Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2804-2813.doi: 10.3864/j.issn.0578-1752.2020.14.005

• SPECIAL FOCUS: SORGHUM BREEDING AND CULTIVATION • Previous Articles     Next Articles

Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum

WANG HaiLian(),WANG RunFeng,LIU Bin,ZHANG HuaWen()   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences/Featured Crops Engineering Laboratory of Shandong Province, Jinan 250100
  • Received:2019-06-05 Accepted:2019-07-31 Online:2020-07-16 Published:2020-08-10
  • Contact: HuaWen ZHANG E-mail:wanghailian11@163.com;zhwws518@163.com

Abstract:

【Objective】 Sweet sorghum (Sorghum bicolor (L.) Moench) is one of the most important forage crops and is widely cultivated. Studies on biological yield, nutritional quality and forage value of sweet sorghum at different growth stages could provide theoretical guidance for determining the suitable harvesting time of sweet sorghum as forage. 【Method】 Sweet sorghum hybrid, Jitianza No.2, was used as an experiment material, planted in Licheng and Jiyang District in Jinan, and Dongying Cities, and mowed at booting, flowering, milky, dough and physiologic maturity stages. Agronomic and nutritional quality related traits were analyzed, and relative feed values (RFV) at five growth stages were evaluated. 【Result】 The largest value of plant height of Jitianza No.2 were 440.0 cm and 390.0 cm at dough stage in Licheng District and Dongying City, and 445.9 cm at physiologic maturity stage in Jiyang District. Stem is the main component of total fresh weight (TFW) and occupied 83.8%, 83.3%, 78.9%, 78.4% and 78.5% of TFW at five growth stages, respectively. With development of plant, TFW was gradually increased from boot stage to dough stage and decreased at physiologic maturity stage in Licheng District and Dongying City. The maximum TFW were 1 970.5 g/plant and 1 977.5 g/plant. TFW was increased from boot stage to physiologic maturity stage with the maximum TFW of 2 389.4 g/plant in Jiyang District. Total dry weight (TDW) showed the same change trend as TFW, and the maximum TDW of 487.2 g/plant and 469.0 g/plant were reached at dough stage in Licheng District and Dongying City, and 573.5 g/plant at physiologic maturity stage in Jiyang District. Significant effects by environment, growth stage and interaction between environment and growth stage were identified in plant height, leaf fresh weight, stem fresh weight, panicle fresh weight, TFW and TDW. The content of neutral detergent fiber (NDF) was gradually increased with development of plant and the minimum were 45.27% and 46.33% at booting stage, respectively, in Jiyang District and Dongying City. Acid detergent fiber (ADF) content had a similar trend with NDF and the minimum of 29.06% and 32.07% were found at booting stage in Jiyang District and Dongying City. Crude protein (CP) content varied largely in each growth period, with the highest values of 6.29% at booting stage in Jiyang District and 6.83% at flowering stage in Dongying City. Soluble carbohydrate (SC) content was increased significantly at each growth period and reached the maximum of 14.09% and 15.69% at physiologic maturity stage, respectively, in Jiyang District and Dongying City. Ash content was gradually increased with development of plant and the maximum of 8.53% and 5.36% were reached at physiologic maturity stage in Jiyang District and dough stage in Dongying City. Effects by environment, growth stage and interaction between environment and growth stage were significant in NDF, ADF, CP, SC and ash content. With growth of plant, dry matter intake (DMI) at five growth stages was gradually decreased, and the maximum were 2.65% and 2.59% at booting stage in two environments, respectively. Digestible dry matter (DDM) had the same change trend as DMI and the maximum were 66.26% and 63.92% in Jiyang District and Dongying City. Similarly, the maximum RFV of 136.17 and 128.35 were found at booting stage. Significant effects by the environment, growth stage and interaction between environment and growth stage were found in DMI, DDM and RFV.【Conclusion】Biomass, nutritional quality and RFV of sweet sorghum were significantly affected by environment, harvesting stage and environment-harvesting stage interaction. The largest biomass could be obtained at about dough stage, and the highest DMI, DDM and RFV could be reached at booting stage. However, considering the optimal combination of biomass, nutrient quality and silage quality, the optimum harvesting stage was between milk and dough stage.

