H. Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm ‘Huabai 1’. Horticulture Research, 2018, 5: 54. doi: 10.1038/s41438-018-0053-y.
doi: 10.1038/s41438-018-0053-y
[11] 疏再发, 王琳琳, 娄艳华, 吉庆勇, 邵静娜, 刘瑜, 何卫中. 白化茶树L-茶氨酸累积机理的研究进展. 食品研究与开发, 2020, 41(17): 217-224. doi: 10.12161/j.issn.1005-6521.2020.17.035.
doi: 10.12161/j.issn.1005-6521.2020.17.035
SHU Z F, WANG L L, LOU Y H, JI Q Y, SHAO J N, LIU Y, HE W Z. Research progress on accumulation mechanism of L-theanine in albino tea plant. Food Research and Development, 2020, 41(17): 217-224. doi: 10.12161/j.issn.1005-6521.2020.17.035. (in Chinese)
doi: 10.12161/j.issn.1005-6521.2020.17.035
[12] 方开星, 姜晓辉, 吴华玲. 茶树茶氨酸的代谢及其育种研究进展. 园艺学报, 2016, 43(9): 1791-1802. doi: 10.16420/j.issn.0513-353x.2016-0162.
doi: 10.16420/j.issn.0513-353x.2016-0162
FANG K X, JIANG X H, WU H L. Research progress on theanine metabolism and its content breeding in tea. Acta Horticulturae Sinica, 2016, 43(9): 1791-1802. doi: 10.16420/j.issn.0513-353x.2016-0162. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0162
[13] HAO X Y, ZHANG W F, LIU Y, ZHANG H J, REN H Z, CHEN Y, WANG L, ZENG J M, YANG Y J, WANG X C. Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant. Plant Physiology and Biochemistry, 2020, 146(C): 392-402. doi: 10.1016/j.plaphy.2019.11.036.
doi: 10.1016/j.plaphy.2019.11.036
[14] 林馨颖, 王鹏杰, 刘仕章, 郑玉成, 刘宝顺, 陈雪津, 叶乃兴. 茶树黄化种: 黄叶肉桂的类胡萝卜素组分分析. 茶叶学报, 2020, 61(3): 120-126. doi: 10.3969/j.issn.1007-4872.2020.03.004.
doi: 10.3969/j.issn.1007-4872.2020.03.004
LIN X Y, WANG P J, LIU S Z, ZHENG Y C, LIU B S, CHEN X J, YE N X. Carotenoids in Huangye Rougui tea plant. Tea Science and Technology, 2020, 61(3): 120-126. doi: 10.3969/j.issn.1007-4872.2020.03.004. (in Chinese)
doi: 10.3969/j.issn.1007-4872.2020.03.004
[15] 陈思肜, 赵峰, 王淑燕, 金珊, 周鹏, 危赛明, 叶乃兴. 基于AQC衍生和液质联用的茶叶游离氨基酸分析. 南方农业学报, 2019, 50(10): 2278-2285. doi: 10.3969/j.issn.2095-1191.2019.10.18.
doi: 10.3969/j.issn.2095-1191.2019.10.18
CHEN S R, ZHAO F, WANG S Y, JIN S, ZHOU P, WEI S M, YE N X. Analysis of free amino acids in tea based on AQC derivation with liquid chromatography-mass spectrometry. Journal of Southern Agriculture, 2019, 50(10): 2278-2285. doi: 10.3969/j.issn.2095-1191.2019.10.18. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2019.10.18
[16] ZHENG Y C, WANG P J, CHEN X J, YUE C, GUO Y C, YANG J F, SUN Y, YE N X. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry, 2021, 160: 27-36. doi: 10.1016/j.plaphy.2020.12.029.
doi: 10.1016/j.plaphy.2020.12.029
[17] LIN X Y, CHEN X J, WANG P J, ZHENG Y C, GUO Y C, HONG Y P, YANG R X, YE N X. Metabolite profiling in albino tea mutant Camellia sinensis ‘Fuyun 6’ using LC-ESI-MS/MS. Trees, 2022, 36(1): 261-272. doi: 10.1007/s00468-021-02203-x.
