Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (15): 2891-2910.doi: 10.3864/j.issn.0578-1752.2015.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Exploration of Elite Alleles of Agronomic and Fiber Quality Traits in Xinluzao Cotton Varieties by Association Analysis

NIE Xin-hui1,2, YOU Chun-yuan2, BAO Jian2, LI Xiao-fang3, HUI Hui2, LIU Hong-liang2, QIN Jiang-hong2, LIN Zhong-xu1   

  1. 1National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070
    2 Cotton Institute, Shihezi Academy of Agricultural Sciences, Shihezi 832000, Xinjiang
    3Yangtze University, Jingzhou 434025, Hubei
  • Received:2015-03-24 Online:2015-08-01 Published:2015-08-01

Abstract: 【Objective】Discovery molecular markers associated with agronomic and quality fiber traits in Xinluzao cotton varieties and identification of allelic variation related to these traits and typical materials carrying elite alleles will lay a foundation of mocular design breeding for Xinluzao cotton varieties. 【Method】Seventy-five pairs of SSRs with high polymorphism and uniform distribution on 26 chromosomes were used to scan polymorphism in fifty-one Xinluzao cotton varieties, programming language R was applied to make boxplot for phenotypic traits in different environments, molecular marker data and 15 phenotypic traits were ananlyzed by the method of MLM(mixed linear model)in TASSEL software package on the basis of population structure and linkage disequilibrium analysis, the loci of elite allelic variation and typical materials carrying elite alleles were identified based on phenotypic effect values. 【Result】Fifty-one Xinluzao cotton varieties were divided into four subgroups by analysis of population genetic structure. The BLUP(Best linear unbiased prediction)analysis on fifteen phenotypic traits showed that five traits (first fruit section height, first fruit section pitch number, lint percentage, fiber upper half mean length, short fiber) were very stable and ten traits (plant height, fruit section pitch number, leaf branch number, effective boll number, seed weight lint weight, micronaire value, fiber strength, fiber uniformity, fiber elongation) had stable changing trends in four environments. Through association analysis, a total of one hundred and seventeen allelic variation loci associated with agronomic traits (P<0.05) were detected, the allelic variation loci with the maximum explanation rate for nine agronomic traits were BNL3650b (plant height, R2=11.78. First fruit section height, R2=20.80. First fruit section pitch number, R2=11.54), NAU3995c (fruit section pitch number, R2=14.86), BNL119b (leaf branch number, R2=9.7), NAU3995d (effective boll number, R2=14.98), BNL3255a (seed weight, R2=11.11), NAU1071a (lint weight, R2=10.15) and BNL663a (lint percentage, R2=12.42), repectively. A total of fifty-five allelic variation loci associated with fiber quality traits (P<0.05) were detected, the allelic variation loci with the maximum explanation rate for six fiber quality traits were NAU1103b (fiber upper half mean length, R2=6.4), NAU1071a (Fiber strength, R2=7.57), BNL3140b (micronaire value, R2=12.06), BNL3650b (fiber uniformity, R2=13.47), BNL1421a (short fiber,R2=13.04) and BNL2960b (fiber elongation, R2=11.67). A total of thirty-nine loci (P<0.01) significantly associated with agronomic (twenty-nine loci) and fiber quality (ten loci) traits were detected by association analysis, ranging from 6.45% to 20.8% for explanation rate of phenotypic variation; while, the average was 11.14%, and forty-seven loci related to more than two traits were detected. Seventeen typical materials with elite alleles were identified by phenotypic effect analysis. In this study, twenty-seven QTL reported in previous researches were detected, in which seven QTLs includingBNL3650 (FU), BNL3033 (MV), NAU3254 (FE), GH132 (LP), TMB1618 (FS), BNL1421 (FS,FU), and BNL119 (FE) associated with the same traits compared with the other reported results.【Conclusion】The original fifty-one Xinluzao cotton varieties have simple population genetic structure and low level of linkage disequilibrium, and the changing trend of phenotypic traits in two environmrnt was stable. The association analysis based on SSR revealed some elite alleles that related to agronomic and fiber quality traits and typical materials.

