Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 874-889.doi: 10.3864/j.issn.0578-1752.2022.05.004


Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice

JIANG JingJing(),ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei(),YANG JianChang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2021-04-28 Accepted:2021-06-21 Online:2022-03-01 Published:2022-03-08
  • Contact: JunFei GU;


【Objective】The objective of the study was to explore the effects of crop management practices on grain quality including starch properties of superior and inferior spikelets of super rice, to provide the theoretical and practical guidance for improving rice quality, that is, the coordinated improvement of grain quality of superior and inferior spikelets. 【Method】The tested rice cultivars were super rice Y2640 and W24. There were four treatments in the field experiment, including zero nitrogen application (0N), local farmer practice (LFP), optimized cultivation 1 (T1) and optimized cultivation 2 (T2). For each treatment, there were three replicates. A split plot design was used in this experiment with crop management practices as the main plot, with variety as the split plot. In 2018, the appearance, processing, cooking and eating quality and RVA characteristics of rice were measured. In 2019, the experiments of scanning electron microscopy observation, crystallinity, infrared spectral distribution and RVA characteristics of superior and inferior grains of both varieties under different treatments were conducted. 【Result】 (1) For grain quality, compared with superior grains, inferior grains had better processing quality but worse appearance quality, protein content and hardness of inferior grains was increased, while amylose content, gel consistency viscosity and adhesiveness was decreased.(2) For starch quality, compared with superior grains, starch granules were smaller and the surface of starch granules were uneven and pitted in inferior grain, crystallinity and 1 045/1 022 cm-1 value, setback, gelatinization temperature of inferior grains were increased, while peak viscosity, hot viscosity, breakdown, final viscosity of inferior grains were decreased.(3) Compared with LFP, by optimized crop management T1 and T2, the processing and appearance qualities of superior and inferior grains in both varieties were improved, protein content and amylose were decreased, while the gel consistency was increased, eating and cooking quality of superior and inferior grains were improved. The starch quality of superior and inferior grains were also improved, the relative intensity and order of structure were decreased, when compare crop management T1 and T2 with LFP. The grain and starch quality of inferior grains was more improved than superior ones by optimized crop management practices. 【Conclusion】The quality of rice and starch of inferior grains was significantly inferior to that of superior grains. Optimized crop management practices could improve grain yield and grain quality, especially for the grain quality of inferior grains.

Key words: rice, rice quality, starch, superior and inferior grains, crop management practices

Fig. 1

Daily mean temperature, sunshine duration, and precipitation in Yangzhou during rice planting period from 2018 to 2019"

Table 1

Effects of different treatments on appearance quality and milling quality of whole panicle grain and superior and inferior grains of rice"

