Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 1010-1024.doi: 10.3864/j.issn.0578-1752.2022.05.013
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
XIAO LuTing1(),LI XiuHong1,LIU LiJun1,YE FaYin1,2,3(
),ZHAO GuoHua1,2,3
[1] |
ZHANG B J, LI X X, LIU J, XIE F W, CHEN L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 2013, 31(1):68-73.
doi: 10.1016/j.foodhyd.2012.10.006 |
[2] |
SHANG J Y, LI L, ZHAO B, LIU M, ZHENG X L. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. International Journal of Biological Macromolecules, 2020, 154:714-723. doi: 10.1016/j.ijbiomac.2020.03.150.
doi: 10.1016/j.ijbiomac.2020.03.150 |
[3] |
PUNIA S. Barley starch: Structure, properties and in vitro digestibility-A review. International Journal of Biological Macromolecules, 2020, 155:868-875. doi: 10.1016/j.ijbiomac.2019.11.219.
doi: 10.1016/j.ijbiomac.2019.11.219 |
[4] | 韦存虚, 张静, 钟方旭, 周卫东, 许如根, 马雷. 啤酒大麦与饲用大麦籽粒结构和淀粉粒的比较研究. 麦类作物学报, 2006, 26(4):133-138. |
WEI C X, ZHANG J, ZHONG F X, ZHOU W D, XU R G, MA L. Comparison of the starch granule and kernel structure between feed and malt barley varieties. Journal of Triticeae Crops, 2006, 26(4):133-138. (in Chinese) | |
[5] |
YU W W, TAN X L, ZOU W, HU Z X, FOX G P, GIDLEY M J, GILBERT R G. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydrate Polymers, 2017, 155:271-279. doi: 10.1016/j.carbpol.2016.08.078.
doi: 10.1016/j.carbpol.2016.08.078 |
[6] |
JAISWAL S, MONICA B, GEETIKA A, ROSSNAGEL B G, CHIBBAR R N. Development of barley (Hordeum Vulgare L.) lines with altered starch granule size distribution. Journal of Agricultural and Food Chemistry, 2014, 62(10):2289-2296.
doi: 10.1021/jf405424x |
[7] |
TAKEDA Y, TAKEDA C, MIZUKAMI H, HANASHIRO I. Structures of large, medium and small starch granules of barley grain. Carbohydrate Polymers, 1999, 38(2):109-114.
doi: 10.1016/S0144-8617(98)00105-2 |
[8] |
MYLLRINEN P, AUTIO K, SCHULMAN A H, POUTANEN K. Heat-induced structural changes of small and large barley starch granules. Journal of the Institute of Brewing, 1998, 104:343-349.
doi: 10.1002/jib.1998.104.issue-6 |
[9] |
NAGULESWARAN S, VASANTJAN T, HOOVER R, BRESSLER D. The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Research International, 2013, 51(2):771-782.
doi: 10.1016/j.foodres.2013.01.057 |
[10] |
AHMED Z, TETLOW I J, FALK D E, LIU Q, EMES M J. Resistant starch content is related to granule size in barley. Cereal Chemistry, 2016, 93(6):618-630.
doi: 10.1094/CCHEM-02-16-0025-R |
[11] |
DE SCHEPPER C F, MICHIELS P, LANGENAEKEN N A, COURTIN C M. Accurate quantification of small and large starch granules in barley and malt. Carbohydrate Polymers, 2020, 227:115329. doi: 10.1016/j.carbpol.2019.115329.
doi: 10.1016/j.carbpol.2019.115329 |
[12] |
LANGENAEKEN N A, DE SCHEPPER C F, DE SCHUTTER D P, COURTIN C M. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chemistry, 2019, 295:138-146. doi: 10.1016/j.foodchem.2019.05.045.
doi: 10.1016/j.foodchem.2019.05.045 |
[13] |
DE SCHEPPER C F, GIELENS D R S, COURTIN C M. A new method to isolate and separate small and large starch granules from barley and malt. Food Hydrocolloids, 2021, 120:106907.
doi: 10.1016/j.foodhyd.2021.106907 |
[14] |
GUO Q, HE Z H, XIA X C, QU Y Y, ZHANG Y. Effects of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chemistry, 2014, 91(6):623-630.
doi: 10.1094/CCHEM-01-14-0015-R |
[15] |
TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Some physicochemical properties of small-, medium-, and large- granule starches in fractions of waxy barley grain. Cereal Chemistry, 2000, 77(1):27-31.
doi: 10.1094/CCHEM.2000.77.1.27 |
[16] |
DHITAL S, SHRESTHA A K, GIDLEY M J. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 2010, 82(2):480-488.
doi: 10.1016/j.carbpol.2010.05.018 |
[17] |
XIAO H X, WANG S Y, XU W Z, YIN Y Q, XU D, ZHANG L, LIU G Q, LUO F J, SUN S G, LIN Q L, XU B C. The study on starch granules by using darkfield and polarized light microscopy. Journal of Food Composition and Analysis, 2020, 92:103576.