Key words: Xinluzao cotton varieties, agronomic traits, fiber quality, population structure, association analysis, allelic variation

[1]    孔繁玲. 植物数量遗传学. 北京: 中国农业大学出版社, 2005.
Kong F L. Quantitative Genetics in Plants. Beijing: China Agricultural University Press, 2005. (in Chinese)
[2]    Yu Y, Yuan D J, Liang S G, Li X M, Wang X Q, Lin Z X, Zhang X L. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics, 2011, 12(1): 1-14.
[3]    李夕梅. 棉花种间导入系的构建、新型标记的开发与高密度遗传图谱的构建[D]. 武汉: 华中农业大学, 2013.
Li X M. Construction of introgression lines, development of new markers, and construction of high-density genetic linkage map in cotton [D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[4]    Yuan N Z, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014, 195: 143-156.
[5]    Fang D D, Jenkins J N, Deng D D, McCarty J C, Li P, Wu J X. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2014, 15: 397.
[6]    郭玉平. 陆地棉产量、纤维品质等性状与SSR标记的关联分析[D]. 泰安: 山东农业大学, 2013.
Guo Y P. Association analysis between yield, fiber quality traits and SSR markers in upland cotton [D]. Tai’an: Shandong Agricultural University, 2013. (in Chinese)
[7]    Liu R Z, Ai N J, Zhu X X, Liu F J, Guo W Z, Zhang T Z. Genetic analysis of plant height using two immortalized populations of “CRI12×J8891” in Gossypium hirsutum L.. Euphytica, 2014, 195: 51-61.
[8]    贺道华, 邢宏宜, 赵俊兴, 李婷婷, 汤益, 曾舟. 棉花资源群体结构的推测与纤维品质的关联分析. 西北农林科技大学学报, 2011, 39(1): 103-112.
He D H, Xing H Y, Zhao J X, Li T T, Tang Y, Zeng Z. Speculation of population structure and association analysis of fiber quality in cotton. Journal of Northwest Agriculture and Forestry University, 2011, 39(1): 103-112. (in Chinese)
[9]    Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W. Mapping of verticillium wilt resistance genes in cotton. Plant Science, 2005, 168: 1581-1590.
[10]   Wang H M, Lin Z X, Zhang X L, Chen W, Guo X P. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. Journal of Integrative Plant Biology, 2008, 50(2): 174-182.
[11]   Jiang F, Zhao J, Zhou L, Guo W Z, Zhang T Z. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton. Science in China Series C: Life Sciences, 2009, 52(9): 872-884.
[12]   Fang H, Zhou H P, Sanogo S, Flynn R, Percy R G, Hughs S E, Ulloa M, Jones D C, Zhang J F. Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum ×Gossypium barbadense) based on RGA-AFLP analysis. Euphytica, 2013, 194: 79-91.
[13]   Zhao Y L, Wang H M, Chen W, Li Y H. Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. Plos One, 2013, 9(1): 1-15.
[14]   范术丽. 短季棉早熟性相关性状的遗传及其QTLs定位研究 [D]. 北京: 中国农业科学院, 2004.
Fan S L. Study on inheritance of earliness and it’s relative traits of short- season cotton and QTLs mapping[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[15]   艾尼江, 朱新霞, 管荣展, 赵建军, 张天真. 棉花生育期的主位点组遗传分析. 中国农业科学, 2010, 43(20): 4140-4148.
Ai N J, Zhu X X, Guan R Z, Zhao J J, Zhang T Z. Genetic analysis of major locus group constitutions of growth stages in upland cotton. Scientia Agricultura Sinica, 2010, 43(20) : 4140-4148. (in Chinese)
[16]   Stephens S G. The origin of sea island cotton. The United States: Agricultural History Society, 1976, 50(2): 391-399.
[17]   Poehlman J M. Breeding Field Crops. Springer Science Business Media New York :Van Nostrand Reinhold,1987: 556-591.
