Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4294-4303.doi: 10.3864/j.issn.0578-1752.2022.21.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region

DONG MingMing1(),ZHAO FanFan1,GE JianJun2,ZHAO JunLiang2,WANG Dan1,XU Lei1,ZHANG MengHua1,ZHONG LiWei1,HUANG XiXia1(),WANG YaChun3()   

  1. 1College of Animal Science, Xinjiang Agricultural University, Urumqi 830052
    2Xinjiang Hutubi Cattle Breeding Farm, Hutubi 831203, Xinjiang
    3College of Animal Science and Technology, China Agricultural University, Beijing 100193
  • Received:2021-09-01 Accepted:2021-12-17 Online:2022-11-01 Published:2022-11-09
  • Contact: XiXia HUANG,YaChun WANG E-mail:1391962589@qq.com;au-huangxixia@163.com;wangyachun@cau.edu.cn

Abstract:

【Objective】 Milk production and longevity are important traits in dairy cattle breeding. In recent years, the high milk yield has been pursued in dairy cattle breeding, while longevity has been declining. With the development of balanced breeding, the longevity traits were gradually included into the comprehensive selection index of dairy cows in developed countries. The purpose of this study was to explore the relationship between milk yield and longevity of dairy cows, and to provide the reference for Xinjiang region to develop the comprehensive selection index of Holstein dairy cows in China, so as to achieve balanced breeding and high-quality healthy development of dairy industry. 【Method】 The production records of three large-scale dairy farms in Xinjiang from 1997 to 2020 were collected, and the herd life and production life were calculated. The longevity records of 7 206 dairy cows and first parity 305 d milk yield of 15 218 first fetuses were obtained. A total of 18 183 pieces of pedigree information from three generations of individuals were collected, including 903 bulls and 20 883 cows. Firstly, the GLM process of SAS 9.2 software was used to analyze the effects of field, birth year, birth season and age at first calving on the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang region, and the least square mean values of the herd days, productive life and the first parity 305 d milk were calculated. SPSS 19.0 software was used to calculate the Pearson correlation coefficient between the number of herd days, production life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang. Secondly, the genetic variance and covariance of herd days, productive life and first parity 305 d milk yield of Holstein dairy cows in Xinjiang were estimated by using AI-REML in DMU software combined with EM algorithm and multi-trait animal model, and the genetic correlation between herd days, productive life and first parity 305 d milk yield was calculated. Finally, the breeding values of the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang region were estimated by animal model BLUP method, and the genetic trend chart was drawn. 【Result】 The results of basic statistical analysis on the days in the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cows in Xinjiang showed that the average herd days of Chinese Holstein cows in Xinjiang was 1 754.7 days, the average production life was 937.33 days, and the average first parity 305 d milk yield was 9 362.94 kg. GLM program analysis showed that the effects of different fields, birth year, birth season and age at first calving had significant effects on herd days, productive life and first parity 305 d milk yield (P<0.01). The heritability of herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang was 0.11 (0.03), 0.11 (0.03) and 0.33 (0.03), respectively. The genetic and phenotypic correlations between herd days span and productive life span were 0.99 and 0.98, respectively. There was a positive correlation between first parity 305 d milk yield and the phenotypes of herd days and production life, with correlation coefficients of 0.079 and 0.077, respectively, while genetic correlation was negative, with correlation coefficients of -0.18 and -0.20, respectively. The genetic trend chart of the herd days, the productive life and the first parity 305 d milk yield of Holstein in Xinjiang showed that the breeding values of the herd days and the productive life changed greatly with the increase of the number of cattle tested, and the overall trend decreased. The first parity 305 d milk yield of Holstein cattle in the first foetus also changed greatly with the increase of the number of cattle tested, but showed an overall upward trend.【Conclusion】 Therefore, the longevity of dairy cows should be considered while improving milk yield, so as to avoid the decline of longevity of dairy cows with the increase of milk yield.

