Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4104-4117.doi: 10.3864/j.issn.0578-1752.2022.21.002

Previous Articles     Next Articles

Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality

XIANG YuTing1(),WANG XiaoLong1,HU XinZhong1,*(),REN ChangZhong2,GUO LaiChun2,LI Lu3   

  1. 1College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
    2Baicheng Academy of Agricultural Sciences/China Oat and Buckwheat Research Center, Baicheng 137000, Jilin
    3Guilin Seamild Foods Co., Ltd., Guilin 541004, Guangxi
  • Received:2022-06-03 Accepted:2022-08-15 Online:2022-11-01 Published:2022-11-09
  • Contact: XinZhong HU E-mail:xyt980907@163.com;hxinzhong@126.com

Abstract:

【Objective】This study explored the differences and causes of oat lipase activity of different varieties. Providing a theoretical basis for screening varieties with low lipase activity and achieving stable enzyme inactivation effect of oat products. 【Method】Six main varieties of three main oat planting regions were selected for the study, and their lipase activity, nutritional indexes, physical traits, and agronomic indexes were measured. To answer the differences in lipase activity of oat varieties, the indicators significantly related to oat lipase were screened by correlation analysis. Through cluster analysis, classified multiple oat samples by lipase activity. Transform data having correlations into composite variables for statistical analysis by principal component analysis. To derive a predictive model for lipase activity, an analytical method combining gray correlation and multiple stepwise regression was used. The indicators correlating with lipase activity were used as independent variables, and the lipase activity was used as dependent variables for quantitative model fitting. 【Result】Lipase activity was significantly positively correlated with crude fat content (r=0.32, P<0.05), and the various trends of fat content, unsaturated fatty acid content, lipase activity, and acid value were consistent. Lipase activity was significantly positively correlated with crude protein content (r=0.46, P<0.01), and the higher lipase activity was, the higher percentage of electrophoretic bands located in 31-43 kD were. It was significantly negatively correlated with grain test weight (r=-0.71, P<0.01) and positively associated with growth period (r=0.37, P<0.01). Baiyan 18 and Diyan 1 had low lipase activity and high nutrition varieties according to grey relational analysis, and the relevance value with ideal variety X0 were 0.951 and 0.883, respectively. Stepwise regression analysis only retained the test weight and protein content as independent variables. The prediction model of lipase activity was established as Y=720.274-2.255×test weight (g·L-1)+75.761× protein content (%), P<0.01, R2=0.658.【Conclusion】The varieties had significant effects on oat lipase activity. Protein content, fat content, test weight, and growth period were the main influencing factors of oat lipase activity. Grey relational analysis combined with stepwise regression analysis could be used to comprehensively evaluate oat varieties effectively and quickly select varieties with low lipase activity.

Key words: oat varieties, planting area, lipase activity, correlation analysis, prediction model

Table 1

Environmental information of oat planting sites (2019)"

种植地
Planting region
经度
Longitude (°)
纬度
Latitude (°)
海拔
Altitude (m)
平均气温
Average temperature (℃)
平均降水量
Average precipitation (mm)
山西右玉 Youyu, Shanxi 112.45 40.00 1345.8 5.0 472.3
甘肃通渭 Tongwei, Gansu 104.37 35.57 2450.2 5.5 605.2
河北张北 Zhangbei, Hebei 114.73 41.13 1600.0 4.7 502.1

Table 2

Results of quality indicators of oat grains of different varieties"