Key words: sweet sorghum, different growth stage, agronomic traits, nutritional quality, relative feed value

Table 1

Statistical analysis of agronomic traits at five growth stages in three environments"

环境
Environment
时期
Stage
株高
PH (cm)
叶鲜重
LFW (g/plant)
秆鲜重
SFW (g/plant)
穗鲜重
PFW (g/plant)
总鲜重
TFW (g/plant)
总干重
TDW (g/plant)
E1 S1 415.9±6.5a 260.5±15.8ab 1373.7±31.0ab 1664.2±35.3a 371.9±3.8a
S2 418.1±4.8a 267.9±10.7ab 1421.4±11.6ad 1689.3±20.8a 392.9±3.5b
S3 427.3±6.4abc 275.6±14.7bc 1468.3±31.3cd 122.2±2.5a 1866.1±22.7b 441.6±3.6c
S4 440.0±2.0b 299.1±20.8c 1521.4±37.3c 150.0±1.2b 1970.5±28.8c 487.2±2.7d
S5 432.4±3.3c 217.3±13.1a 1363.0±23.0b 169.7±1.8c 1750.0±32.0d 432.3±1.5e
E2 S1 380.9±2.9a 240.4±14.6a 1716.2±19.6 a 1956.6±29.6a 430.2±1.4a
S2 415.6±3.0b 248.1±10.7a 1648.5±27.0b 1896.6±30.2a 425.5±1.7b
S3 433.9±4.2c 304.8±12.0bc 1834.9±20.6c 80.5±1.6a 2220.3±19.6b 525.1±1.5c
S4 443.6±7.7d 316.9±18.0c 1887.2±28.5d 122.7±3.5b 2326.7±44.9c 551.8±1.9d
S5 445.9±4.2d 288.2±11.8b 1900.4±33.5d 200.7±1.4c 2389.4±33.0d 573.5±2.2d
E3 S1 360.2±1.6a 319.4±12.7a 1376.3±18.2a 1695.8±23.5a 373.0±0.6a
S2 369.9±1.6b 364.2±12.6b 1373.4±16.2a 1737.6±25.4a 386.2±3.2b
S3 378.8±3.5c 366.4±11.3b 1472.0±30.7b 111.8±1.8a 1950.2±26.8b 458.4±1.7b
S4 390.0±2.3d 296.2±5.0c 1520.4±18.8b 160.9±2.9b 1977.5±14.7b 469.0±2.4c
S5 380.3±3.0c 265.0±5.1d 1475.6±17.9c 151.2±2.6c 1891.8±19.8c 456.00±3.5d
E FF value 716.58** 110.66** 1683.48** 145.23** 1240.61** 4325.24**
S FF value 128.07** 43.17** 113.52** 3581.47** 419.63** 3696.88**
E×S FF value 19.09** 37.21** 24.19** 400.55** 47.48** 220.76**

Table 2

Proportion of leaves, stem and panicle in total fresh weight at different growth stage of Jitianza No.2"

环境
Environment
时期
Stage
叶占比例
Proportion of leaves (%)
秆占比例
Proportion of stem (%)
穗占比例
Proportion of panicle (%)
E1 S1 17.5 82.5 0.0
E2 S1 12.3 87.7 0.0
E3 S1 18.8 81.2 0.0
平均Average 16.2 83.8 0.0
E1 S2 15.9 84.1 0.0
E2 S2 13.1 86.9 0.0
E3 S2 21.0 79.0 0.0
平均Average 16.7 83.3 0.0
E1 S3 14.8 78.7 6.5
E2 S3 13.7 82.6 3.6
E3 S3 18.8 75.5 5.7
平均Average 15.8 78.9 5.3
E1 S4 15.2 77.2 7.6
E2 S4 13.6 81.1 5.3
E3 S4 15.0 76.9 8.1
平均Average 14.6 78.4 7.0
E1 S5 12.4 77.9 9.7
E2 S5 12.1 79.5 8.4
E3 S5 14.0 78.0 8.0
平均Average 12.8 78.5 8.7

Fig. 1

Dynamic changes of panicle, stem and leaf fresh weight of Jitianza No.2 at five growth stages E1, E2 and E3 represent Licheng District in 2017, Jiyang District in 2018 and Dongying City in 2018, respectively. S1-S5 represents booting, flowering, milky, dough and physiologic maturity stage"

