Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (2): 205-215.doi: 10.3864/j.issn.0578-1752.2017.02.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

QTL Mapping of Protein and Related Functional Components Content in Barley Grains

YANG XiaoMeng1,2,3, DU Juan1,3, ZENG YaWen1,3, PU XiaoYing1,3, YANG ShuMing1,3 , YANG Tao1,3, WANG LuXiang4,YANG JiaZhen1,3   

  1. 1Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223; 2College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201; 3Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650223; 4Institute of Quality Standards and Testing Technology , Yunnan Academy of Agricultural Sciences, Kunming 650223
  • Received:2016-07-11 Online:2017-01-16 Published:2017-01-16

Abstract: 【Objective】The objective of this study is to identify the QTLs controlling protein content, total flavonoids content, gamma-aminobutyric acid (GABA) content in barley grains and analyze their correlation, which could be a theoretical basis for genetic modification, gene cloning and molecular assisted breeding of the functional barley. 【Method】Based on two-year experiment data, a barley SSR genetic linkage map constructed by a total of 193 RIL population derived from the cross between Ziguangmangluoerleng (female parent) and Schooner (male parent) and the Inclusive Composite Interval Mapping(ICIM) method was used to identify the QTLs of protein, total flavonoids and GABA content. The correlations among the contents of three components were also analyzed. 【Result】 The two parents and RIL population have significant differences in protein, total flavonoids, and GABA content, showed continuous variation and normal distribution, which are suitable for QTL mapping. The map covered 2224.29cM with a mean density of 16.48cM per locus, including 7 linkage groups and 135 marker loci. A total of 20 QTLs for protein content, total flavonoids content, GABA content were detected. Nine QTL for protein content were localized on chromosomes 1H, 2H, 4H, 6H and 7H. It explained phenotypic variation range from 4.11% to 18.86%, 3 major QTL were localized on 6H and 7H, which explained 13.30%, 15.45% and 18.86% phenotypic variance. Two of the same QTL loci were found that localized on 4H BMAG0740-BMAG0808 and 6H Ebmac0806-GBM1270 based on two-year experiment. Seven QTL for total flavonoids content were localized on chromosomes 2H, 5H, 6H and 7H. It explained phenotypic variation range from 6.06% to 29.01%, 5 major QTL were localized on 2H, 6H and 7H, which explained 10.38%, 15.27%, 17.55%, 24.17% and 29.01% phenotypic variance. One of the same QTL loci was found that localized on 7H EBmatc0016-Bmag0206 based on two-year experiment. Four QTL for GABA content were localized on chromosome 4H, 5H, 6H and 7H. It explained phenotypic variation range from 5.44% to 14.87%, the highest phenotypic variance was 14.87%, which localized on 7H. QTLs controlling protein content and total flavonoids content were mapped and mainly localized on 2H, 6H and 7H, QTLs controlling protein content and GABA content were mainly localized on 4H, 6H and 7H, QTLs controlling total flavonoids content and GABA content were mainly localized on 5H, 6H and 7H. So QTLs for three components were mainly localized on 6H and 7H, especially on the 6H Ebmac0806-GBM1270 interval, and they all affected protein, total flavonoids and GABA content, the contribution rates of additive effects were the same, and there was a significantly correlation. The correlation analysis showed that the significantly positive correlations were existed among protein, total flavonoids and GABA content. 【Conclusion】the correlations of protein content, total flavonoids content, GABA content are consistent with the correlations of QTLs controlling those components. It revealed the close genetic relationship between protein and functional components.