品种
Variety
营养指标(干基)Nutritive index (dry) 物理指标Physical index 脂肪酶活性
Lipase activity (µmol·h-1·g-1)
生育期
Period of
duration (d)
粗脂肪
Crude lipid (%)
粗蛋白
Crude protein (%)
粗淀粉
Crude starch (%)
β-葡聚糖
β-glucan (%)
千粒重
Thousand seed weight (g)
容重
Test weight (g·L-1)
平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异
系数
SV
平均值
Mean
变幅
Range
变异系数SV 平均值
Mean
变幅
Range
变异系数SV
迪燕1号
Diyan 1
6.62a 6.17-
6.99
3.92 14.44ab 14.20-
14.70
1.04 61.47b 60.20-
62.37
1.40 4.06a 3.73-
4.39
4.93 27.11c 25.64-
27.97
2.95 720.57ab 695.25-
740.05
2.49 168.31ab 83.23-
235.64
39.10 99b 82-
108
12.70
魏都莜5号
Weiduyou 5
6.55a 6.16-
6.97
4.48 14.87bc 14.23-
15.31
3.03 60.37ab 58.53-
62.01
1.97 4.41b 4.23-
4.60
3.17 23.92b 22.49-
26.13
5.48 729.24b 712.00-
748.40
1.90 206.02abc 122.29-
334.00
43.62 89ab 76-
101
12.20
晋燕17号
Jinyan 17
6.12a 5.41-
6.57
6.80 14.99c 14.39-
15.81
3.27 59.38a 58.40
-60.10
0.98 4.82c 4.32-
5.22
6.85 24.50b 23.51-
24.87
2.00 727.19b 708.65-
741.83
1.87 220.91bc 86.90-
310.93
45.71 91ab 79-
104
12.02
张莜9号
Zhangyou 9
6.54a 5.79-
7.71
11.65 14.58bc 13.63-
15.30
4.80 60.45ab 58.69-
62.75
2.45 4.73c 4.18-
5.51
12.26 26.73c 25.62-
27.95
2.62 706.26a 670.30-
726.65
3.27 274.90c 161.01-
387.16
34.09 101b 93-
109
6.90
坝莜18号
Bayou18
6.68a 5.79-
8.25
15.13 14.11a 13.37-
14.65
3.83 61.59b 57.30-
67.21
6.77 4.81c 4.61-
5.03
3.33 26.43c 24.10-
29.44
7.98 703.10a 659.00-
739.10
4.77 163.20ab 84.24-
303.46
67.40 99b 88-
104
8.11
白燕18号
Baiyan18
6.19a 5.02-
6.73
10.53 14.82bc 14.58-
15.20
1.21 60.46ab 58.76-
61.76
1.90 4.78c 4.51-
5.39
6.07 21.27a 19.93-
21.81
2.82 768.66c 764.70-
774.65
0.42 120.74a 77.83-
168.11
28.82 83a 66-
100
17.68

Fig. 1

Lipase activity cluster analysis of oat varieties SX: Shanxi; GS: Gansu; HB: Hebei. The same as below"

Fig. 2

Correlation analysis of oat lipase activity and quality properties * P<0.05, ** P<0.01. The lower left part represents the correlation coefficient, the upper right part represents the correlation (red means positive correlation, and blue means negative correlation). The same as below"

Table 3

Content and property of oat lipid in different varieties"

产地
Planting region
品种
Variety
脂肪含量
Lipid content
(%)
不饱和脂肪酸含量
Unsaturated fatty acid content (%)
酸值
Acid value
(mg KOH/100 g)
脂肪酶活性
Lipase activity (µmol·h-1·g-1)
山西右玉
Youyu, Shanxi
迪燕1号 Diyan 1 6.83±0.13f 78.30±0.16cd 50.67±0.44j 185.74±13.91d
魏都莜5号 Weiduyou 5 6.74±0.15f 78.37±0.23cd 43.63±0.20f 126.35±6.04b
晋燕17号 Jinyan 17 6.36±0.19cde 78.74±0.11de 54.24±0.40m 265.24±11.04f
张莜9号 Zhangyou9 6.25±0.15cd 78.78±0.13de 47.46±0.19h 171.29±8.91c
坝莜18号 Bayou18 5.65±0.26b 77.75±0.31a 38.73±0.24c 87.15±2.67a
白燕18号 Baiyan18 6.65±0.08ef 78.24±0.31bc 48.36±0.08i 161.80±6.60c
平均值 Mean 6.45±0.36 78.34±0.36 47.18±5.11 166.26±56.97
甘肃通渭
Tongwei, Gansu
迪燕1号 Diyan1 6.34±0.19cd 78.36±0.43cd 46.06±0.25g 233.59±1.93e
魏都莜5号 Weiduyou5 6.21±0.06c 78.35±0.12cd 53.12±0.23l 322.90±13.22h
晋燕17号 Jinyan17 6.38±0.21cde 78.51±0.01cde 56.72±0.61n 308.62±2.09g
张莜9号 Zhangyou9 5.86±0.06b 77.85±0.11ab 52.22±0.18k 386.98±0.24i
坝莜18号 Bayou18 8.01±0.22h 78.74±0.05de 61.14±1.25o 309.76±5.67g
白燕18号 Baiyan18 6.55±0.12def 77.53±0.22a 41.22±0.30e 117.83±8.20b
平均值 Mean 6.56±0.71 78.22±0.43 51.75±6.77 279.95±87.75
河北张北
Zhangbei, Hebei
迪燕1号 Diyan1 6.69±0.13f 78.51±0.18cde 40.47±0.14d 85.60±4.05a
魏都莜5号 Weiduyou5 6.70±0.25f 78.96±0.21e 45.66±0.31h 168.80±2.05c
晋燕17号 Jinyan17 5.62±0.24b 78.45±0.24cd 37.93±0.08b 88.86±2.84a
张莜9号 Zhangyou9 7.52±0.22g 78.65±0.15cde 54.60±0.29m 266.43±2.96f
坝莜18号 Bayou18 6.19±0.08c 77.75±0.02a 40.43±0.18d 92.69±2.22a
白燕18号 Baiyan18 5.34±0.28a 77.67±0.18a 36.02±0.07a 82.58±4.53a
平均值 Mean 6.34±0.77 78.30±0.50 42.52±6.34 130.84±69.60