Table 3

Statistical analysis of nutritional quality at five growth stages in two environments"

环境
Environment
时期
Stage
中性洗涤纤维
NDF (%)
酸性洗涤纤维
ADF (%)
粗蛋白
CP (%)
可溶性碳水化合物
SC (%)
灰分
Ash (%)
E2 S1 45.27±0.21a 29.06±0.05a 6.29±0.065a 9.73±0.044a 5.93±0.56a
S2 51.53±0.25b 32.72±0.021b 6.18±0.04b 9.30±0.036b 5.53±0.031ba
S3 56.17±0.091c 35.34±0.046c 5.42±0.085c 12.50±0.02c 5.75±0.021b
S4 60.53±0.55d 39.44±0.051d 5.57±0.043d 13.79±0.04d 8.33±0.035c
S5 62.04±0.051e 38.48±0.036e 5.92±0.039e 14.09±0.025e 8.53±0.025c
E3 S1 46.33±0.11a 32.07±0.067a 6.51±0.044a 12.28±0.062a 4.68±0.015a
S2 51.58±0.45b 32.33±0.091b 6.83±0.043b 12.93±0.065b 5.04±0.025ab
S3 52.37±0.06c 33.56±0.055c 6.47±0.062a 12.96±0.049b 5.16±0.015b
S4 55.00±0.2d 34.31±0.076d 6.54±0.074a 13.70±0.026c 5.36±0.021b
S5 56.63±0.38e 35.43±0.031e 6.32±0.035c 15.69±0.027d 5.34±0.032b
E FF value 679.29** 5145.78** 1762.85** 3571.5** 405.16**
S FF value 2092.54** 14680.76** 213.2** 1735.34** 134.57**
E×S FF value 197.47** 4430.13** 72.75** 238.69** 76.49**

Table 4

Analysis of dry matter intake (DMI), digestible dry matter (DDM) and relative feed value (RFV) at five growth stages of Jitianza No.2"