Key words: first parity 305 d milk yield, herd days, production life, heritability, genetic correlation

Table 1

The items and criterion of data quality control"

编号 Number 质控项目 Program quality control 保留标准 Retention standard
1 头胎产犊日龄 Day of first calving >600天 >600 days
2 牧场筛选 Farm screening 记录数>100;记录年份>3年 Record count > 100; record year > 3 years
3 在群天数 Herd days ≥20月龄 ≥ 20 age of the month
4 生产寿命 Production life ≥1天 ≥ 1day
5 头胎305 d产奶量 First parity 305 d milk yield 3428.11 kg—15169.51 kg

Table 2

Level division of effects"

水平 Level 中国荷斯坦牛 Chinese Holstein
场 Farm 1、2、3
出生年 Birth year 1、2、3、4、5、6
出生季 Birth season 1、2、3、4
初产月龄 Age at first calving 1、2、3、4、5、6、7、8、9、10

Table 3

Descriptive statistics of herd days, production life and first parity 305 d milk yield of Chinese Holstein"

项目
Item
均值
Mean
极大值
Maximum
极小值
Minimum
标准差
SD
在群天数Herd days (d) 1745.70 6734 702 618.72
生产寿命Production life (d) 937.33 5879 7 599.62
305 d产奶量 305 d milk yield (kg) 9362.94 14789 3400.87 1837.53

Fig. 1

Trend of herd days and production life with birth years of Chinese Holstein"

Fig. 2

Trend of first parity 305 d milk yield with birth years of Chinese Holstein"

Table 4

Significance test (F value) of factors affecting herd days and production life and first parity 305 d milk yield in Chinese Holstein"

项目
Item

Farm
出生年份
Birth year
出生季节
Birth season
初产月龄
AFC (Age at first calving)
在群天数Herd days (d) 58.79** 227.16** 15.82** 28.53**
生产寿命Production life (d) 58.89** 224.26** 15.06** 4.7**
305 d产奶量 305 d milk yield (kg) 202.38** 117.05** 5.71** 4.9**

Table 5

The least square mean and multiple comparison of herd days, production life and first parity 305 d milk yield of Chinese Holstein"

因素
Factor
在群天数Herd days (d) 生产寿命Production life (d) 305天产奶量 305 d milk yield (kg)
LSM±SE LSM±SE LSM±SE

Farm
1 1943.25±15.63Cc 1103.32±15.61Cc 9239.30±400.04Aa
2 2267.90±28.88Aa 1428.43±28.86Aa 8199.85±400.23Bb
3 2101.56±19.78Bb 1261.01±19.76Bb 8048.43±399.85Cc
出生年份
Birth year
1982-1993 2221.19±68.19Bb 1383.49±68.11Bb -
1994-1998 2345.29±31.44Bb 1504.25±31.41Bb -
1999-2003 2478.05±30.14Aa 1633.09±30.11Aa -
2004-2008 2348.39±25.52Bb 1506.38±25.50Bb -
2009-2013 1819.74±13.23Cc 980.60±13.22Cc 8514.73±66.52Bb
2014-2019 1412.80±15.48Dd 577.73±15.46Dd 9663.14±35.78Aa
出生季节
Birth season
春 Spring 2156.54±20.37Aa 1315.53±20.35Aa 8555.46±400.72ABa
夏 Summer 2104.58±19.37Ab 1265.22±19.35Ab 8558.61±400.45Aa
秋 Autumn 2037.65±19.4Bc 1199.42±19.38Bc 8344.47±400.62Cb
冬 Winter 2118.20±22.1Aab 1276.84±22.09Aab 8524.91±399.67Ba
初产月龄
Age at first calving (month)
20-22 1904.26±32.53Gf 1242.01±32.53Gce 8011.73±404.27Aa
23 2018.39±26.32Fd 1321.70±26.33FGab 8484.49±401.65Bb
24 1971.44±27.64FGef 1248.16±27.61Gcde 8481.70±402.04Bb
25 1983.78±25.55Ee 1234.23±25.54EFde 8532.83±401.28Bb
26 2000.38±23.76De 1219.93±23.74CDde 8595.09±402.68Bb
27 2061.12±22.87Cd 1254.54±22.86ABcde 8544.20±406.71Bb
28 2196.07±25.16Bc 1357.91±25.17Aa 8611.76±408.23Bb
29 2172.60±25.6BCc 1299.02±25.57BCabc 8527.14±408.69Bb
30-31 2219.00±23.78BCbc 1303.83±23.77CDabc 8450.65±404.64Bb
32-37 2266.31±26.26Bab 1276.39±26.23CDbcd 8487.41±407.58Bb
>37 2353.30±54.26Aa 1149.06±54.20DEe 8727.46±458.03Bb