Key words: barley, grains, protein, total flavonoids, GABA, correlation, QTL

[1]    程京艳, 翟胜利. 药食同源-大麦、小麦和谷子. 首都医药, 2005(5): 50-51.
CHENG J Y, ZHAI S L. Medicinal and edible-barley, wheat and millet. Capital Medicine, 2005(5): 50-51. (in Chinese)
[2]    Newman R K, Newman C W. Barley for food and health: science, technology, and products. Wiley-Interscienc, 2008: 140-160.
[3]    Arndt E A. Whole grain barley for today’s health and wellness needs. Cereal Foods World, 2006, 5l (1): 20-22.
[4]    郭蕾蕾. 大麦分子遗传图谱构建及其主要农艺性状和功能成分的QTL定位[D]. 成都: 四川农业大学, 2012.
GUO L L. Construction of molecular genetic map and QTL mapping for main agronomic characters and functional compounds of barley [D]. Chengdu: Sichuan Agricultural University, 2012. (in Chinese)
[5]    Kleinhofs A, Chao S, Sharp P J. Mapping of nitrate reductase genes in barley and wheat. Proceedings of the 7th International Wheat Genetics Symposium, 1988: 541-546.
[6]    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the USA, 2004, 101(26): 9915-9920.
[7]    Wenzl P, Li H B, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith K P, Muehlbauer G J, Chalmers K J, Kleinhofs A, Huttner E, Kilian A. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 2006, 7: 206.
[8]    Karakousis A, Gastafson J P, Chalmers K J, Barr A R, Langridge P. A consensus map of barley integrating SSR, RFLP and AFLP markers. Australian Journal of Agricultural Research, 2003, 54(12): 1173-1185.
[9]    Read B J, Raman H, McMichael G, Chalmers K J, Ablett G A, Platz G J, Raman R, Genger R K, Boyd W J R, Li C D, Grime C R, Park R F, Wallwork H, Prangnell R, Lance R C M. Mapping and QTL analysis of the barley population Sloop×Halcyon. Australian Journal of Agricultural Research, 2003, 54: 1145-1153.
[10]   Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson J T, Wanamaker S I, Walia H, Rodriguez E M, Hedley P E, Liu H, Morris J, Close T J, Marshall D F, Waugh R. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics, 2005, 274(5): 515-527.
[11]   Hearnden P R, Eckermann P J, McMichael G L, Hayden M J, Eglinton J K, Chalmers K J. A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics, 2007, 115(3): 383-391.
[12]   Marcel T C, Varshney R K, Barbieri M, Jafary H, Kock M J D, Graner A, Niks R E. A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics, 2007, 114(3): 487-500.
[13]   伊爱芹, 刘长付, 陈媛梅. 加杨叶中黄酮类化合物及其相关成分关系. 应用研究, 2012, 26(1): 66-69.
YI A Q, LIU C F, CHEN Y M. A research on the relationship between flavonoids and related components of Populus Canadensis Moench. leaves. Applied Research, 2012, 26(1): 66-69. (in Chinese)
[14]   梁慧珍, 王树峰, 余永亮, 练云, 王庭峰, 位艳丽, 巩鹏涛, 刘学 义, 方宣钧. 大豆异黄酮与脂肪、蛋白质含量基因定位分析. 中国农业科学, 2009, 42(8): 2652-2660.
LIANG H Z, WANG S F, YU Y L, LIAN Y, WANG T F, WEI Y L, GONG P T, LIU X Y, FANG X J. QTL mapping of isoflavone, oil and protein content in soybean. Scientia Agricultura Sinica, 2009, 42(8): 2652-2660. (in Chinese)
[15]   刘三才, 李为喜, 刘方, 李燕, 朱志华. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价. 植物遗传资源学报, 2007, 8(3): 317-320.
LIU S C, LI W X, LIU F, LI Y, ZHU Z H. Identificaiton and evaluation of total flavones and protein content in tartary buckwheat germplasm. Journal of Plant Genetic Resources, 2007, 8(3): 317-320. (in Chinese)
[16]   Mather D E, Tinker N A, LaBerge D E, Edney M, Jones B L, Rossnagel B G, Legge W G, Briggs K G, Irvine R B, Falk D E, Kasha K J. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Science, 1997, 37: 544-554.
[17]   Li J Z, X Q, Huang F, Ganal M W, Roder M S. Analysis of QTLs for yield, yield components, and ma-lting quality in a BC3-DH population of spring barley. Theoretical and Applied Genetics, 2005, 110(2): 356-363.
[18]   Netsvetaev V P. Specific aspects of detection of peroxidase isozymes and their genetic control in barley. Genetika, 2008, 44(9): 1121-1122.
[19]   Jin X L, Wei K, Zhang G P. A genome-wide association analysis of quantitative trait loci for protein fraction content in Tibetan wild barley. Biotechnology letters, 2012, 34(1): 159-165.
[20]   Distelfeld A, Korol A, Dubcovsky J, Uauy C, Blake T, Fahima T. Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Molecular Breeding, 2008, 22(1): 25-38.
[21]   栾运芳, 赵慧芬, 大次卓嘎, 冯西博. 西藏青稞品质和功能成份及生态性状的典范相关分析.大麦与谷类科学, 2009, 1: 1-5.
LUAN Y F, ZHAO H F, DACi Z G, FENG X B. Model correlation analysis of quality and function ingredient as well as ecology character of tibetan naked barley. Barley and Cereal Sciences, 2009, 1: 1-5. (in Chinese)