[18]   Wendel J F. Phylogenetics of the genus(Gossypium): Character-state weight parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Systematic Botany, 1992, 17(1): 115-143.
[19]   Nadia Korolev, Encarnacion P ´ erez-Art ´ es´, Jose Bejarano-Alc ´ azar ´, Dolores Rodr´?guez-Jurado, Jaacov Katan, Talma Katan1, Rafael M Jimenez-D ´ ´?az. Comparative study of genetic diversity and pathogenicity among populations of Verticillium dahliae from cotton in Spain and Israel. European Journal of Plant Pathology, 2001, 107: 443-456.
[20]   陈光. 我国陆地棉基础种质及其衍生品种的遗传多样性[D]. 北京: 中国农业科学院, 2005.
Chen G. Genetic diversity of basic germplasms and their offsprings of upland cotton in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2005. (in Chinese)
[21]   Kantartzi S K, Ulloa M, Sacks E, Stewart J M. Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica, 2009, 136: 141-147.
[22]   林忠旭. 棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位 [D]. 武汉: 华中农业大学, 2005.
Lin Z X. Linkage maps construction in cotton and QTL mapping for yield and fiber-related traits[D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)
[23]   He D H, Lin Z X, Zhang X L. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×G.barba- dense. Euphytica, 2007, 153: 181-197.
[24]   Wang B, Nie Y C, Lin Z X, Zhang X L, Liu J J, Bai J. Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum×G. darwinii Watt. Theoretical and Applied Genetics, 2012, 125: 1263-1274.
[25]   Cao Z B, Wang P, Zhu X F, Chen H, Zhang T Z. SSR marker-assisted improvement of fiber qualities in Gosssypium hirsutum using G.barbadense introgression lines. Theoretical and Applied Genetics, 2014, 127: 587-594.
[26]   Wu J X, Jenkins J N, Mc Carty J C, Zhong M. AFLP marker associations with agronomic and fiber traits in cotton. Euphytica, 2007, 153: 153-163.
[27]   郭志军, 赵云雷, 陈伟, 李运海, 王红梅, 龚海燕, 桑晓慧. 陆地棉SSR标记遗传多样性及其与农艺性状的关联分析. 棉花学报, 2014, 26(5): 420-430.
Guo Z J, Zhao Y L, Chen W, Li Y H, Wang H M, Gong H Y, Sang X H. Genetic diversity and association analysis of upland cotton based on SSR markers. Cotton Science, 2014, 26(5): 420-430. (in Chinese)
[28]   Abdurakhmonov I Y, Kohel R J, Yu J Z, Pepper A E, Abdullaev A A, Kushanov F N, Salakhutdinov I B, Buriev Z T, Saha S, Scheffler B E, Jenkins J N, Abdukarimov A. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics, 2008, 92(6): 478-487.
[29]   Abdurakhmonov I Y, Saha S, JenkinsJ N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica, 2009, 136(3): 401-417.
[30]   钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D]. 南京: 南京农业大学, 2009.
Qian N. Genetic diversity and association of gene (QTL)of breeding target traits of upland cotton[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[31]   Cai C P, Ye W X, Zhang T Z, Guo W Z. Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/ accessions (Gossypium hirsutum L.). Journal of Integrative Plant Biology, 2014, 56: 51-62.
[32]   Zhao Y L, Wang H M, Chen W, Li Y H. Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. Plos One, 2014, 9(1): e86308.
[33]   Wang X Q, Yu Y, Li W, Guo H L, Lin Z X, Zhang X L. Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs. Genetics and Molecular Research, 2013, 12 (3): 3353-3362.
[34]   Kantartzi S K, Stewart J M. Association analysis of fiber traits in Gossypium arboretum accessions. Plant Breeding, 2008, 127: 173-179.
[35]   王莉萍, 孙国清, 梁亚军, 陈全家. 棉花纤维品质性状与SSR标记的关联分析. 中国农业科技导报, 2013, 15(4): 110-120.