Table 6

Genetic parameters of herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle"

项目 Item 在群天数 Herd day (d) 生产寿命 Production life (d) 305 d产奶量 305 d milk yield (kg)
在群天数Herd day (d) 0.11(0.03) 0.98** 0.079**
生产寿命Production life (d) 0.99 0.11(0.03) 0.077**
305 d产奶量 305 d milk yield (kg) -0.18 -0.20 0.33(0.03)

Fig. 3

Genetic trend of herd days and production life of Chinese Holstein"

Fig. 4

Genetic trend of first parity 305 d milk yield of Chinese Holstein"

[1] NORMAN H D, WRIGHT J R, HUBBARD S M, MILLER R H, HUTCHISON J L. Reproductive status of Holstein and Jersey cows in the United States. Journal of Dairy Science, 2009, 92(7):3517-3528.
[2] DOBSON H, SMITH R F, ROYAL M D, KNIGHT C H, SHELDON I M. The high-producing dairy cow and its reproductive performance. Reproduction in Domestic Animals, 2010, 42(2):17-23.
[3] CHEGINI A, SHADPARVAR A A, HOSSEIN-ZADEH N G, MOHAMMAD-NAZARI B. Genetic and environmental relationships among milk yield, persistency of milk yield, somatic cell count and calving interval in Holstein cows. Revista Colombiana de Ciencias Pecuarias, 2018.
[4] 赵晓铎, 许诗凡, 刘光磊. 北美奶牛育种指数变化及进展情况分析. 中国奶牛, 2016(7): 26-29. doi:10.19305/j.cnki.11-3009/s.2016.07.007
ZHAO X D, XU S F, LIU G L. The change and progress analysis of dairy cattle breeding index in North American. China Dairy Cattle, 2016(7): 26-29. doi:10.19305/j.cnki.11-3009/s.2016.07.007. (in Chinese)
[5] PRYCE J E, ROYAL M D, GARNSWORTHY P C, MAO I L. Fertility in the high-yielding dairy cow. Livestock Production Science. 2004, 86: 125-135.
[6] KNAUS W. Dairy cows trapped between performance demands and adaptability. Science of Food and Agriculture, 2009, 89: 1107-1114.
[7] VAN RADEN P M, SANDERS A H, TOOKER M E, MILLER R H, NORMAN H D, KUHN M T, WIGGANS G R. Development of a national genetic evaluation for cow fertility. Journal of Dairy Science. 2004, 87: 2285-2292.
[8] IRANO N, BIGNARDI A B, EL FARO L, SANTANA M L JR, CARDOSO V L, ALBUQUERQUE L G. Genetic association between milk yield, stayability, and mastitis in Holstein cows under tropical conditions. Tropical Animal Health and Production, 2014, 46: 529-535.
[9] 张海亮, 陈紫薇, 师睿, 田佳, 高旭红, 温万, 王雅春. 宁夏地区荷斯坦牛成母牛淘汰情况及长寿性影响因素分析. 中国畜牧兽医, 2021, 48(1): 200-208. doi:10.16431/j.cnki.1671-7236.2021.01.022.
ZHANG H L, CHEN Z W, SHI R, TIAN J, GAO X H, WEN W, WANG Y C. Analysis of culling characteristics and influencing factors of longevity in Holstein cows in Ningxia. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 200-208. doi:10.16431/j.cnki.1671-7236.2021.01.022. (in Chinese)
[10] 李想, 鄢新义, 罗汉鹏, 刘林, 郭刚, 王新宇, 王雅春. 不同模型估计中国荷斯坦牛生产寿命遗传参数. 畜牧兽医学报, 2019, 50(6): 1162-1170. doi:10.11843/j.issn.0366-6964.2019.06.006.
LI X, YAN X Y, LUO H P, LIU L, GUO G, WANG X Y, WANG Y C. Genetic parameters estimation for productive life of Chinese Holsteins by different models. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1162-1170. doi:10.11843/j.issn.0366-6964.2019.06.006. (in Chinese)
[11] 张文龙. 新疆三个品种牛泌乳曲线的分析及产奶量校正系数的制定[D]. 乌鲁木齐: 新疆农业大学, 2013.