Grain position
外观品质 Appearance quality 加工品质 Milling quality
Chalkiness area (%)
Chalky rice rate (%)
Brown rice percentage (%)
Milled rice percentage (%)
Head rice percentage (%)
2018 甬优2640
0N 24.87±0.10c 25.53±0.14c 6.86±0.10c 81.47±0.04c 73.78±0.04c 68.76±0.04c
LFP 27.74±0.06a 30.21±0.20a 8.35±0.14a 81.78±0.11b 74.57±0.11b 70.53±0.06b
T1 26.58±0.17b 27.41±0.25b 7.56±0.17b 82.55±0.06a 74.58±0.06a 71.48±0.03a
T2 26.26±0.07b 25.89±0.13c 6.80±0.11c 82.63±0.07a 75.13±0.07a 71.59±0.07a
0N 21.52±0.03d 26.69±0.13c 6.34±0.06c 81.52±0.10d 75.70±0.10d 66.52±0.01d
LFP 24.68±0.11a 36.89±0.16a 7.63±0.11a 81.67±0.03c 76.18±0.03c 70.69±0.10c
T1 23.91±0.08b 34.25±0.07b 7.16±0.08b 84.98±0.06b 77.28±0.06b 71.33±0.04b
T2 22.97±0.17c 26.69±0.17c 6.13±0.14c 85.17±0.01a 77.82±0.01a 71.95±0.07a
2019 甬优2640
Superior grain
0N 16.46±0.14c 20.30±0.38c 6.21±0.04c 80.71±0.11b 72.99±0.09c 66.44±0.08c
LFP 22.80±0.25a 25.58±0.30a 7.92±0.08a 80.78±0.08b 74.15±0.14b 67.19±0.08b
T1 20.74±0.16b 24.21±0.15b 7.18±0.08b 81.42±0.13a 74.40±0.10ab 67.58±0.07a
T2 20.24±0.13b 23.31±0.22b 7.04±0.02b 81.57±0.08a 74.58±0.06a 67.91±0.12a
Inferior grain
0N 29.82±0.23c 29.87±0.42c 7.42±0.04d 83.60±0.11c 75.58±0.09b 66.93±0.11c
LFP 33.26±0.15a 35.55±0.18a 9.13±0.15a 83.93±0.05b 76.84±0.18b 68.18±0.08b
T1 31.30±0.34b 33.77±0.14b 8.49±0.06b 84.36±0.04a 77.20±0.08a 68.73±0.04a
T2 30.20±0.11c 33.48±0.08b 7.99±0.04c 84.50±0.04a 77.42±0.08a 68.91±9.05a
Superior grain
0N 14.52±0.23d 22.87±0.99d 5.48±0.06d 80.99±0.09b 73.22±0.06c 66.93±0.06c
LFP 20.64±0.08a 31.51±0.07a 6.94±0.07a 81.30±0.08b 73.72±0.11b 68.18±0.10b
T1 18.59±0.53b 28.66±0.42b 6.44±0.02b 82.12±0.08a 74.23±0.11a 68.73±0.08a
T2 17.15±0.16c 25.90±0.08c 5.81±0.11c 82.43±0.09a 74.36±0.11a 68.91±0.03a
Inferior grain
0N 26.56±0.42b 30.77±0.30d 6.92±0.09d 83.87±0.13d 77.39±0.09b 69.91±0.11c
LFP 29.76±0.56a 40.32±0.06a 8.30±0.05a 84.25±0.06c 77.76±0.18b 72.09±0.08b
T1 28.06±0.08b 38.32±0.18b 7.67±0.07b 85.54±0.05b 78.54±0.08a 72.61±0.04a
T2 27.24±0.30b 35.77±0.11c 7.17±0.09c 85.92±0.06a 78.83±0.08a 72.83±9.05a

Table 2

Effects of different treatments on cooking and eating quality and grain yield of whole panicle grain and superior and inferior grains of rice"

Grain position
Protein content (%)
Amylose content (%)
Gel consistency (mm)
Grain yield (t·hm-2)
2018 甬优2640
0N 8.68±0.11c 16.13±0.17a 69.32±0.14a 6.98±0.11d
LFP 11.11±0.14a 15.16±0.23b 66.98±0.10c 10.53±0.06c
T1 10.58±0.08b 14.78±0.07b 67.56±0.08b 11.27±0.08b
T2 10.23±0.04b 14.62±0.03b 67.73±0.18b 12.22±0.17a
0N 8.22±0.14c 16.52±0.17a 72.56±0.06a 5.75±0.16d
LFP 10.74±0.06a 16.03±0.04ab 68.21±0.14c 9.43±0.07c
T1 9.48±0.17b 15.73±0.10bc 70.65±0.21b 10.1±0.14b
T2 9.52±0.03b 15.41±0.20c 70.69±0.13b 10.97±0.24a
2019 甬优2640
Superior grain
0N 6.44±0.15d 19.76±0.11a 73.91±0.30a 7.06±0.08d
LFP 9.14±0.01a 17.36±0.14b 70.47±0.16c 11.93±0.10c
T1 8.61±0.06b 17.31±0.04b 71.15±0.15bc 12.52±0.11b
T2 8.20±0.07c 16.32±0.05c 71.50±0.07b 13.25±0.21a
Inferior grain
0N 10.47±0.16d 14.45±0.16a 67.21±0.08a
LFP 13.52±0.06a 12.31±0.07b 63.12±0.05c
T1 12.82±0.09b 12.30±0.08b 63.93±0.08b
T2 12.30±0.08c 11.32±0.06c 64.23±0.15b
Superior grain
0N 6.10±0.03d 20.23±0.15a 77.21±0.35a 5.81±0.23d
LFP 8.92±0.08a 17.77±0.16b 72.35±0.30c 9.30±0.07c
T1 8.55±0.01b 17.92±0.08b 73.32±0.14bc 10.19±0.11b
T2 8.10±0.06c 16.39±0.21c 73.73±0.06b 10.88±0.16a
Inferior grain
0N 10.07±0.08d 14.93±0.08a 69.33±0.28a
LFP 12.92±0.08a 12.71±0.08b 64.47±0.16c
T1 12.52±0.04b 12.65±0.11b 66.08±0.08b
T2 11.98±0.04c 11.72±0.09c 66.42±0.08b