环境 Environment 时期 Stage 干物质采食 DMI (%) 可消化干物质 DDM (%) 相对饲用价值 RFV
E2 S1 2.65±0.012a 66.26±0.04a 136.17±0.56a
S2 2.33±0.011b 63.41±0.02b 114.46±0.59b
S3 2.14±0.003c 61.37±0.04c 101.64±0.22c
S4 1.98±0.018d 58.17±0.04d 89.40±0.75d
S5 1.93±0.002d 58.92±0.03e 88.35±0.040d
E3 S1 2.59±0.006a 63.92±0.05a 128.35±0.40a
S2 2.33±0.020b 63.71±0.07b 114.90±1.08b
S3 2.29±0.003c 62.75±0.04c 111.47±0.20c
S4 2.18±0.008d 62.17±0.06d 105.15±0.28d
S5 2.12±0.014e 61.30±0.02e 100.70±0.69e
E FF value 511.29** 5145.78** 875.16**
S FF value 2493.6** 14680.76** 4342.28**
E×S FF value 175.6** 4430.13** 435.6**
[1] 黎大爵. 甜高粱可持续农业生态系统研究. 中国农业科学, 2002,35(8):1021-1024.
LI D J. Studies on sustainable agro-ecology system of sweet sorghum. Scientia Agricultura Sinica, 2002,35(8):1021-1024. (in Chinese)
[2] 刘公社, 周庆源, 宋松泉, 景海春, 谷卫彬, 李晓峰, 苏蔓, RAMACHANDRAN SRINIVASAN. 能源植物甜高粱种质资源和分子生物学研究进展. 植物学报, 2009,44(3):253-261.
LIU G S, ZHOU Q Y, SONG S Q, JING H C, GU W B, LI X F, SU M, RAMACHANDRAN S. Research advances into germplasm resources and molecular biology of the energy plant sweet sorghum. Chinese Bulletin of Botany, 2009,44(3):253-261. (in Chinese)
[3] MATHUR S, UMAKANTH A V, TONAPI V A, SHARMA R, SHARMA M K. Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnology Biofuels, 2017,10:146.
doi: 10.1186/s13068-017-0834-9
[4] HU S W, WU L M, STAFFAN PERSSON, PENG L C, FENG S Q. Sweet sorghum and Miscanthus: Two potential dedicated bioenergy crops in China. Journal of Integrative Agriculture, 2017,16(6):1236-1243.
[5] 景海春, 刘智全, 张丽敏, 吴小园. 饲草甜高粱分子育种与产业化. 科学通报, 2018,63(17):1664-1676.
JING H C, LIU Z Q, ZHANG L M, WU X Y. Molecular breeding and industrialization of forage sweet sorghum. Chinese Science Bulletin, 2018,63:1664-1676. (in Chinese)
[6] XIE Q, XU Z H. Sustainable agriculture: from sweet sorghum planting, ensiling to ruminant feeding. Molecular Plant, 2019,12(5):603-606.
doi: 10.1016/j.molp.2019.04.001 pmid: 31002980
[7] CONTRERASGOVEA F E, MARSALIS M A, LAURIAULT L M, BEAN B W. Forage sorghum nutritive value: A review. Forage & Grazinglands, 2010,8(1):1-6.
[8] MARSALIS M A, ANGADI S V, CONTRERAS-GOVEA F E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research, 2010,116(1/2):52-57.
doi: 10.1016/j.fcr.2009.11.009
[9] 渠晖, 沈益新. 甜高粱用作青贮作物的潜力评价. 草地学报, 2011,19(5):808-812.
QU H, SHEN Y X. Evaluation the potential of sweet sorghum grown for silage crop. Acta Agrestain Sinica, 2011,19(5):808-812. (in Chinese)
[10] 李春喜, 冯海生, 闫慧颖, 裴剑民, 李永仁. 不同海拔生态区甜高粱和玉米及甜高粱不同刈割次数的养分含量. 草地学报, 2016,24(2):425-432.
LI C X, FENG H S, YAN H Y, PEI J M, LI Y R. Nutrient content of sweet sorghum and corns in different altitude regions and sweet sorghum in different clipping frequency. Acta Agrestia Sinica, 2016,24(2):425-432. (in Chinese)
[11] CATTANI M, GUZZO N, MANTOVANI R, BAILONI L. Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. Journal of Animal Science and Biotechnology, 2017,8(15):1-8.
doi: 10.1186/s40104-016-0130-8
[12] 刘丽华, 曾宪国, 李红宇, 吕艳东, 郑桂萍. 青刈对饲用甜高粱产量和品质的影响. 黑龙江八一农垦大学学报, 2011,23(1):5-7.
LIU L H, ZENG X G, LI H Y, LÜ Y D, ZHENG G P. Influence of harvest by stages on the sweet sorghum yield and quality. Journal of Heilongjiang Bayi Agricultural University, 2011,23(1):5-7. (in Chinese)
[13] 贾春林, 盛亦兵, 张华文, 赵逢涛, 王国良, 毕玉波, 李新华, 管延安. 黄河三角洲盐碱地甜高粱产草量和饲用价值. 草业科学, 2013,30(1):116-119.
JIA C L, SHENG Y B, ZHANG H W, ZHAO F T, WANG G L, BI Y B, LI X H, GUAN Y A. Comparisons on forage yield and feeding value of sweet sorghum in saline soil of yellow river delta. Pratacultural Science, 2013,30(1):116-119. (in Chinese)