ZHANG W L. The analysis of lactation curve and milk yield correction coefficient formulation on three varieties of cattle in Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese)
[12] 鄢新义, 刘澳星, 董刚辉, 郭刚, 王新宇, 刘林, 张胜利, 王雅春. 北京地区中国荷斯坦牛长寿性及其影响因素分析. 中国畜牧杂志, 2016, 52(23): 1-6.
YAN X Y, LIU A X, DONG G H, GUO G, WANG X Y, LIU L, ZHANG S L, WANG Y C. Analysis of longevity and its influencing factors in Chinese Holstein population in Beijing. Chinese Journal of Animal Science, 2016, 52(23): 1-6. (in Chinese)
[13] BERTHOLD M R, HPPNER F. On Clustering Time Series Using Euclidean Distance and Pearson Correlation. aiXiv preprint, 2016, 1601: 02213.
[14] 周明坤. 多性状BLUP法估计乳用种公牛育种值及预测精确度分析. 中国农业科学, 1991, 24(4): 75-80.
ZHOU M K. Multi-trait blup method estimates dairy sires` breeding values and their predicted accuracies. Scientia Agricultura Sinica, 1991, 24(4): 75-80. (in Chinese)
[15] IMBAYARWO-CHIKOSI V, DZAMA K, HALIMANI T, VAN WYK J, MAIWASHE A, BANGA C. Genetic prediction models and heritability estimates for functional longevity in dairy cattle. South African Journal of Animal Science, 2015, 45(2): 105-112.
[16] GONZÁLEZ-RECIO O, ALENDA R. Genetic relationship of discrete- time survival with fertility and production in dairy cattle using bivariate models. Genetics Selection Evolution, 2007, 39(4): 391. doi:10.1186/1297-9686-39-4-391.
[17] JAMROZIK J, FATEHI J, SCHAEFFER L R. Comparison of models for genetic evaluation of survival traits in dairy cattle: A simulation study. Journal of Animal Breeding & Genetics, 2008, 125(2): 75-83.
[18] VEERKAMP R F, BROTHERSTONE S, ENGEL B, MEUWISSEN, T H E. Analysis of censored survival data using random regression models. Animal Science, 2001, 72(1): 1-10.
[19] SASAKI O. Estimation of genetic parameters for longevity traits in dairy cattle: A review with focus on the characteristics of analytical models. Animal Science Journal, 2013, 84(6): 449-460.
[20] HOLTSMARK M, HERINGSTAD B, ØDEGÅRD J. Predictive abilities of different statistical models for analysis of survival data in dairy cattle. Journal of Dairy Science, 2009, 92(11): 5730-5738.
[21] 再娜古丽·君居列克, 塔西买买提·马合苏, 木古丽·木哈西, 黄锡霞, 张维, 刘丽元. 荷斯坦牛首次产犊日龄与305d产奶量遗传参数的评估. 家畜生态学报, 2017, 38(5):17-20.
ZAINAGULI J, TAXIMAIMAITI M, MUGULI M, HUANG X X, ZHANG W, LIU L Y. Estimation of genetic parameters for birth weight and first parity 305 days milk yield in Holstein dairy cows. Journal of Domestic Animal Ecology, 2017, 38(5): 17-20. (in Chinese)
[22] 周靖航, 叶东东, 黄锡霞, 马光辉, 葛建军, 帕尔哈提·木铁力甫, 焦阳, 刘丽元. 荷斯坦奶牛产奶量遗传力的估计. 新疆农业科学, 2013(1):170-174.
ZHOU J H, YE D D, HUANG X X, MA G H, GE J J, MAERHATI M, JIAO Y, LIU L Y. The heritability estimate of milk yield on Holstein milk cows. Xinjiang Agricultural Science, 2013(1): 170-174. (in Chinese)
[23] MONTALDO H H, CASTILLO-JUÁREZ H, VALENCIA POSADAS M, CIENFUEGOS-RIVAS E G, RUIZ-LÓPEZ F J. Genetic and environmental parameters for milk production,udder health, and fertility traits in Mexican Holstein cows. Journal of Dairy Science, 2010, 93: 2168-2175.
[24] TSURUTA S, MISZTAL I, LAWLOR T J. Changing definition of productive life in US Holsteins: Effect on genetic correlations. Journal of Dairy Science. 2005, 88: 1156-1165.
