Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 2941-2951.doi: 10.3864/j.issn.0578-1752.2021.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat

FAN Tao(),LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng()   

  1. College of Agronomy, Sichuan Agricultural University/Provincial Key Laboratory of Plant Genetics and Breeding of Sichuan Province, Chengdu 611130
  • Received:2020-12-12 Accepted:2021-02-03 Online:2021-07-16 Published:2021-07-26
  • Contact: TianHeng REN E-mail:18328080816@163.com;renth@sicau.edu.cn

Abstract:

【Objective】Spike numbers per unit area (SN) and kernel length (KL) are both important yield-related traits of wheat. Genetic improvement on SN and KL will help increase the yield of wheat. The corresponding KASP molecular markers were developed for the QSn.sau-2D.2 and the QTL Kl.sau-3D.2, which were identified in previous study for increasing SN and KL, respectively. Both KASP markers were verified and evaluated in the RIL population crossed by Chuannong 18 and T1208, which laid a foundation for better utilization of these two QTLs.【Method】The major QTL QSn.sau-2D.2 for SN and the major QTL QKl.sau-3D.2 for KL were previously identified in the RIL population crossed by Chuannong 18 and T1208. The SNP molecular marker sequence of Wheat 55K SNP array within the two QTLs were used to develop and design the KASP molecular markers. The polymorphic KASP markers were screened with wheat parents and then verified in the RIL population. The selected KASP molecular markers were genotyped and used to identify the corresponding phenotypic traits in Chuannong 18×T1208 RILs population. The effects of the two major QTLs on other agronomic traits were analyzed.【Result】KASP-AX-111151907 and KASP-AX-109962767 have polymorphic between the wheat parents. Subsequently, these two KASP markers were verified in the RIL population linkage with QSn.sau-2D.2 and QKl.sau-3D.2, respectively. KASP-AX-111151907 and KASP-AX-10996276 could divide the genotypes into two groups. According to the phenotype, the average selection rate of KASP-AX-111151907 for multi spike lines was 72.58%, the average selection rate of KASP-AX-111151907 for few spike lines was 71.68%, the average selection rate of KASP-AX -10996276 for long kernel lines was 69.86%, and the average selection rate of KASP-AX-10996276 for short kernel lines was 61.52%, indicating the reliability of the two KASP markers. Moreover, the genotyping results based on KASP molecular markers showed that the two QTLs had significant effects on plant height, 1000 kernel weight, kernel length, kernel width, kernel diameter ratio, spike numbers per unit area and kernel weight per spike, respectively. The validation in the RIL population of Chuannong17×Chuannong11 also indicated that these two KASP markers had a certain effect on the selection of the corresponding traits.【Conclusion】This study developed two KASP markers for two major QTLQSn.sau-2D.2 and QKl.sau-3D.2, respectively. Both KASP markers can be used for the selection of corresponding traits. These two QTLs which are tightly linked to these two KASP markers could significantly improve the SN and KL, respectively. In addition, QSn.sau-2D.2had negative effects on plant height, 1000 kernel weight, kernel length, kernel width, kernel diameter ratio and kernel weight per spike. On the other hand,QKl.sau-3D.2 had positive effect on plant height, 1000 kernel weight, kernel width, kernel diameter ratio and kernel weight per spike, but had negative effects on SN. These two QTLs and the developed KASP markers can be used in the future high yield wheat breeding program.

Key words: wheat, spike numbers per unit area, kernel length, QTL, KASP, agronomic traits

Table 1

SNP markers and sequences involved in this study"