[22]   杨树明, 谢勇武, 曾亚文, 杨涛, 普晓英, 杜娟. 土壤、灌水和施氮对大麦农艺和产量性状及不同粒位籽粒功能成分的影响. 麦类作物学报, 2011, 31(1): 92-97.
YANG S M, XIE Y W, ZENG Y W, YANG T, PU X Y, DU J. Effect of irrigation and nitrogen on grain yield and function element of grains at different position of barley under different soil type. Journal of Triticeae Crops, 2011, 31(1): 92-97. (in Chinese)
[23]   Yang T, Duan C L, Zeng Y W, Du J, Yang S M, Pu X Y, Yang S C. Analysis on interaction between genotype of four main flavonoids of barley grain and environment. Agricultural Science & Technology, 2012, 13(9): 1843-1847.
[24]   杨晓梦, 曾亚文, 普晓英, 杨涛, 杨树明, 杜娟. 大麦籽粒功能成分含量的遗传效应分析. 麦类作物学报, 2013, 33(4): 635-639.
YANG X M, ZENG Y W, PU X Y, YANG T, YANG S M, DU J. Inheritance analysis of fuctional components in barley grains. Journal of Triticeae Crops, 2013, 33(4): 635-639. (in Chinese)
[25]   刘仙俊. 大麦特异种质资源的分子生物学研究[D]. 成都: 四川农业大学, 2011.
LIU X J. The research on molecular biology of special germplasm resources in barley [D]. Chengdu: Sichuan Agricultural University, 2011. (in Chinese)
[26]   Jende S B. Genetic control of flavonoid biosynthesis in barley. Hereditas, 1993, 119(2): 187-204.
[27]   Zeng Y W, Zhao C Y, Pu X Y, Yang T, Du J, Yang S C. Identification of quantitative trait locus (QTLs) for γ-aminobutyric acid content in grain of barley. African Journal of Biotechnology, 2012, 11(7): 1754-1760.
[28]   赵春艳, 普晓英, 曾亚文, 杜娟, 杨树明, 陈红明. 大麦麦芽总黄酮类化合物含量的测定分析. 植物遗传资源学报, 2010, 11(4): 498-502.
ZHAO C Y, PU X Y, ZENG Y W, DU J, YANG S M, CHEN H M. Determination of the content of general flavone in barley malts. Journal of Plant Genetic Resources, 2010, 11(4): 498-502. (in Chinese)
[29]   赵大伟, 普晓英, 曾亚文, 李本逊, 杜娟, 杨树明. 大麦籽粒γ-氨基丁酸含量的测定分析. 麦类作物学报, 2009, 29(1): 69-72.
ZHAO D W, PU X Y, ZENG Y W, LI B X, DU J, YANG S M. Determination of the γ-aminobutyric acid in barley. Journal of Triticeae Crops, 2009, 29(1): 69-72. (in Chinese)
[30]   王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35(2): 239-245.
WANG J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica, 2009, 35(2): 239-245. (in Chinese)
[31]   McCouch S R, Chen X, Panaud O. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, 1997, 35: 89-99.
[32]   Varshney R K, Marcel T C, Ramsay L, Russell J, Roder M S, Stein N, Waugh R, Langridge P, Niks R E, Graner A. A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics, 2007, 114: 1091-1103.
[33]   李梁, 陈志伟, 杜志钊, 高润红, 陆瑞菊, 黄剑华. 大麦DH群体在耐低氮相关遗传连锁图谱初步构建中的运用. 麦类作物学报, 2012, 32(6): 1021-1025.
LI L, CHEN Z W, DU Z Z, GAO R H, LU R J, HUANG J H. Genetic map preliminary structure of low-nitrogen tolerance used DH population in barley. Journal of Triticeae Crops, 2012, 32(6): 1021-1025. (in Chinese)
[34]   Hayes P M, Liu B H, Knapp S J, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S E, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theoretical and Applied Genetics, 1993, 87(3): 392-401.
[35]   任喜峰. 大麦新矮源“华矮11”主要性状的遗传分析和大麦抽穗期性状的QTL定位[D]. 武汉: 华中农业大学, 2011.
REN X F. Inheritance of the main traits for a novel dwarf germplasm “HUAAI 11” and QTL mapping of heading date in barley [D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[36]   李解, 严俊, 杨荣志, 王茹, 薛文韬, 赵钢, 程剑平. 大麦籽粒蛋白质含量的QTL定位分析. 种子, 2013, 32(9): 6-9.
LI J, YAN J, YANG R Z, WANG R, XUE W T, ZHAO G, CHENG J P. QTL Analysis of grain protein content in barley. Seed, 2013, 32(9): 6-9. (in Chinese)
[37]   罗小娇, 郭雷蕾, 杨晓云, 刘新春, 余春磊, 齐国昌, 冯宗云. 大麦籽粒γ-氨基丁酸含量的QTL定位分析. 西南农业学报, 2014, 27(3): 950-954.
LUO X J, GUO L L, YANG X Y, LIU X C, YU C L, QI G C, FENG Z Y. QTL Mapping of γ-aminobutyric acid content in grains of barley. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 950-954. (in Chinese)
[38]   王彩霞. 有色米的品质特性与种皮颜色性状的分子遗传学研究[D]. 杭州: 浙江大学, 2007.
WANG C X. A study on the quality properties of colored rice and molecular genetics of the pericarp color character in rice (Oryza sativa L.) [D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[3] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[6] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[7] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[8] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[9] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[10] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
[11] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[12] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[13] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[14] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[15] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!