Fig. 2

Effects of different treatments on hardness and adhesiveness of superior and inferior grains of rice The error bar is standard deviation. Different lowercase letters above columns indicate significant difference at P<0.05 among treatments at the same growth stage"

Fig. 3

Scanning electron microscopy (SEM) showing the starch granule in superior and inferior grains of Y2640"

Fig. 4

Scanning electron microscopy (SEM) showing the starch granule in superior and inferior grains of W24"

Fig. 5

Effects of different treatments on starch granule size of superior and inferior grains of rice"

Fig. 6

Effects of different treatments on the X-ray diffraction patterns of superior and inferior grains of rice"

Table 3

Effects of different treatments on relative crystallinity and IR ratio of superior and inferior grains of rice"

Grain position
Crystallinity (%)
1045/1022 cm-1 1022/995 cm-1
Superior grain
0N 24.94±0.02d 0.52±0.01d 1.19±0.01a
LFP 25.74±0.02a 0.68±0.00a 0.95±0.02c
T1 25.56±0.03b 0.63±0.01b 1.03±0.01b
T2 25.47±0.01c 0.60±0.00c 1.05±0.01b
Inferior grain
0N 26.86±0.04a 0.71±0.01a 0.88±0.01b
LFP 26.77±0.03a 0.69±0.01a 0.92±0.01b
T1 26.53±0.02b 0.66±0.01b 0.96±0.01a
T2 26.44±0.04b 0.64±0.00b 0.99±0.01a
Superior grain
0N 23.82±0.05c 0.43±0.01c 1.31±0.02a
LFP 24.86±0.01a 0.66±0.01a 1.07±0.02c
T1 24.65±0.04b 0.59±0.02b 1.15±0.00b
T2 24.57±0.04b 0.57±0.01b 1.18±0.01b
Inferior grain
0N 26.31±0.08a 0.69±0.01a 0.92±0.01c
LFP 26.11±0.02a 0.67±0.00ab 0.96±0.01b
T1 25.80±0.06b 0.64±0.02bc 0.99±0.00a
T2 25.67±0.06b 0.60±0.01c 1.01±0.00a

Fig. 7

Effects of different treatments on attenuated total reflectance-Fourier transforms infrared spectra of superior and inferior grains of Y2640 and W24"

Table 4

Effects of different treatments on RVA parameters of whole panicle grain and superior and inferior grains of rice"