[14] 麦麦提敏·乃依木. 四种甜高粱干草品质比较研究. 草食家畜, 2018,3(2):47-51.
MAIMAITIMIN NAIYIMU. Comparative study on quality of four kinds of sugar sorghum hay. Grass-feeding Livestock, 2018,3(2):47-51. (in Chinese)
[15] 李春宏, 张培通, 郭文琦, 殷剑美, 韩晓勇. 甜高粱青贮饲料研究与利用现状及展望. 江苏农业科学, 2014,42(3):150-152.
LI C H, ZHANG P T, GUO W Q, YIN J M, HAN X Y. Prospect and present situation of research and utilization of sweet sorghum silage. Jiangsu Agricultural Sciences, 2014,42(3):150-152. (in Chinese)
[16] PHOLSEN S, HIGGS D E B, SUKSRI A. Effects of nitrogen and potassium fertilisers on growth, chemical components, and seed yields of a forage sorghum (Sorghum bicolor L. Moench) grown on Oxic paleustults soil, Northeast Thailand. Pakistan Journal of Biological Sciences, 2001,4:27-31.
doi: 10.3923/pjbs.2001.27.31
[17] CARMI A Y, AHARONI M, EDELSTEIN N, UMIEL A, HAGILADI, YOSEF E, NIKBACHAT M, ZENOU A, MIRON Z. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 2006,131:120-132.
[18] MIRON J, SOLOMON R, ADIN G, NIR U, NIKBACHAT M, YOSEF E, CARMI A, WEINBERG Z G, KIPNIS T, ZUCKERMAN E, BEN-GHEDALIA D. Effects of harvest stage and re-growth on yield, composition, ensilage and in vitro digestibility of new forage sorghum varieties. Journal of the Science of Food and Agriculture, 2006,86(1):140-147.
doi: 10.1002/(ISSN)1097-0010
[19] 崔凤娟, 田福东, 王振国, 李岩, 徐庆全, 呼瑞梅, 李默, 邓志兰, 周福荣. 饲用高粱品种品质性状的比较及评价. 草地学报, 2012,20(6):1112-1116.
CUI F J, TIAN F D, WANG Z G, LI Y, XU Q Q, HU R M, LI M, DEGN Z L, ZHOU F R. Comparison and evaluation of quality traits between forage sorghum varieties. Acta Agrestia Sinica, 2012,20(6):1112-1116. (in Chinese)
[20] ATIS I, KONUSKAN O, DURU M, GOZUBENLI H, YILMAZ S. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. International Journal of Agriculture and Biology, 2012,14(6):1560-8530.
[21] 李春宏, 苏衍菁, 张培通, 王仪明, 郭文琦, 殷剑美, 韩晓勇, 王立, 火恩杰. 不同刈割时期对甜高粱产量和品质的影响. 南方农业学报, 2018,49(2):239-245.
LI C H, SU Y J, ZHANG P T, WANG Y M, GUO W Q, YIN J M, HAN X Y, WANG L, HUO E J. Effects of different mowing times on yield and quality of sweet sorghum. Journal of Southern Agriculture, 2018,49(2):239-245. (in Chinese)
[22] QUINBY J R. The fourth maturity gene locus in sorghum. Crop Science, 1966,6:516-518.
doi: 10.2135/cropsci1966.0011183X000600060005x
[23] MULLWR J E, ROONEY W L. Method for production of sorghum hybrids with selected flowering times. United State Patent, 2013/0298274 A1, 2013-9-12.
[24] ROHWEDER D A, BARNES R E, JORGENSEN N. Proposed hay grading standards based on laboratory analysis for evaluating quality. Journal of Animal Science, 1978,47:747-759.
doi: 10.2527/jas1978.473747x
[25] 张华文, 秦岭, 王海莲, 杨延兵, 管延安. 春夏两种播期甜高粱主要生物学性状比较分析. 山东农业科学, 2009,9:11-13.
ZHANG H W, QIN L, WANG H L, YANG Y B, GUAN Y A. Comparison of main biological characters of spring and summer sowing sweet sorghum. Shandong Agricultural Sciences, 2009,9:11-13. (in Chinese)
[26] CUMMINS D G. Yield and quality changes with maturity of silage- type sorghum fodder. Agronomy Journal, 1981,73:988-990.
doi: 10.2134/agronj1981.00021962007300060019x
[27] 裴彩霞, 董宽虎, 范华. 不同刈割期和干燥方法对牧草营养成分含量的影响. 中国草地, 2002,24(1):32-37.
PEI C X, DONG K H, FAN H. Effect of different harvest time and drying methods on nutrient as water soluble carbon hydrates of herbage. Grassland of China, 2002,24(1):32-37. (in Chinese)
[28] OLIVER A L, GRANT R J, PEDERSEN J F, O'REAR J. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. Journal of Dairy Science, 2004,87:637-644.
doi: 10.3168/jds.S0022-0302(04)73206-3 pmid: 15202648