doi: 10.1007/s00468-021-02203-x
[18] ZHENG Y C, WANG P J, CHEN X J, SUN Y, YUE C, YE N X. Transcriptome and metabolite profiling reveal novel insights into volatile heterosis in the tea plant (Camellia sinensis). Molecules, 2019, 24(18): 3380. doi: 10.3390/molecules24183380.
doi: 10.3390/molecules24183380
[19] LOVE M I, WOLFGANG H, SIMON A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8
[20] YU G C, WANG L G, HAN Y Y, HE Q Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: a Journal of Integrative Biology, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118.
doi: 10.1089/omi.2011.0118
[21] 林馨颖, 王鹏杰, 陈雪津, 郭永春, 谷梦雅, 郑玉成, 叶乃兴. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析. 茶叶科学, 2021, 41(4): 482-496. doi: 10.13305/j.cnki.jts.2021.04.004.
doi: 10.13305/j.cnki.jts.2021.04.004
LIN X Y, WANG P J, CHEN X J, GUO Y C, GU M Y, ZHENG Y C, YE N X. Identification of LOX gene family in Camellia sinensis and expression analysis in the process of white tea withering. Journal of Tea Science, 2021, 41(4): 482-496. doi: 10.13305/j.cnki.jts.2021.04.004. (in Chinese)
doi: 10.13305/j.cnki.jts.2021.04.004
[22] 谷梦雅, 王鹏杰, 金珊, 陈思肜, 郑知临, 赵峰, 叶乃兴. 基于转录组分析不同强度红光对茶树苯丙烷类代谢的影响. 应用与环境生物学报, 2020, 27(6): 1636-1644. doi: 10.19675/j.cnki.1006-687x.2020.06047.
doi: 10.19675/j.cnki.1006-687x.2020.06047
GU M Y, WANG P J, JIN S, CHEN S R, ZHENG Z L, ZHAO F, YE N X. Effects of different red LED light intensities on phenylpropanoid metabolism of tea plants based on transcriptomics. Chinese Journal of Applied and Environmental Biology, 2020, 27(6): 1636-1644. doi: 10.19675/j.cnki.1006-687x.2020.06047. (in Chinese)
doi: 10.19675/j.cnki.1006-687x.2020.06047
[23] 郭效琼, 罗迪, 朱骞, 李伟, 陈丽娟, 李东宣. 水稻白化突变体遗传机理与发掘利用研究进展. 分子植物育种, 2021: 1-19.
GUO X Q, LUO D, ZHU Q, LI W, CHEN L J, LI D X. Research progresses on genetic mechanism and uilization of rice albino mutants. Molecular Plant Breeding, 2021: 1-19. (in Chinese)
[24] NOVER L, SCHARF K D. Heat stress proteins and transcription factors. Cellular and Molecular Life Sciences CMLS, 1997, 53(1): 80-103. doi: 10.1007/PL00000583.
doi: 10.1007/PL00000583
[25] 张向娜, 熊立瑰, 温贝贝, 王坤波, 刘仲华, 黄建安, 李娟. 茶树叶色变异研究进展. 植物生理学报, 2020, 56(4): 643-653. doi: 10.13592/j.cnki.ppj.2019.0378.
doi: 10.13592/j.cnki.ppj.2019.0378
ZHANG X N, XIONG L G, WEN B B, WANG K B, LIU Z H, HUANG J N, LI J. Advances in leaf color variation of tea plant (Camellia sinensis). Plant Physiology Journal, 2020, 56(4): 643-653. doi: 10.13592/j.cnki.ppj.2019.0378. (in Chinese)
doi: 10.13592/j.cnki.ppj.2019.0378
[26] LI C F, MA J Q, HUANG D J, MA C L, JIN J Q, YAO M Z, CHEN L. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry, 2018, 66(8): 2040-2048. doi: 10.1021/acs.jafc.7b05623.