Grain position
PV (cP)
TV (cP)
BD (cP)
FV (cP)
SB (cP)
PT (s)
GT (℃)
2018 甬优2640
0N 2696.00±22.63a 2095.33±16.50a 600.67±6.12a 2896.67±21.52a 200.67±9.66c 6.61±0.10a 72.87±0.10c
LFP 2126.33±28.75c 1710.33±2.05c 416.00±26.70c 2399.33±23.93c 273.00±4.82a 6.79±0.13a 75.89±0.12a
T1 2201.67±11.31bc 1732.67±9.73bc 469.00±11.58bc 2457.00±19.02bc 255.33±7.71ab 6.73±0.04a 74.87±0.08b
T2 2238.33±11.78b 1752.00±5.67b 486.33±6.11b 2484.33±11.96b 246.00±0.18b 6.71±0.08a 74.60±0.07b
0N 2970.33±14.38a 2173.67±13.92a 796.67±28.29a 3106.00±20.90a 135.67±0.71c 6.57±0.10a 71.42±0.17c
LFP 2148.67±18.38d 1695.33±18.68c 453.33±37.07c 2447.00±16.31c 298.33±2.08a 6.74±0.11a 74.26±0.08a
T1 2330.67±11.41c 1705.67±15.57c 625.00±26.98b 2580.00±24.95b 249.33±13.53b 6.69±0.14a 73.26±0.11b
T2 2418.33±23.26b 1784.67±5.98b 633.67±29.24b 2656.00±11.98b 237.67±11.29b 6.66±0.08a 72.88±0.10b
2019 甬优2640
Superior grain
0N 3709.50±19.09a 2618.00±8.49a 1091.50±10.61a 3951.00±35.36a 241.50±16.26d 6.17±0.05c 74.92±0.08b
LFP 2742.00±11.31d 1958.50±45.96c 783.50±34.65b 3580.50±30.41c 838.50±19.09a 6.94±0.09a 77.03±0.53a
T1 3138.50±21.92c 2145.50±19.09b 993.00±41.01a 3691.50±9.19b 553.00±12.73b 6.90±0.04ab 76.20±0.28a
T2 3247.00±18.38b 2228.50±9.19b 1018.50±27.58a 3691.50±12.02b 463.50±30.41c 6.60±0.10b 76.06±0.05ab
Inferior grain
0N 2409.50±16.26d 1446.50±9.19d 963.00±7.07b 3044.00±18.38c 634.50±2.12a 6.84±0.23a 77.92±0.09a
LFP 2521.50±6.36c 1540.00±1.41c 981.50±4.95b 3143.00±2.83b 621.50±9.19ab 6.82±0.21a 77.77±0.18a
T1 2638.00±8.49b 1634.00±12.73b 1004.00±4.24ab 3220.50±12.02a 582.50±3.54b 6.80±0.28a 77.19±0.06b
T2 2727.00±32.53a 1678.00±5.66a 1049.00±26.87a 3252.00±9.90a 525.00±22.63c 6.77±0.14a 76.77±0.02c
Superior grain
0N 3561.50±36.06a 2746.00±9.90a 815.50±26.16a 3859.50±20.51a 298.00±15.56c 6.10±0.04b 73.38±0.25c
LFP 2843.50±14.85c 2288.00±1.41d 555.50±13.44c 3539.00±22.63c 695.50±7.78a 6.73±0.00a 76.28±0.18a
T1 3041.50±23.33b 2363.00±8.49c 678.50±14.85b 3587.00±0.00bc 545.50±23.33b 6.64±.05a 75.38±0.11b
T2 3082.00±19.80b 2392.00±4.24b 690.00±15.56b 3610.00±2.83b 528.00±22.63b 6.54±0.09a 75.12±0.14b
Inferior grain
0N 2262.00±12.73b 1549.00±16.97c 682.50±4.95b 3029.50±3.54c 767.50±9.19a 7.00±0.00a 77.70±0.35a
LFP 2292.50±7.78b 1610.00±12.73b 696.50±2.12ab 3057.00±9.90b 764.50±2.12a 7.00±0.00a 77.33±0.11b
T1 2361.50±10.61a 1665.00±8.49a 706.00±7.07a 3095.50±4.95a 734.00±5.66b 6.87±0.00a 76.64±0.14bc
T2 2401.00±15.56a 1695.00±8.49a 713.00±4.24a 3118.00±5.66a 717.00±9.90b 6.77±0.14a 76.21±0.06c
[1] 谢建华. 积极发展粳稻生产, 不断优化稻米结构. 中国农技推广, 2006(1):4-7.
XIE J H. Actively develop japonica rice production and optimize rice structure constantly. China Agricultural Technology Extension, 2006(1):4-7. (in Chinese)
[2] KATO T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995, 35(3):827-831.
doi: 10.2135/cropsci1995.0011183X003500030032x