[29] JABBARI H, TABATABAEI S N, KORDNEJAD E, MODARRESI M, TABEIDIAN S A. Effect of dietary corn silage replacement with sorghum silage on performance and feed cost of growing steers. Journal of Animal and Feed Research, 2011,1:14-21.
[30] ZHANG S J, CHAUDHRY A S, RAMDANI D, OSMAN A, GUO X F, EDWARDS GRANT RAYMOND, LONG C. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. Journal of Integrative Agriculture, 2016,15(1):175-182.
doi: 10.1016/S2095-3119(14)60939-4
[31] 张吉鹍. 反刍家畜粗饲料品质评定的指标及其应用比较. 中国畜牧杂志, 2006,42(5):47-50.
ZHANG J K. Quality evaluation parameters of ruminant coarse fodder and their application comparison. Chinese Journal of Animal Science, 2006,42(5):47-50. (in Chinese)
[32] 陈谷, 邰建辉. 美国商业应用中的牧草质量及质量标准. 中国畜牧业, 2010(11):48-49.
CHEN G, TAI J H. Forage quality and quality standard in American commercial application. China Animal Husbandry, 2010(11):48-49. (in Chinese)
[33] 陈柔屹, 唐祈林, 荣廷昭, 任勇, 冯云超. 刈割方式对饲草玉米SAUMZ1产量和饲用品质的影响. 四川农业大学学报, 2007,25(3):244-248.
CHEN R Y, TANG Q L, RONG T Z, REN Y, FENG Y C. Effects of clipping style on forage yield and quality of forage maize SAUMZ1. Journal of Sichuan Agricultural University, 2007,25(3):244-248. (in Chinese)
[34] 彭安琪, 李小梅, 王红, 李昌华, 李小铃, 闫艳红, 张新全. 8种一年生饲料作物生产性能及相对饲用价值. 草业科学, 2019,36(2):510-521.
PENG A Q, LI X M, WANG H, LI C H, LI X L, YAN Y H, ZHANG X Q. Production performance and relative feed value of eight annual forage crops. Patacultural Science, 2019,36(2):510-521. (in Chinese)
[35] 张苏江, 艾买尔江·吾斯曼 , 薛兴中, 张晓, 郭雪峰, 陈立强. 南疆玉米和不同糖分甜高粱的青贮品质分析. 草业学报, 2014,23(3), 232-240.
doi: 10.11686/cyxb20140327
ZHANG S J, AMERJAN O, XUE X Z, ZHANG X, GUO X F, CHEN L Q. Quality analysis on different sweet sorghum silages in Southern Xinjiang compared with a corn silage. Acta Agrestia Sinica, 2014,23(3):232-240. (in Chinese)
doi: 10.11686/cyxb20140327
[1] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[2] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[3] FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
[4] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[5] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[6] WU CaoYang,LIANG ShiHan,QIU Jun,GAO JinFeng,GAO XiaoLi,WANG PengKe,FENG BaiLi,YANG Pu. An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years [J]. Scientia Agricultura Sinica, 2020, 53(19): 3878-3892.
[7] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
[8] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
[9] ZHANG Yu, HOU LuLu, YAN RuiRui, XIN XiaoPing. Effects of Grazing Intensity on Plant Community Characteristics and Nutrient Quality of Herbage in a Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2550-2561.
[10] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[11] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[12] XIAO MengYing,ZHANG RuiDong,ZHANG Zhuang,XU XiaoXue,CHEN XiaoFei,ZHOU YuFei,KONG FanHua,HUANG RuiDong. Taste Quality Traits of Sorghum Landraces from Liaoning Province [J]. Scientia Agricultura Sinica, 2019, 52(4): 591-601.
[13] JianFeng LI,Bo ZHANG,JianZhang QUAN,YongFang WANG,XiaoMei ZHANG,Yuan ZHAO,XiLei YUAN,XiaoPing JIA,ZhiPing DONG. Associated Loci Detection and Elite Allelic Variations Analysis of Main Agronomic Traits in Foxtail Millet (Setaria italica L.) Based on SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(24): 4453-4469.
[14] ZHU ChangAn,HE ZhiHao,CAI ZeLin,LIU JianFei,ZHANG Zhi. Regulation of Comprehensive Nutritional Quality of Cucumber by Water and Fertilizer Coupling with Magnesium [J]. Scientia Agricultura Sinica, 2019, 52(18): 3258-3270.
[15] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!