[25] PRITCHARD T, COFFEY M, MRODE R, WALL E. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal, 2013, 7: 34-46.
[26] CRUICKSHANK J, WEIGEL K A, DENTINE M R, KIRKPATRICK B W. Indirect prediction of herd life in guernsey dairy cattle. Journal of Dairy Science, 2002, 85(5): 1307-1313.
[27] WEIGEL K A, LAWLOR J T J, VANRADEN P M, WIGGANS G R. Use of linear type and production data to supplement early predicted transmitting abilities for productive life. Journal of Dairy Science, 1998, 81(7): 2040-2044.
[28] HAILE-MARIAM M, BOWMAN P J, GODDARO M E. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 2003, 80(3): 189-200.
[29] VUKASINOVIC N, MOLL J, KUNZI N. Genetic relationships among longevity, milk production, and type traits in Swiss Brown cattle. Livestock Production Science, 1995, 41(1): 11-18.
[30] 张海亮, 刘澳星, 米思远, 李想, 罗汉鹏, 鄢新义, 王雅春. 奶牛育种中的长寿性状. 中国农业科学, 2020, 53(19):4070-4082.
ZHANG H L, LIU A X, MI S Y, LI X, LUO H P, YAN X Y, WANG Y C. A review on longevity trait in dairy cattle breeding. Scientia Agricultura Sinica, 2020, 53(19):4070-4082. (in Chinese)
[31] 胥磊, 张梦华, 葛建军, 李琰, 张培大, 王祥旭, 尤震晨, 黄锡霞. 新疆昌吉地区某牛场奶牛淘汰原因与淘汰时泌乳天数关系研究. 中国畜牧杂志, 2020, 56(3):100-102+106.
XU L, ZHANG M H, GE J J, LI Y, ZHANG P D, WANG X X, YOU Z C, HUANG X X. Study on the relationship between cow culling causes and lactation days in a dairy farm in Changji, Xinjiang. Chinese Journal of Animal Science, 2020, 56(3): 100-102+106. (in Chinese)
[32] JAIRATH L K, HAYES J F, CUE R I. Multitrait restricted maximum likelihood estimates of genetic and phenotypic parameters of lifetime performance traits for Canadian Holsteins. Journal of Dairy Science, 1994, 77(1): 303-312.
[1] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[2] LI HuiXia,TIAN Gang,WANG YuWen,LIU Xin,LIU Hong. Genetic Correlation Coefficients of Foxtail Millet Traits Between Parents and Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(2): 239-246.
[3] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[4] ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
[5] DANG LiPing,ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng. Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628.
[6] GUO Jun,QU Liang,DOU TaoCun,WANG XingGuo,SHEN ManMan,HU YuPing,WANG KeHua. Using Random Regression Models to Estimate Genetic Parameters on Body Weights in Layers [J]. Scientia Agricultura Sinica, 2020, 53(11): 2297-2304.
[7] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[8] PAN Chen-1, HU Yan-2, BAO Man-Zhu-1, AI Ye-1, HE Yan-Hong-1. Analysis of Genetic Effects of the Cross Combinations of Tagetes patula [J]. Scientia Agricultura Sinica, 2014, 47(12): 2395-2404.
[9] GAN Zhi-cai,SHANG Lun-xue,LIU Yong,YU Yong-xiong
. Correlation Analysis of Agronomic Characters and Heritability of Saponins Content in Medicago sativa L.
[J]. Scientia Agricultura Sinica, 2010, 43(2): 259-265 .
[10] . The Studies on the Genetic Difference of Nitrogen Utilization Efficiency in Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2007, 40(3): 472-477 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!