[3] NING H F, QIAO J F, LIU Z H, LIN Z M, LI G H, WANG Q S, WANG S H, DING Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. Journal of Cereal Science, 2010, 52(1):90-95.
doi: 10.1016/j.jcs.2010.03.009
[4] 张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性. 中国农业科学, 2021, 54(7):1354-1364.
ZHANG H D, HUANG M, ZOU Y B, CHEN J N, SHAN S L. Amylose accumulation properties in the grains of noodle rice. Scientia Agricultura Sinica, 2021, 54(7):1354-1364. (in Chinese)
[5] ZHAO Q, HAO X Y, ALI IZHAR, IQBAL ANAS, ULLAH SAIF, HUANG M, KONG F Y, LI T Y, XUAN Y, LI F Q, YAN B, LUO Y Q, LIANG H, WEI S Q, CHEN N P, JIANG L G. Characterization and grouping of all primary branches at various positions on a rice panicle based on grain growth dynamics. Agronomy-Basel, 2020, 10(2):1-21.
[6] YANG J C, ZHANG J H. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany, 2010, 61(1):1-4.
doi: 10.1093/jxb/erp348
[7] 赵步洪, 董明辉, 张洪熙, 朱庆森, 杨建昌. 杂交水稻穗上不同粒位籽粒品质性状的差异. 扬州大学学报(农业与生命科学版), 2006(1):38-42.
ZHAO B H, DONG M H, ZHANG H X, ZHU Q S, YANG J C. Difference in quality characters of the grains at different positions within a hybrid rice panicle. Journal of Yangzhou University (Agricultural and Life Science Edition), 2006(1):38-42. (in Chinese)
[8] 吕文俊, 崔晶, 孙玥, 苏京平, 王胜军, 刘学军, 崔中秋. 不同栽培处理对稻米品质及食味的影响. 北方水稻, 2019, 49(3):1-12.
LÜ W J, CUI J, SUN Y, SU J P, WANG S J, LIU X J, CUI Z Q, The effects of different cultivation methods on rice quality and palatability. North Rice, 2019, 49(3):1-12. (in Chinese)
[9] 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39(4):673-681.
DONG M H, CHEN P F, GU J R, QIAO Z Y, HUANG M, ZHU Y D, ZHAO B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agronomica Sinica, 2013, 39(4):673-681. (in Chinese)
[10] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7):1301-1321.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7):1301-1321. (in Chinese)
[11] 包灵丰, 林纲, 赵德明, 王丽, 贺兵, 江青山, 张杰. 不同播期与收获期对水稻灌浆期、产量及米质的影响. 华南农业大学学报, 2017, 38(2):32-37.
BAO L F, LIN G, ZHAO D M, WANG L, HE B, JIANG Q S, ZHANG J. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality. Journal of South China Agricultural University, 2017, 38(2):32-37. (in Chinese)
[12] 谢成林, 姚义, 李锦霞, 冯龙庆, 周兴涛, 王汝利. 栽培措施对南粳9108群体质量及其品质的影响. 扬州大学学报(农业与生命科学版), 2016, 37(1):65-69.
XIE C L, YAO Y, LI J X, FENG L Q, ZHOU X T, WANG R L. Effects of cultural practices on population quality and rice quality of Nanjing9108. Journal of Yangzhou University (Agricultural and Life Science Edition), 2016, 37(1):65-69. (in Chinese)
[13] 路凯, 赵庆勇, 周丽慧, 赵春芳, 张亚东, 王才林. 稻米蛋白质含量与食味品质的关系及其影响因素研究进展. 江苏农业学报, 2020, 36(5):1305-1311.
LU K, ZHAO Q Y, ZHOU L H, ZHAO C F, ZHANG Y D, WANG C L. Research progress on the relationship between rice protein content and eating quality and the influence factors. Jiangsu Journal of Agricultural Sciences, 2020, 36(5):1305-1311. (in Chinese)