Fig. 3

Correlation analysis of the lipid-related indicators of different varieties"

Fig. 4

SDS-PAGE profiles of oat proteins in different varieties and regions GV2 is the total gray value of each lane; GV1 is the gray value of 31-43 kD; A: Shanxi; B: Gansu; C: Hebei; 1: Zhangyou 9, 2: Weiduyou 5, 3: Bayou 18, 4: Baiyan 18; 5: Jinyan 17; 6: Diyan 1"

Fig. 5

PCA of oat variety quality index D1: Diyan 1; W5: Weiduyou 5; J17: Jinyan 17; Z9: Zhangyou 9; Ba18: Bayou 18; B18: Baiyan 18. The same color points represent the same variety of oats"

Table 4

X0 values in grey relation analysis"

理想品种
Ideal variety
蛋白质
Protein
(%)
脂肪
Lipid
(%)
淀粉
Starch
(%)
β-葡聚糖
β-glucan
(%)
容重
Test weight (g·L-1)
千粒重
Thousand seed weight (g)
生育期
Period of duration (d)
脂肪酶活性
Lipase activity (µmol·h-1·g-1)
X0 14.99 6.68 61.59 4.82 768.66 27.11 94 120.77

Table 5

The correlation coefficient and correlation degree of oat variety with X0"

指标
Indicator
迪燕1号
Diyan 1
魏都莜5号
Weiduyou 5
晋燕17号
Jinyan 17
张莜9号
Zhangyou 9
坝莜18号
Bayou 18
白燕18号
Baiyan 18
蛋白Protein 0.992 0.992 0.991 0.977 0.991 0.999
脂肪Lipid 0.999 0.995 0.988 0.991 0.999 0.995
淀粉Starch 0.996 0.955 0.932 0.917 0.984 0.999
β-葡聚糖β-glucan 0.989 0.992 0.997 0.993 1.000 1.000
容重Test weight 0.569 0.512 0.474 0.356 0.556 0.839
千粒重Thousand seed weight 0.999 0.944 0.948 0.963 0.998 0.924
生育期Period of duration 0.932 0.903 0.906 0.985 0.906 0.882
脂肪酶活性Lipase activity 0.584 0.456 0.422 0.334 0.593 0.971
关联度Correlation 0.883 0.844 0.832 0.814 0.878 0.951
排名Rank 2 4 5 6 3 1

Table 6

Stepwise regression analysis results"

变量
Variable
系数
B
标准误差
SD
t检验值
t
<BOLD>显著性</BOLD>
<BOLD>P</BOLD>
模型
Model
拟度优合R2
常量Constant 720.274 297.507 2.421 0.019 Y=720.274-2.255×容重+75.761×蛋白质含量 0.658
容重Test weight (g·L-1) -2.255 0.268 -8.408 0.000
蛋白质含量Protein content (%) 75.761 14.547 5.208 0.000

