Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (5): 919-932.doi: 10.3864/j.issn.0578-1752.2016.05.012

;

• HORTICULTURE • Previous Articles     Next Articles

Differential Protein Analysis of Tomato Leaves in Tomato-Potato Onion Intercropping System

LIU Shu-qin1,2, ZHOU Xin-gang1, WU Feng-zhi1, LIU Shou-wei1   

  1. 1Horticulture College, Northeast Agricultural University, Harbin 150030;
    2
    School of Life Science, Baicheng Normal University, Baicheng 137000, Jilin
  • Received:2015-04-27 Online:2016-03-01 Published:2016-03-01

Abstract: 【Objective】The objective of this study was to better understand the soil sickness mechanism of the tomato intercropped with four different allelopathic potential potato onions which has high yield and less plant diseases, obtain the differential expressed proteins of tomato leaves in tomato-potato onion intercropping system, and improve the foundation and extend of tomato cultivation mode.【Method】 A comparative proteome analysis was conducted to study the impact of tomatoes under normal monoculture and intercropping with four varieties of potato onion with different allelopathic potential (high allelopathic potential cultivars: ‘Suihua’, ‘Wuchanghongqishe’, and low allelopathic potential cultivars: ‘Ninganhongcheng’, ‘Qitaihe’). Total proteins were extracted from these tomato leaves, and subjected to two-dimensional electrophoresis, followed by MALDI-TOF-MS mass spectrometry. Types and functions of proteins differently expressed in the leaves were analyzed.【Result】The results showed that 39 proteins differently expressed in the leaves of intercropped tomato. These proteins were divided into main 7 categories, including proteins related to photosynthesis, metabolism, energy metabolism, plant resistance, protein synthesis, nucleic acid synthesis and unknown protein. The proteins showing a higher abundance were primarily involved in 11 photosynthesis proteins, 10 metabolic proteins and 8 plant resistance proteins discovered. The photosynthesis of intercropped tomato enhanced and resistance also increased. The expression levels of heat shock-related protein, thioredoxin peroxidase, polyphenoloxidase, sedoheptulose-1,7- bisphosphatase, S-adenosylmethionine synthase, ATP-binding protein increased in the leaves of intercropped tomato. Interestingly, the expression levels of these proteins from the tomato intercropped with potato onions with high allelopathic potentials were significantly higher than that intercropped with potato onions with low allelopathic potentials.【Conclusion】Our results showed that potato onion with different allelopathic potentials intercropped have different influences on tomato at the protein expression. The tomato intercropped with potato onions with high allelopathic potentials were stronger than tomato intercropped with potato onions with low allelopathic potentials, and is an effective way for promoting tomatoes healthy growth and better plant resistance.