[14] 彭碧琳, 李妹娟, 胡香玉, 钟旭华, 唐湘如, 刘彦卓, 梁开明, 潘俊峰, 黄农荣, 傅友强, 胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响. 中国农业科学, 2021, 54(7):1424-1438.
PENG B L. LI M J, HU X Y, ZHONG X H, TANG X R, LIU Y Z, LIANG K M, PAN J F, HUANG N R, FU Y Q, HU R. Effects of simplified nitrogen managements on grain yield and nitrogen use efficiency of double-cropping rice in south China. Scientia Agricultura Sinica, 2021, 54(7):1424-1438. (in Chinese)
[15] ZHU D W, ZHANG H C, GUO B W, XU K, DAI Q G, WEI C X, ZHOU G S, HUO Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocolloids, 2017, 63:525-532.
doi: 10.1016/j.foodhyd.2016.09.042
[16] 王肖凤, 汪吴凯, 夏方招, 孙亚婷, 戴泽彰, 郑祥波, 杨特武, 姚璇. 水分管理对再生稻稻米品质的影响. 华中农业大学学报, 2021, 40(2):103-111.
WANG X F, WANG W K, XIA F Z, SUN Y T, DAI Z Z, ZHENG X B, YANG T W, YAO X. Effects of water management on grain quality of ratooning rice. Journal of Huazhong Agricultural University, 2021, 40(2):103-111. (in Chinese)
[17] 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46(1):117-130.
TANG J, TANG C, GUO B W, ZHANG C X, ZHANG Z Z, WANG K, ZHANG H C, CHEN H, SUN M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agronomica Sinica, 2020, 46(1):117-130. (in Chinese)
[18] 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响[D]. 扬州: 扬州大学, 2018.
ZHU D W. Effects of three key cultivation measures on yield and quality of japonica soft rice. Yangzhou: Yangzhou University, 2018. (in Chinese)
[19] 王新其, 程灿, 方军, 朱元宏, 曹黎明. 氮肥运筹对杂交粳稻‘申优17’主要品质性状效应分析. 上海农业学报, 2020, 36(4):25-30.
WANG X Q, CHENG C, FANG J, ZHU Y H, CAO L M. Effects of nitrogen application on main quality traits of japonica hybrid rice ‘Shenyou17’. Acta Agriculturae Shanghai, 2020, 36(4):25-30. (in Chinese)
[20] 蒋鹏, 熊洪, 张林, 周兴兵, 朱永川, 刘茂, 郭晓艺, 徐富贤. 施氮量和氮肥运筹模式对糯稻产量及品质的影响. 作物研究, 2015, 29(6):595-598.
JIANG P, XIONG H, ZHANG L, ZHOU X B, ZHU Y C, LIU M, GUO X Y, XU F X. Effect of nitrogen rates and nitrogen application regimes on grain yield and rice quality of glutinous rice. Crop Research, 2015, 29(6):595-598. (in Chinese)
[21] 兰宇辰, 郭晓红, 李猛, 赵洋, 李晓蕾, 姜红芳, 王鹤璎, 徐令旗, 张晓宁, 吕艳东. 施氮量与移栽密度互作对垦粳7号稻米品质的影响. 中国农业科技导报, 2021, 23(1):136-145.
LAN Y C, GUO X H, LI M, ZHAO Y, LI X L, JIANG H F, WANG H Y, XU L Q, ZHANG X N, LÜ Y D. Influences of the interaction between nitrogen fertilizer application rate and transplanting density on Kenjing 7 rice quality. Journal of Agricultural Science and Technology, 2021, 23(1):136-145. (in Chinese)
[22] 严凯, 蒋玉兰, 唐纪元, 戴其根. 盐碱地条件下施氮量和栽插密度对水稻产量和品质的影响. 中国土壤与肥料, 2018(2):67-74.
YAN K, JIANG Y L, TANG J Y, DAI Q G. Effects of nitrogen fertilizer rate and transplanting density on yield and grain quality of rice on saline-alkaline land. Soil and Fertilizer Sciences in China, 2018(2):67-74. (in Chinese)
[23] 王红运, 张炎龙, 赵骞, 董俊伟, 宫建元, 王韵舒, 周奕, 曲一格, 王晓航. 不同移栽密度对吉科稻516产量及品质的影响. 北方水稻, 2020, 50(6):24-26.