Wang L P, Sun G Q, Liang Y J, Chen Q J. Analysis of relations between cotton fiber quality and SSR marker. Journal of Agricultural Science and Technology, 2013, 15(4): 110-120. (in Chinese)
[36]   杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33(4): 523- 530.
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plant. Acta Agronomica Sinica, 2007, 33(4): 523-530. (in Chinese)
[37]   Mackay L, Powell W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-62.
[38]   Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: A high-resolution plat- form for quantitative trait locus dissection. The Plant Journal, 2005, 44: 1054-1064.
[39]   Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
[40]   Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annual Reviews Plant Biology, 2003, 54: 357-374.
[41]   Yamasaki M, Tenaillon M I, Bi I V, Schroeder S G, Sanchez-Villeda H, Doebley J F, Gaut B S, McMullen M D. A large-scale screen for artificial select ion in maize identifies candidate agronomic loci for domestication and crop improvement. The Plant Cell, 2005, 17: 2859-2872.
[42]   Wright S I, Bi I V, Schroeder S G, Yamasaki M, Doebley J F, McMullen M D, Gaut B S. The effects of artificial selection on the maize genome. Science, 2005, 308: 1310-1314.
[43]   聂新辉, 尤春源, 李晓方, 秦江鸿, 黄聪, 郭欢乐, 王夏青, 赵文 霞, 林忠旭. 新陆早棉花品种DNA指纹图谱的构建及遗传多样性分析. 作物学报, 2014, 40(12): 2113-2126.
Nie X H, You C Y, Li X F, Qin J H, Huang C, Guo H L, Wang X Q, Zhao W X, Lin Z X. Construction of DNA fingerprinting and analysis of genetic diversity for Xinluzao cotton varieties. Acta Agronomica Sinica, 2014, 40(12): 2113-2126. (in Chinese)
[44]   中华人民共和国农业部. NY/T2238植物新品种特异性、一致性和稳定性测试指南. 北京: 中国农业出版社, 2012.
Ministry of Agriculture of the People’s Republic of China. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability- Cotton. Beijing: China Agricultural Press, 2012. (in Chinese)
[45]   Prichard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
[46]   Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14: 2611-2620.
[47]   Falush D, Stephens M, Pritchard J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 2007, 7: 574-578.
[48]   Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526.
[49]   Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei  Y. Construction of a genetic lingkage map and QTL analysis of fiber-related traits in upland cotton(Gossyium hirsutum L.). Euphytica, 2005, 144: 91-99.
[50]   Shao Q S, Zhang F J, Tang S Y, Liu Y, Fang X M, Liu D X, Liu D J, Zhang J, Teng Z H, Paterson A H, Zhang Z S. Identifying QTL for fiber quality traits with three upland cotton (Gossyium hirsutum L.). Euphytica, 2014, 198: 43-58.
[51]   尤春源. 棉花海陆杂交F2群体连锁图谱的构建及纤维品质与产量性状QTL定位[D]. 乌鲁木齐: 新疆农业大学, 2007: 44-45.
You C Y. Linkage maps construction in sea and upland crossed cotton of F2 group and QTL mapping for yield and fiber-related traits [D]. Urumchi: Xinjiang Agricultural University, 2007: 44-45. (in Chinese)
[52]   栾明宝. 海岛棉特定染色体的遗传效应及主要性状的QTL定位 [D]. 北京: 中国农业科学院, 2008: 82-84.
Luan M B. The genetic effects due to special chromosome from sea island and QTL mapping in main traits[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008: 82-84. (in Chinese)
[53]   胡美纯. 陆地棉遗传图谱构建与纤维品质性状QTL定位[D]. 重庆: 西南大学, 2008: 34-37.
Hu M C. Construction of genetic linkage map and QTL analysis of fiber quality in upland cotton (Gossyium hirsutum L.)[D]. Chongqing: Southwest University, 2008: 34-37. (in Chinese)
[54]   艾尼江, 刘任重, 赵图强, 秦江鸿, 张天真. 陆地棉早熟基因来源的遗传分析. 作物学报, 2013, 39(9): 1548-1561.