doi: 10.1016/j.jfca.2020.103576 |
[18] |
MEI J Y, ZHANG L, LIN Y, LI S B, BAI C H, FU Z. Pasting, rheological, and thermal properties and structural characteristics of large and small Arenga Pinnata starch granules. Starch-Stärke, 2020, 72(11):1900293.
doi: 10.1002/star.v72.11-12 |
[19] |
LIU T X, MA M X, GUO K, HU G L, ZHANG L, WEI C X. Structural, thermal, and hydrolysis properties of large and small granules from C-type starches of four Chinese chestnut varieties. International Journal of Biological Macromolecules, 2019, 137:712-720.
doi: 10.1016/j.ijbiomac.2019.07.023 |
[20] |
GAO L C, WANG H L, WAN C X, LENG J J, WANG P K, YANG P, GAO X L, GAO J F. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. International Journal of Biological Macromolecules, 2020, 156:120-126. doi: 10.1016/j.ijbiomac.2020.04.064.
doi: 10.1016/j.ijbiomac.2020.04.064 |
[21] |
LIN L S, HUANG J, ZHAO L X, WANG J, WANG Z F, WEI C X. Effect of granule size on the properties of lotus rhizome C-type starch. Carbohydrate Polymers, 2015, 134:448-457. doi: 10.1016/j.carbpol. 2015.08.026.
doi: 10.1016/j.carbpol. 2015.08.026 |
[22] |
AL-ANSI W, MUSHTAQ B S, MAHDI A A, AL-MAQTARI Q A, AL-ADEEB A, AHMED A, FAN M C, LI Y, QIAN H F, LIU J X, WANG L. Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chemistry, 2021, 356:129665. doi: 10.1016/j.foodchem.2021.129665.
doi: 10.1016/j.foodchem.2021.129665 |
[23] | 张慧, 洪雁, 顾正彪, 汪振炯. 3种谷物全粉中淀粉的消化性及影响因素. 食品与发酵工业, 2012, 38(11):26-31. |
ZHANG H, HONG Y, GU Z B, WANG Z J. Starch digestibility and the influence factors in three grain flours. Food and Fermentation Industries, 2012, 38(11):26-31. (in Chinese) | |
[24] |
HANASHIRO I, ABE J, HIZUKURI S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion- exchange chromatography. Carbohydrate Research, 1996, 283(2):151-159.
doi: 10.1016/0008-6215(95)00408-4 |
[25] |
LI C Y, ZHOU D D, FAN T, WANG M Y, ZHU M, DING J G, ZHU X K, GUO W S, SHI Y C. Structure and physicochemical properties of two waxy wheat starches. Food Chemistry, 2020, 318:126492. doi: 10.1016/j.foodchem.2020.126492.
doi: 10.1016/j.foodchem.2020.126492 |
[26] |
KASEMWONG K, PIYACHOMKWAN K, WANSUKSRI R, SRIROTH K. Granule sizes of Canna (Canna edulis) starches and their reactivity toward hydration, enzyme hydrolysis and chemical substitution. Starch/Staerke, 2008, 60(11):624-633.
doi: 10.1002/star.v60:11 |
[27] |
GAO J, VASANTHAN T, HOOVER R. Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chemistry, 2009, 86(2):157-163.
doi: 10.1094/CCHEM-86-2-0157 |
[28] |
DHITAL S, SHRESTHA A K, HASJIM J, GIDLEY M J. Physicochemical and structural properties of maize and potato starches as a function of granule size. Journal of Agricultural and Food Chemistry, 2011, 59(18):10151-10161. doi: 10.1021/jf202293s.
doi: 10.1021/jf202293s |
[29] |
TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 2001, 330(2):241-248.
doi: 10.1016/S0008-6215(00)00292-5 |
[30] |
JAMES M G, DENYER K, MYERS A M. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6(3):215-222. doi: 10.1016/s1369-5266(03)00042-6.
doi: 10.1016/s1369-5266(03)00042-6 |
[31] |
CHEN G X, ZHU J T, ZHOU J W, SUBBURAJ S, ZHANG M, HAN C X, HAO P C, LI X H, YAN Y M. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: Comparison with common wheat and Aegilops peregrina. BMC Plant Biology, 2014, 14:198. doi: 10.1186/s12870-014-0198-2.
doi: 10.1186/s12870-014-0198-2 |
[32] |
CAO H, YAN X, CHEN G X, ZHOU J W, LI X H, MA W J, YAN Y M. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. Journal of Proteomics, 2015, 112:95-112. doi: 10.1016/j.jprot.2014.08.002.