Key words: tomato, potato onion, intercropping, differential protein

[1]    Liu S Q, Wu F Z. Allelopathic effects of root exudates of Chinese onion on tomato growth and the pathogen Fusarium oxysporum (Sch1) f.sp. lycopersici. Allelopathy Journal, 2013, 31(2): 387-403.
[2]    Gómez R E, Zavaleta M V A, González H M. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Research, 2003, 83(1): 27-34.
[3]    Campiglia R, Mancinelli E, Radicetti F. Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum Mill.). Crop Protection, 2010, 29(4): 354-363.
[4]    Cecílio Filho B, Bráulio L A R, Barbosa J C,Leilson C, Grangeiro L  C. Agronomic efficiency of intercropping tomato and lettuce. Anais da Academia Brasileira de Ciências, 2011, 83(3): 1109-1119.
[5]    杨丽丽, 郑伟. 设施蔬菜栽培连作障碍分析及综合防治. 山西农业科学, 2012, 40(8): 917-920, 924.
Yang L L, Zheng W. Analysis and comprehensive control for continuous cropping obstacles on vegetables facilities cultivation. Journal of Shanxi Agricultural Sciences, 2012, 40(8): 917-920, 924. (in Chinese) 
[6]    孙彩菊, 程智慧, 孟焕文, 董殷鑫, 温艳斌. 大棚番茄连续套蒜第3年作物生产和土壤养分分析. 西北农林科技大学学报: 自然科学版, 2014, 42(12): 102-110.
Sun C J, Cheng Z H, Meng H W, Dong Y X, Wen Y B. Analysis of crop production and soil nutrients after three years tomato garlic continuous intercropping under plastic tunnel. Journal of Northwest AF University: Natural Science Edition, 2014, 42(12): 102-110. (in Chinese)
[7]    孙彩菊, 闫伟明, 孟焕文, 程智慧. 连续套作大蒜对大棚番茄的生物效应. 西北农业学报, 2015, 24(3): 137-142.
Sun C J, Yan W M, Meng H W, Cheng Z H. Biological effect of garlic on tomato in successive inter planting patterns in plastic tunnel. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(3): 137-142. (in Chinese)
[8]    吴瑕, 吴凤芝, 周新刚. 蘖洋葱伴生对番茄矿质养分吸收及灰霉病发生的影响. 植物营养与肥料学报, 2015, 21(3): 734-742.
Wu X, Wu F Z, Zhou X G. Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 734-742. (in Chinese)
[9]    赵靖, 宋述尧, 赵春波, 张雪梅, 张越. 分蘖洋葱营养成分的保健作用与药用价值研究进展. 食品工业科技, 2013, 34(23): 365-367, 372.
Zhao J, Song S Y, Zhao C B, Zhang X M, Zhang Y. Research progress in health function and medicinal value of nutrient composition for tillered-onion. Science and Technology of Food Industry, 2013, 34(23): 365-367, 372. (in Chinese)
[10]   牛银银, 张二朋, 张硕, 梁笑辉, 方显明, 黄象男, 杨冬之. 盐胁迫下小麦叶片蛋白的双向电泳及图谱分析. 中国农学通报, 2013, 29(12): 44-48.
Niu Y Y, Zhang E P, Zhang S, Liang X H, Fang X M, Huang X G, Yang D Z. The analysis of two-dimensional electrophoresis maps for wheat leaf protein under salt stress. Chinese Agricultural Science Bulletin, 2013, 29(12): 44-48. (in Chinese)
[11]   Lglesias J, Trigueros M, Rojas-Triana M, Fernández M, Albar J P, Bustos R, Paz-Ares J, Rubio V. Proteomics identifies ubiquitin- proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. Journal of Proteomics, 2013, 94: 1-22.
[12]   Fercha A, Capriotti A L, Carusoa G, Cavalierea C, Gherrouchac H, Samperia R, Stampachiacchierea S, Lagana A. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. Journal of Proteomics, 2013, 91: 486-499.
[13]   Wang Y D, Wang X, Wong Y. Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. Journal of Proteomics, 2012, 75(6): 1849-1866.
[14]   Koehler G, Wilson R C, Goodpaster J V, Passarinho J, Ricardo C P. Proteomic study of low-temperature responses in strawberry cultivars (Fragariax ananassa) that differ in cold tolerance. Plant Physiology, 2012, 159(4): 1787-1805.
[15]   Xiong H, Shen H, Zhang L, Zhang Y, Guo X, Wang P, Duan P, Ji C, Zhong L, Zhang F, Zuo Y. Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. Journal of Proteomics, 2012, 78: 447-460.
[16]   林茂兹, 张志兴, 林争春, 尤垂怀, 曾令杰, 林文雄. 太子参连作障碍蛋白差异表达分析. 草业学报, 2010, 19(6): 197-207.
Lin M Z, Zhang Z X, Lin Z C, You C H, Zeng L J, Lin W X. Analysis of differential expression of proteins in replanting disease of Pseudostellaria heterophylla. Acta Prataculturae Sinica, 2010, 19(6): 197-207. (in Chinese)
[17]   Wang L Q, Ma H, Song L R, Shu Y J, Gu W H. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics, 2012, 75(7): 2109-2127.
[18]   Kim Y J, Lee S, Lee H M. Comparative proteomics analysis of seed coat from two black colored soybean cultivars during seed development. Plant Omics Journal, 2013, 6(6): 456-463.
[19] Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7(19): 3538-3557.
[20]   蔡永占, 周普雄, 李佛琳, 赵昶灵, 林春, 杨焕文, 毛自朝. 不同气候环境中团棵期烟草叶片蛋白质组学分析. 中国农业科学, 2013, 46(4): 859-870.
Cai Y Z, Zhou P X, Li F L, Zhao Y L, Lin C, Yang H W, Mao Z Z. Proteomic analysis of tobacco rosette stage leaves under different climatic conditions. Scientia Agricultura Sinica, 2013, 46(4): 859-870. (in Chinese)
[21]   Lundqvist T, Schneider G. Crystal structure of activated ribulose-1,5- bisphosphate carboxylase complexed with its substrate, ribulose-1,5- bisphosphate. Journal of Biological Chemistry, 1991, 266(19): 12604-12611.