Table 7

Validation of stepwise regression model"

品种
Variety
脂肪酶活性测定值Measurement value of lipase activity (µmol·h-1·g-1) 排序
Rank
脂肪酶活性预测值
Predictive value of lipase activity (µmol·h-1·g-1)
排序
Rank
误差
Error (%)
迪燕1号Diyan 1 168.31 5 189.20 5 12.41
魏都莜5号Weiduyou 5 206.01 3 202.64 4 1.64
晋燕17号Jinyan 17 220.91 2 215.85 2 2.29
张莜9号Zhangyou 9 274.90 1 232.59 1 15.39
坝莜18号Bayou 18 163.20 4 203.58 3 24.74
白燕18号Baiyan 18 120.77 6 109.72 6 9.15
[1] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
REN C Z, HU Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013. (in Chinese)
[2] 周素梅, 申瑞玲. 燕麦的营养及其加工利用. 北京: 化学工业出版社, 2009.
ZHOU S M, SHEN R L. Nutrition and Processing and Utilization of Oats. Beijing: Chemical Industry Press, 2009. (in Chinese)
[3] 胡新中, 魏益民, 任长忠. 燕麦品质与加工. 北京: 科学出版社, 2009.
HU X Z, WEI Y M, REN C Z. Oat Quality and Processing. Beijing: Science Press, 2009. (in Chinese)
[4] 戚向阳, 曹少谦, 刘合生, 陈伟. 不同品种燕麦的油脂组成及与其它营养物质相关性研究. 中国食品学报, 2014, 14(5): 63-71.
QI X Y, CAO S Q, LIU H S, CHEN W. Studies on the lipid composition of different oat varieties and its relationship with other nutrients. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 63-71. (in Chinese)
[5] JUNG H, MOON S J. Purification,distribution, and characterization activity of lipase from oat seeds (Avena sativa L.). Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(6): 639-645.
[6] ANGAJALA G, PAVAN P, SUBASHINI R. Lipases: An overview of its current challenges and prospective in the revolution of biocatalysis. Biocatalysis and Agricultural Biotechnology, 2016, 7: 257-270.
[7] 李兴军. 谷物及其加工品脂肪酶解的生化机制. 粮食科技与经济, 2012, 37(6): 55-58.
LI X J. Enzymic degradation of lipids in cereal and their products. Grain Science and Technology and Economy, 2012, 37(6): 55-58. (in Chinese)
[8] 林伟静, 吴广枫, 李春红, 王燕, 周素梅. 品种与环境对我国裸燕麦营养品质的影响. 作物学报, 2011, 37(6): 1087-1092.
LIN W J, WU G F, LI C H, WANG Y, ZHOU S M. Effects of cultivar and environment on nutritional quality of Chinese naked oats. Acta Agronomica Sinica, 2011, 37(6): 1087-1092. (in Chinese)
[9] 曹品豹. 燕麦油脂及在燕麦发芽过程中的变化和微胶囊化制备工艺[D]. 武汉: 华中农业大学, 2009.
CAO P B. Lipids of oat, their changes during germination and preparation technics of microencapsulation[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[10] ZIEGLER V, FERREIRA C D, DA SILVA J, ZAVAREZE E D R, DIAS A R G, OLIVEIRA M D, ELIAS M C. Heat-moisture treatment of oat grains and its effects on lipase activity and starch properties. Starch-Stärke, 2018, 70(1/2): 1700010.
[11] GAO Y C, WANG L L, QIU J, BAI G L, LI Z G. Effects of different lipase inactivation treatments on physicochemical properties of naked oat globulins. Cereal Chemistry, 2016, 93(3): 248-254.
[12] 胡新中, 罗勤贵, 欧阳韶晖, 郑建梅, 张国权. 裸燕麦酶活性抑制方法及品质比较. 中国粮油学报, 2006(5): 46-50.
HU X Z, LUO Q G, OUYANG S H, ZHENG J M, ZHANG G Q. Comparison of naked oat stabilizing methods and their quality effect. Journal of the Chinese Cereals and Oils Association, 2006(5): 46-50. (in Chinese)
[13] 刘婷玉, 佟立涛, 王丽丽, 周素梅, 刘丽娅. 燕麦籽粒不同灭酶方式对燕麦乳稳定性和营养物质的影响. 中国粮油学报, 2021, 36(10): 22-28.
LIU T Y, TONG L T, WANG L L, ZHOU S M, LIU L Y. Effects of different enzyme inactivating modes on the stability and nutrients of oat milk. Journal of the Chinese Cereals and Oils Association, 2021, 36(10): 22-28. (in Chinese)