doi: 10.1016/j.jprot.2014.08.002 |
[33] | WEI C X, ZHANG J, ZHOU W D, CHEN Y F, XU R G. Development of small starch granule in barley endosperm. Acta Agronomica Sinica, 2008, 34(10):1788-1796. |
[34] |
KUMARI S, YADAV B S, YADAV R B. Effect of nano-conversion on morphological, rheological and thermal properties of barley starch. Journal of Food Science and Technology, 2022, 59(2):467-477. doi: 10.1007/s13197-021-05029-0.
doi: 10.1007/s13197-021-05029-0 |
[35] |
LI W H, GAO J M, WU G, ZHENG J M, OUYANG S H, LUO Q G. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60:364-373.
doi: 10.1016/j.foodhyd.2016.04.011 |
[36] |
SONG Y, JANE J. Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydrate Polymers, 2000, 41(4):365-377.
doi: 10.1016/S0144-8617(99)00098-3 |
[37] |
KÄLLMAN A, VAMADEVAN V, BERTOFT E, KOCH K, SEETHARAMAN K, ÅMAN P, ANDERSSON R. Thermal properties of barley starch and its relation to starch characteristics. International Journal of Biological Macromolecules, 2015, 81:692-700. doi: 10.1016/j.ijbiomac.2015.08.068.
doi: 10.1016/j.ijbiomac.2015.08.068 |
[38] |
ZHAO X, ANDERSSON M, ANDERSSON R. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation. Carbohydrate Polymers, 2021, 255:117503. doi: 10.1016/j.carbpol.2020.117503.
doi: 10.1016/j.carbpol.2020.117503 |
[39] |
李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系. 作物学报, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004.
doi: 10.3321/j.issn:0496-3490.2007.08.004 |
LI C Y, FENG C N, WANG Y L, ZHANG R, GUO W S, ZHU X K, PENG Y X. Chain length distribution of debranched amylopectin and its relationship with physicochemical properties of starch in different wheat cultivars. Acta Agronomica Sinica, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.08.004 |
|
[40] |
LI C, GONG B, HUANG T, YU W W. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains. Carbohydrate Polymers, 2021, 254:117275. doi: 10.1016/j.carbpol.2020.117275.
doi: 10.1016/j.carbpol.2020.117275 |
[41] |
REGINA A, BLAZEK J, GILBERT E, FLANAGAN B M, GIDLEY M J, CAVANAGH C, RAL J P, LARROQUE O, BIRD A R, LI Z, MORELL M K. Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers, 2012, 89(3):979-991. doi: 10.1016/j.carbpol.2012.04.054.
doi: 10.1016/j.carbpol.2012.04.054 |
[42] |
MORELL M K, KOSAR-HASHEMI B, CMIEL M, SAMUEL M S, CHANDLER P, RAHMAN S, BULEON A, BATEY I L, LI Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 2003, 34(2):173-185. doi: 10.1046/j.1365-313x.2003.01712.x.
doi: 10.1046/j.1365-313x.2003.01712.x |
[43] |
TANG H J, WATANABE K, MITSUNAGA T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, 2002, 49(2):217-224.
doi: 10.1016/S0144-8617(01)00329-0 |
[44] |
GEERA B P, NELSON J E, SOUZA E, HUBER K C. Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chemistry, 2006, 83(5):551-557.
doi: 10.1094/CC-83-0551 |
[45] |
LIN L S, GUO D W, HUANG J, ZHANG X D, ZHANG L, WEI C X. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 2016, 58:246-254.
doi: 10.1016/j.foodhyd.2016.03.001 |
[46] |
RAMADOSS B R, GANGOLA M P, AGASIMANI S, JAISWAL S, VENKATESAN T, SUNDARAM G R, CHIBBAR R N. Starch Granule size and amylopectin chain length influence starch in vitro enzymatic digestibility in selected rice mutants with similar amylose concentration. Journal of Food Science and Technology, 2019, 56(1):391-400. doi: 10.1007/s13197-018-3500-8.
doi: 10.1007/s13197-018-3500-8 |
[1] | WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217. |
[2] | JIA Feng, GUO YuRong, YANG Xi, LIU Dong, LI Jie. Isolation and Purification of Polysaccharide from Fermented Apple Pomace and Its Relationship with Processing Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(10): 1873-1884. |
[3] | JIA Feng,GUO Yu-rong, LIU Dong, YANG Xi, DENG Hong, MENG Yong-hong. Effect of Fermentation on the Polysaccharides Processing Characteristics in Apple Pomace [J]. Scientia Agricultura Sinica, 2016, 49(19): 3831-3844. |
[4] | WANG Chun-Qing-1, LI Xia-1, ZHANG Chun-Hui-1, CHEN Xu-Hua-1, SUN Hong-Mei-1, LI Yin-1, LI Hai-1, HE Lei-Tang-2. Study on Relationship Between Myofibril Characteristics and Meat Quality of Chicken Raw Meat [J]. Scientia Agricultura Sinica, 2014, 47(10): 2003-2012. |
|