WANG H Y, ZHANG Y L, ZHAO Q, DONG J W, GONG J Y, WANG Y S, ZHOU Y, QU Y G, WANG X H. Effects of different transplanting densities on yield and quality of Jikedao-516. North Rice, 2020, 50(6):24-26. (in Chinese)
[24] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26(1):77-84.
LIU L J, LI H W, ZHAO B H, WANG Z Q, YANG J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science, 2012, 26(1):77-84. (in Chinese)
[25] 张耗, 马丙菊, 张春梅, 赵步洪, 许京菊, 邵士梅, 顾骏飞, 刘立军, 王志琴, 杨建昌. 全生育期干湿交替灌溉对稻米品质及淀粉特性的影响. 扬州大学学报(农业与生命科学版), 2020, 41(6):1-8.
ZHANG H, MA B J, ZHANG C M, ZHAO B H, XU J J, SHAO S M, GU J F, LIU L J, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation during whole growing season on quality and starch properties of rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(6):1-8. (in Chinese)
[26] GU J F, CHEN Y, ZHANG H, LI Z K, ZHOU Q, YU C, KONG X S, LIU L J, WANG Z Q, YANG J C. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research, 2017, 206:74-85.
doi: 10.1016/j.fcr.2017.02.021
[27] ZHOU T Y, ZHOU Q, LI E P, YUAN L M, WANG W L, ZHANG H, LIU L J, WANG Z Q, YANG J C, GU J F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydrate Polymers, 2020, 239:116237.
doi: 10.1016/j.carbpol.2020.116237
[28] 殷春渊, 王书玉, 刘贺梅, 薛应征, 张栩, 王和乐, 孙建权, 胡秀明, 李习军. 氮肥施用量对超级粳稻新稻18号强、弱势籽粒灌浆和稻米品质的影响. 中国水稻科学, 2013, 27(5):503-510.
YIN C Y, WANG S Y, LIU H M, XUE Y Z, ZHANG X, WANG H L, SUN J Q, HU X M, LI X J. Effects of nitrogen fertilizer application on grain filling characteristics and rice quality of superior and inferior grains in super japonica rice Xindao 18. Chinese Journal of Rice Science, 2013, 27(5):503-510. (in Chinese)
[29] LIN Z M, WANG Z X, ZHANG X C, LIU Z H, LI G H, WANG S H, DING Y F. Complementary proteome and transcriptome profiling in developing grains of a notched-belly rice mutant reveals key pathways involved in chalkiness formation. Plant & Cell Physiology, 2017, 58(3):560-573.
[30] GU J F, CHEN J, CHEN L, WANG Z Q, ZHANG H, YANG J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop Journal, 2015, 3(4):285-297.
doi: 10.1016/j.cj.2015.03.007
[31] WANI A A, SINGH P, SHAH M A, SCHWEIGGERT U, GUL K, WANI L A. Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties-A review. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(5):417-436.
doi: 10.1111/j.1541-4337.2012.00193.x
[32] CHEETHAM N W, TAO L P. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 1998, 36(4):277-284.
doi: 10.1016/S0144-8617(98)00007-1
[33] 张丽, 张吉旺, 刘鹏, 董树亭. 不同淀粉含量玉米籽粒淀粉粒度的分布特性. 中国农业科学, 2011, 44(8):1596-1602.
ZHANG L, ZHANG J W, LIU P, DONG S T. Starch granule size distribution in grains of maize with different starch contents. Scientia Agricultura Sinica, 2011, 44(8):1596-1602. (in Chinese)
[34] 陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异. 作物学报, 2011, 37(2):331-338.
LU D L, GUO H F, DONG C, LU W P. Starch physicochemical characteristics and granule size distribution at apical, middle and basal ear positions in normal, sweet, and waxy maize. Acta Agronomica Sinica, 2011, 37(2):331-338. (in Chinese)