Ai N J, Liu R Z, Zhao T Q, Qin J H, Zhang T Z. Analysis of early maturity gene sources in upland cotton using molecular markers. Acta Agronomica Sinica, 2013, 39(9): 1548-1561. (in Chinese)
[55]   孔广超. 陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位 [D]. 杭州: 浙江大学, 2009: 58-63.
Kong G C. Construction of genetic linkage map based on RIL population of upland cotton(G. hirsutum L.) and QTL mapping for yield and fiber quality [D]. Hangzhou: Zhejiang University, 2009: 58-63. (in Chinese)
[56]   Liu R Z, Wang B H, Guo W Z, Qin Y S, Wang L G, Zhang Y M, Zhang T Z. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Molecular Breeding, 2012, 29: 297-311.
[57]   Yu J W, Yu S X, Fan S L, Song M Z, Zhai H H, Li X L, Zhang J F. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Euphytica, 2012, 187: 191-201.
[58] Liu R Z, Ai N J, Zhu X X, Liu F J, Guo W Z, Zhang T Z. Genetic analysis of plant height using two immortalized populations of “CRI12 3 J8891” in Gossypium hirsutum L.. Euphytica, 2014, 196: 51-61.
[59]   李骏智, 杨泽茂, 李俊文, 石玉真, 刘爱英, 陈琴, 李爱国, 张保才, 刘广平, 蒋建雄, 王涛, 袁有禄. 利用陆海杂种BC1群体构建棉花遗传连锁图谱并初步定位产量性状相关的QTL. 中国农学通报, 2009, 25(9): 11-18.
Li J Z, Yang Z M, Li J W, Shi Y Z, Liu A Y, Chen Q, Li A G, Zhang B C, Liu G P, Jiang J X, Wang T, Yuan Y L. Using G. hirsutum×G. barbadense BC1 populations construction cotton genetic linkage map and primary QTL analysis of yield related traits. Chinese Agricultural Science Bulletin, 2009, 25(9): 11-18. (in Chinese)
[60]   Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Molecular Breeding, 2012, 30: 569-582.
[61]   Guo X, Guo Y P, Ma J, Wang F, Sun M Z, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. Journal of Integrative Plant Biology, 2013, 55(8): 759-774.
[62]   Yu J W, Zhang K, Li S Y, Yu S X, Zhai H H, Wu M, Li X L, Fan S L, Song M Z, Yang D G, Li Y H, Zhang J F. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126: 275-287.
[63]   Zhe X, Zhang X, Liu Y Y, Jia Z F, Zhao H H, Li C Q, Wang Q L. Major gene identification and quantitative trait locus mapping for yield-related traits in upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2014, 13(2): 299-309.
[64]   何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 巩万奎, 白志川, 袁有禄. 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014, 40(3): 457-465.
He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T, Gong J W, Liu A Y, Shang H H, Gong W K, Bai Z C, Yuan Y L. QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agronomica Sinica, 2014, 40(3): 457-465. (in Chinese)
[65]   Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics,1995, 11: 241-247.
[66]   Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. American Journal Human Genetics, 2000, 67: 170-181.
[67]   Cardon L R, Palmer J L. Population stratification and spurious allelic association. Lancet, 2003, 361: 598-604.
[68]   Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 4: 355-360.
[69]   赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013, 46(2): 233-242.
Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic diversity and association analysis using SSR markers in barley. Scientia Agricultura Sinica, 2013, 46(2): 233-242. (in Chinese)
[70]   Price A L, Zaitlen N A, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 2010, 7: 459-463.
[71]   Peleman J D, Voort J R. Breeding by design. Trends in Plant Science, 2003, 8: 330-334.
[72]   王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37(2): 191-201.
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H, Qiu L J, Wan J M. Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[7] FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
[8] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[9] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[10] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[11] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[12] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[13] WU CaoYang,LIANG ShiHan,QIU Jun,GAO JinFeng,GAO XiaoLi,WANG PengKe,FENG BaiLi,YANG Pu. An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years [J]. Scientia Agricultura Sinica, 2020, 53(19): 3878-3892.
[14] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[15] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!