[22]   刘彦荣, 康亚龙, 冉辉, 左俊祥, 郭轩贺, 蒋桂英.长期连作对加工番茄光合特性和产量的影响. 石河子大学学报: 自然科学版, 2015, 33(1): 54-59.
Liu Y R, Kang Y L, Ran H, Zuo J X, Guo X H, Jiang G Y. Effect of long-term continuous cropping system on leaf photosynthetic characteristics and yield of processing tomato. Journal of Shihezi University: Natural Science Edition, 2015, 33(1): 54-59. (in Chinese)
[23]   Yu J Q. Autotoxic potential of cucurbit crops: Phenomenon, chemicals, mechanisms and means to overcome. Journal of Crop Production, 2001, 4: 335-348.
[24]   张宝, 李烜桢, 冯法节, 古力, 张君毅, 张留记, 张重义. 地黄根系分泌物化感效应与酚酸类物质的关系研究. 中药材, 2015, 38(4): 54-59.
Zhang B, Li X Z, Feng F J, Gu L, Zhang J Y, Zhang L J, Zhang Z Y. Correlation of allelopathy of Rehmannia glutinosa root exudates and their phenolic acids contenrs. Journal of Chinese Medicinal Materials, 2015, 38(4): 54-59. (in Chinese)
[25]   Mackenzie P I, Owens I S, Burchell B, Bock K W, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum D W, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury J R, Ritter J K, Schachter H, Tephly T R, Tipton K F, Nebert D W. The UDP- glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmaco Genetics, 1997, 7(4): 255-269.
[26]   Hong Z L, Zhang Z M, Olson J M, Verma D P. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell, 2001, 13: 769-780.
[27]   Tami H, Bo Z. Plant mitochondria contain proteolytic and regulatory subunits of the ATP dependent Clp protease. Plant Molecular Biology, 2001, 45: 461-468.
[28]   Tara M S, Elena P. Distinctive types of ATP-dependent Clp proteases in Cyanobacteria. The Journal of Biological Chemistry, 2007, 282(19): 14394-14402.
[29]   Raines C A, Harrison E P, Olcer H, Lloyd J C. Investigating the role of the thiol regulated enzyme edoheptulose-1,7-bisphosphatase in the control of photosynthesis. Plant Physiology, 2000, 110: 303-308.
[30]   Witzell J, Kuusela T, Sarjala T. Polyamine profiles of heaithy and parasiteinfected Vaccinium myrtillus plants under nitrogen enrichment. Journal of Chemical Ecology, 2005, 31(3): 561-575.
[31]   Sharma S S, Dietz K J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Experimental Botany, 2006, 57(4): 711-726.
[32]   Galston A W, Sawhney R K. Polyamines in plant physiology. Plant Physiology, 1990, 94(2): 406-410.
[33]   Malabika R, Ray W. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 2002, 163(5): 987-992.
[34]   Makino Y, Yoshikawa N, Okamoto K, Hirota K, Yodoi J, Makino I, Tanaka H. Direct association with thioredoxin allows redox regulation of glucocorticoid rector function. The Journal of Biological Chemistry, 1999, 274: 3182-3188.
[35]   Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIFl alpha in response to hypoxia: Their stabilization and redox-signal-induced interaction with CBP/P300. The EMBO Journal, 1999, 18: 1905-1914.
[36]   Didier C, Kerblat I, Drouet C, Favier A, Béani J C, Richard M J. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative- mediated cell death in human skin fibroblasts. Free Radie Biology & Medicine, 2001, 31: 585-598.
[37]   Toledo O G, Huq E, Rodriguez C M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome- interacting factors. Proceedings of the National Academy of Sciences USA, 2010, 107 (25): 11626-11631.
[38]   宋浩, 丁伟, 沙伟, 周燕, 陈薇.不同烟草青枯病抗性品种的蛋白质组学比较. 中国烟草科学, 2011, 32(5): 70-76.
Song H, Ding W, Sha W, Zhou Y, Chen W. Comparative analysis of proteomics in tobacco cultivars with different ralstonia solanacearm resistance. Chinese Tobacco Science, 2011, 32(5): 70-76. (in Chinese)
[39]   Conklin P L. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell and Environment, 2001, 24: 383-394.
[40]   Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Science, 2001, 41: 18-44.
[41]   Hearn A S, Stroupe M E, Cabelli D E, Ramilo C A, Luba J P, Tainer J A, Nick H S, Silverman D N. Catalytic and structural effects of aminoacid substitution at histidine 30 in human manganese superoxide dismutase: insertion of valine C into the substrate access channel. Biochemistry, 2003, 42: 2781-2789.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[3] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[4] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[5] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[8] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[9] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[10] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[11] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[12] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
[13] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[14] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!