[35] 刘鑫燕, 李娟, 刘雪菊, 张昌泉, 顾铭洪, 刘巧泉. 可溶性淀粉合成酶与稻米淀粉精细结构关系的研究进展. 植物生理学报, 2014, 50(10):1453-1458.
LIU X Y, LI J, LIU X J, ZHANG C Q, GU M H, LIU Q Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice. Plant Physiology Journal, 2014, 50(10):1453-1458. (in Chinese)
[36] 张耗, 谈桂露, 孙小淋, 刘立军, 杨建昌. 江苏省中籼水稻品种演进过程中米质的变化. 作物学报, 2009, 35(11):2037-2044.
ZHANG H, TAN G L, SUN X L, LIU L J, YANG J C. Changes in grain quality during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agronomica Sinica, 2009, 35(11):2037-2044. (in Chinese)
[37] 张国发, 侯朋福. 结实期温度对不同粒位稻米淀粉RVA的影响. 大庆师范学院学报, 2008(5):121-123.
ZHANG G F, HOU P F. Effect of temperature at seed setting stage on starch RVA of rice at different grain positions. Journal of Daqing Normal University, 2008(5):121-123. (in Chinese)
[38] 林郸, 李郁, 孙永健, 谌洁, 吕腾飞, 孙知白, 吕旭, 刘芳艳, 郭长春, 孙园园, 杨志远, 马均. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响. 中国生态农业学报(中英文), 2020, 28(10):1581-1590.
LIN H, LI Y, SUN Y J, SHEN J, LÜ T F, SUN Z B, LÜ X, LIU F Y, GUO C C, SUN Y Y, YANG Z Y, MA J. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns. Chinese Journal of Eco-Agriculture, 2020, 28(10):1581-1590. (in Chinese)
[39] BALINDONG J L, WARD R M, LIU L, ROSE T J, PALLAS L A, OVENDEN B W, SNELL P J, WATERS D L E. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. Journal of Cereal Science, 2017, 79:35-42.
doi: 10.1016/j.jcs.2017.09.008
[40] ZHANG C H, JIANG D, LIU F L, CAI J, DAI T B, CAO W X. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. Journal of Cereal Science, 2009, 51(2):226-233.
doi: 10.1016/j.jcs.2009.12.002
[41] 张皓政. 不同灌溉方式下氮肥施用量对寒地粳稻氮代谢及产质量的影响[D]. 哈尔滨: 东北农业大学, 2014.
ZHANG H Z. Effects of nitrogen fertilizer on nitrogen metabolism, yield and quality of cold-region rice under different irrigation methods[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese)
[42] 陈书强, 薛菁芳, 潘国君, 王秋玉. 粳稻粒位间淀粉RVA谱特征与其它品质性状的关系. 核农学报, 2015, 29(2):244-251.
CHEN S Q, XUE J F, PAN G J, WANG Q Y. Relationship between RVA profile characteristics and other quality traits in grain positions of japonica rice. Journal of Nuclear Agricultural Sciences, 2015, 29(2):244-251. (in Chinese)
[43] 徐云姬, 张伟杨, 钱希旸, 李银银, 杨建昌. 3种禾谷类作物弱势粒灌浆机理与调控途径. 安徽农业科学, 2015, 43(2):59-61, 122.
XU Y J, ZHANG W Y, QIAN X Y, LI Y Y, YANG J C. Mechanism and regulation in the filling of inferior caryopses in three kinds of cereal crops. Journal of Anhui Agricultural Sciences, 2015, 43(2):59-61, 122. (in Chinese)
[44] THITISAKASKUL M, JIMENEZ R C, ARIAS M C, BECKLES D M. Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science, 2012, 56(1):67-80.
doi: 10.1016/j.jcs.2012.04.002
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[12] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Full text



No Suggested Reading articles found!