doi: 10.1021/acs.jafc.7b05623
[27] WU Z M, ZHANG X, WANG J L, WAN J M. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52(2): 217-222. doi: 10.1007/s11099-014-0025-x.
doi: 10.1007/s11099-014-0025-x
[28] LI W X, YANG S B, LU Z G, HE Z C, YE Y L, ZHAO B B, WANG L, JIN B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research, 2018, 5(1): 12. doi: 10.1038/s41438-018-0015-4.
doi: 10.1038/s41438-018-0015-4
[29] PINCUS D. Regulation of Hsf1 and the heat shock response. Advances in Experimental Medicine and Biology, 2020, 1243: 41-50. doi: 10.1007/978-3-030-40204-4_3.
doi: 10.1007/978-3-030-40204-4_3
[30] TOONG L J, YI J S, MIN T W, JIH M S. Comparisons of flavonoids and anti-oxidative activities in seed coat, embryonic axis and cotyledon of black soybeans. Elsevier, 2010, 123(4): 1112-1114. doi: 10.1016/j.foodchem.2010.05.070.
doi: 10.1016/j.foodchem.2010.05.070
[31] IKARASHI N, TODA T, HATAKEYAMA Y, KUSUNOKI Y, KON R, MIZUKAMI N, KANEKO M, OGAWA S, SUGIYAMA K. Anti-hypertensive effects of Acacia polyphenol in spontaneously hypertensive rats. International Journal of Molecular Sciences, 2018, 19(3): 700. doi: 10.3390/ijms19030700.
doi: 10.3390/ijms19030700
[32] GLICKMAN M H, AARON C. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 2002, 82(2): 373-428. doi: 10.1152/physrev.00027.2001.
doi: 10.1152/physrev.00027.2001
[33] YUAN L, XIONG L G, DENG T T, WU Y, LI J, LIU S Q, HUANG J A, LIU Z H. Comparative profiling of gene expression in Camellia sinensis L. cultivar AnJiBaiCha leaves during periodic albinism. Gene, 2015, 561(1): 23-29. doi: 10.1016/j.gene.2015.01.007.
doi: 10.1016/j.gene.2015.01.007
[34] SATOU M, ENOKI H, OIKAWA A, OHTA D, SAITO K, HACHIYA T, SAKAKIBARA H, KUSANO M, FUKUSHIMA A, SAITO K, KOBAYASHI M, NAGATA N, MYOUGA F, SHINOZAKI K, MOTOHASHI R. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Molecular Biology, 2014, 85(4/5): 411-428. doi: 10.1007/s11103-014-0194-9.
doi: 10.1007/s11103-014-0194-9
[35] SAHINER N, SUNER S S, SAHINER M, SILAN C. Nitrogen and sulfur doped carbon dots from amino acids for potential biomedical applications. Journal of Fluorescence, 2019, 29(5): 1191-1200. doi: 10.1007/s10895-019-02431-y.
doi: 10.1007/s10895-019-02431-y
[36] RUAN J, HAERDT ER, GERENDAS J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea[Camellia sinensis (L.) O. Kuntze] plants. Plant Biology, 2010, 12(5): 724-734. doi: 10.1111/j.1438-8677.2009.00288.x.
doi: 10.1111/j.1438-8677.2009.00288.x.
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[5] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[6] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[7] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[8] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[9] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[10] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[11] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[12] XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
[13] LIU YuFei,JIN JiQiang,YAO MingZhe,CHEN Liang. Screening, Cloning and Functional Research of the Rare Allelic Variation of Caffeine Synthase Gene (TCS1g) in Tea Plants [J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783.
[14] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[15] FENG YiLu, FU XiaoBin, WU Fan, CUI HongChun, LI HongLiang. Molecular Cloning, Prokaryotic Expression and Binding Functions of Pheromone Binding Protein 2 (PBP2) in the Ectropis obliqua [J]. Scientia Agricultura Sinica, 2017, 50(3): 504-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!