[14] 甄红敏, 栾广忠, 胡新中, 张培培, 徐超, 郑建梅. 灭酶方法对燕麦淀粉和蛋白质体外消化特性的影响. 麦类作物学报, 2011, 31(3): 475-479.
ZHEN H M, LUAN G Z, HU X Z, ZHANG P P, XU C, ZHENG J M. Effects of different lipase deactivated treatments on in vitro starch and protein digestibility of oat whole meal. Journal of Triticeae Crops, 2011, 31(3): 475-479. (in Chinese)
[15] 倪香艳, 顾军强, 钟葵, 佟立涛, 刘丽娅, 周素梅. 燕麦品种的品质性状及聚类分析. 中国粮油学报, 2016, 31(10): 18-24.
NI X Y, GU J Q, ZHONG K, TONG L T, LIU L Y, ZHOU S M. Quality characteristics of oat cultivars and cluster analysis. Journal of the Chinese Cereals and Oils Association, 2016, 31(10): 18-24. (in Chinese)
[16] KWON D Y, RHEE J S. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists’ Society, 1986, 63(1): 89-92.
[17] 胡新中. 燕麦的酶活性及其食品加工中抑制工艺研究[D]. 杨凌: 西北农林科技大学, 2007.
HU X Z. Oat enzyme activity and its deactivation for food processing[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
[18] 卢丹, 张文婷, 赵武奇, 胡新中, 李小平. 超临界CO2萃取燕麦油工艺研究. 中国油脂, 2018, 43(4): 1-6.
LU D, ZHANG W T, ZHAO W Q, HU X Z, LI X P. Supercritical CO2 extraction of oat oil. China Oils and Fats, 2018, 43(4): 1-6. (in Chinese)
[19] 石珂心, 赵武奇, 谷如祥, 张文婷. 超临界CO2萃取樱桃仁油及GC-MS分析. 中国粮油学报, 2016, 31(1): 60-64+69.
SHI K X, ZHAO W Q, GU R X, ZHANG W T. The supercritical carbon dioxide fluid extraction of cherry kernel oil and analysis by GC-MS. Journal of the Chinese Cereals and Oils Association, 2016, 31(1): 60-64+69. (in Chinese)
[20] 刘建垒. 燕麦蛋白的提取及其亚基与功能特性研究[D]. 晋中: 山西农业大学, 2013.
LIU J L. Oat protein isolatie: Extraction, protein subunits and functional properties[D]. Jinzhong: Shanxi Agricultural University, 2013. (in Chinese)
[21] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680-685.
[22] 王建芳, 高山, 牟德华. 基于主成分分析和聚类分析的不同品种燕麦品质评价. 食品工业科技, 2020, 41(13): 85-91.
WANG J F, GAO S, MOU D H. Quality evaluation of different varieties of oat based on principal components analysis and cluster analysis. Science and Technology of Food Industry, 2020, 41(13): 85-91. (in Chinese)
[23] 王青, 戴思兰, 何晶, 季玉山, 王朔. 灰色关联法和层次分析法在盆栽多头小菊株系选择中的应用. 中国农业科学, 2012, 45(17): 3653-3660.
WANG Q, DAI S L, HE J, JI Y S, WANG S. Application of grey correlation analysis and AHP method in selection of potted Chrysanthemum. Scientia Agricultura Sinica, 2012, 45(17): 3653-3660. (in Chinese)
[24] 李诗炜. 熟化谷物粉在储藏过程中的氧化及其评价指标分析[D]. 无锡: 江南大学, 2017.
LI S W. Analysis of oxidation and evaluation indexes of instant cereal flours during storage[D]. Wuxi: Jiangnan University, 2017. (in Chinese)
[25] MIRMOGHTADAIE L, KADIVAR M, SHAHEDI M. Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chemistry, 2009, 114(1): 127-131.
[26] 管骁, 姚惠源. 燕麦麸蛋白的组成及功能性质研究. 食品科学, 2006, 27(7): 72-76.
GUAN X, YAO H Y. Composition and functional properties of oat bran protein. Food Science, 2006, 27(7): 72-76. (in Chinese)
[27] URQUAHART A A, ALTOSAAR I, MATLASHEWSKI G J. Localization of lipase activity in oat grains and milled oat fractions. Cereal Chemistry, 1983, 60(2): 181-183.
[28] KUMAR L, SEHRAWAT R, KONG Y Z. Oat proteins: A perspective on functional properties. LWT- Food Science and Technology, 2021, 152: 112307.
[29] YU C W, ZHENG L F, CHENG M Y, YU X Y, WANG S Y, FAN Y W, DENG Z Y. Purification, identification, characterization and catalytic mechanism of two lipases from rice bran (Oryza sativa). LWT- Food Science and Technology, 2021, 140: 110693.
[30] 车海先, 李海玉. 玉米容重影响因素浅析. 粮食与食品工业, 2011, 18(1): 56-58+61.
CHE H X, LI H Y. Analysis of influencing factors on maize test weight. Cereal & Food Industry, 2011, 18(1): 56-58+61. (in Chinese)
[31] PETERSON D M. Lipase activity and lipid metabolism during oat malting. Cereal Chemistry, 1999, 76: 159-163.
[32] 任长忠, 杨才. 中国燕麦品种志. 北京: 中国农业出版社, 2018.
REN C Z, YANG C. Oat Varieties of China. Beijing: China Agriculture Press, 2018. (in Chinese)
[33] 李涵鑫, 李小平, 马蓁, 李俊俊, 胡新中, 任长忠. 燕麦籽粒特性与理化及加工品质特性的关系. 麦类作物学报, 2015, 35(4): 499-507.
LI H X, LI X P, MA Z, LI J J, HU X Z, REN C Z. Relationships between oat kernel, physicochemical and processing parameters. Journal of Triticeae Crops, 2015, 35(4): 499-507. (in Chinese)
[34] HU X Z, WEI Y M, REN C Z, ZHAO J. Relationship between kernel size and shape and lipase activity of naked oat before and after pearling treatment. Journal of the Science of Food and Agriculture, 2009, 89(8): 1424-1427.
[35] MEL R, MALALGODA M. Oat protein as a novel protein ingredient: Structure, functionality, and factors impacting utilization. Cereal Chemistry, 2021, 99(1): 21-36.
[36] 赵春, 宁堂原, 焦念元, 韩宾, 李增嘉. 基因型与环境对小麦籽粒蛋白质和淀粉品质的影响. 应用生态学报, 2005(7): 1257-1260.
ZHAO C, NING T Y, JIAO N Y, HAN B, LI Z J. Effects of genotype and environment on protein and starch quality in wheat grain. Chinese Journal of Applied Ecology, 2005(7): 1257-1260. (in Chinese)
[37] 金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响. 作物学报, 2019, 45(4): 635-644.
JIN X X, YAO Y R, JIA X L, YAO H P, SHEN H P, CUI Y Z, LI Q. Effects of genotype and environment on wheat yield, quality and nitrogen use efficiency. Acta Agronomica Sinica, 2019, 45(4): 635-644. (in Chinese)
[38] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳, 肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45(9): 1703-1713.
WU H, HOU L L, ZHOU Y F, FAN Z C, SHI J Y, A L Y, ROU Z, ZHANG J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713. (in Chinese)
[1] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[2] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[3] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[4] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[5] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[6] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[7] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[8] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[9] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[10] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[11] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[12] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[13] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[14] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
[15] ZHU ZiJian,CHEN SiYu,SU Jun,TAO YongSheng. Correlation Analysis Between Amino Acids and Fruity Esters During Spine Grape Fermentation [J]. Scientia Agricultura Sinica, 2020, 53(11): 2272-2284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!