SNP标记
SNP marker
染色体
Chromosome
变异碱基
Base
序列
Sequence (5′-3′)
AX-109283238 2D C//T CCCTTGTCTCTTCCATCTATTTTCCCACCATCGTA[C/T]GGTTCCTTCTTTAATATTGTGTCTCTTTCCTCGAT
AX-111151907 2D G//T GCCACCTACCTAGAAACCCTACCCAGCAGCCACAA[G/T]ATCCCCCAAAAATCGGATTCCTTTGCTGGACTAAC
AX-86163992 2D A//G TTGCTCAGCTTCTGGAAATACTGCTGCTTCTGAAC[A/G]AGCTTCTCGCGTGGGTAAAATGGTGCTTCTTCGAG
AX-108802182 2D A//G TGCAGGATAATCCTAGAGCCAGGGGGATGTACGGT[A/G]TTCCATTTCCGCATTTCGATGTGTTTGATGCGGTG
AX-110073027 2D G//T TCGATATGAAGTCTGGTGAAACCGATGGGTACGAC[G/T]CTGTTTTCTTGAGTCCTCACAAATTTGTCGGGGGA
AX-109962767 3D A//G AACTATCGGATTGGAAACAAATTGACTCACATACA[A/G]CAAATGATATGTGAGGCCGAGTAGCACAAGCTAGG
AX-108923200 3D A//G CTCGAACAAATGAGTTGAAGAAACTGCCATCATCA[A/G]AAGACTGAAGCAAAACAAGTTTGAGACAACCACTG

Table 2

The designed primer sequence of KASP molecular marker in this study"

QTL 分子标记 Molecular marker 引物序列 Primer sequence (5′-3′)
QSn.sau-2D.2 KASP-AX-109283238-1 GAAGGTGACCAAGTTCATGCTCCATCTATTTTCCCACCATCGTAC
KASP-AX-109283238-2 GAAGGTCGGAGTCAACGGATTCCATCTATTTTCCCACCATCGTAT
KASP-AX-109283238-3 ACCTTTATCGAGGAAAGAGACACA
KASP-AX-111151907-1 GAAGGTGACCAAGTTCATGCTCCTACCCAGCAGCCACAAG
KASP-AX-111151907-2 GAAGGTCGGAGTCAACGGATTCCTACCCAGCAGCCACAAT
KASP-AX-111151907-3 AAGGCCAGTGTTAGTCCAGC
KASP-AX-86163992-1 GAAGGTGACCAAGTTCATGCTGGAAATACTGCTGCTTCTGAACA
KASP-AX-86163992-2 GAAGGTCGGAGTCAACGGATTGGAAATACTGCTGCTTCTGAACG
KASP-AX-86163992-3 TTGTATGCAGGATGACGCTC
KASP-AX-108802182-1 GAAGGTGACCAAGTTCATGCTCATCGAAATGCGGAAATGGAAT
KASP-AX-108802182-2 GAAGGTCGGAGTCAACGGATTCATCGAAATGCGGAAATGGAAC
KASP-AX-108802182-3 GTGTCTTTGTGTTGATTTGTTTCA
KASP-AX-110073027-1 GAAGGTGACCAAGTTCATGCTTGTGAGGACTCAAGAAAACAGC
KASP-AX-110073027-2 GAAGGTCGGAGTCAACGGATTTGTGAGGACTCAAGAAAACAGA
KASP-AX-110073027-3 ATCCTTTCTGCAGTGGACCC
QKl.sau-3D.2 KASP-AX-109962767-1 GAAGGTGACCAAGTTCATGCTTGGAAACAAATTGACTCACATACAA
KASP-AX-109962767-2 GAAGGTCGGAGTCAACGGATTTGGAAACAAATTGACTCACATACAG
KASP-AX-109962767-3 GTGCTACTCGGCCTCACATA
KASP-AX-108923200-1 GAAGGTGACCAAGTTCATGCTGTTGAAGAAACTGCCATCATCAA
KASP-AX-108923200-2 GAAGGTCGGAGTCAACGGATTGTTGAAGAAACTGCCATCATCAG
KASP-AX-108923200-3 CGTCCAGTGGTTGTCTCAAAC

Fig. 1

Screening of polymorphic primers between parents a: Genotyping of parents by KASP-AX-111151907; b: Genotyping of parents by KASP-AX-109962767 "

Fig. 2

Validation of molecular markers in RIL population a: Partial genotyping results of KASP-AX-111151907 in RIL population; b: Partial genotyping results of KASP-AX-109962767in RIL population "

Table 3

The effects of QSn.sau-2D.2 and QKl.sau-3D.2 on relevant traits based on KASP molecular marker "

QTL 环境
Environment
基因型A
Genotype A
基因型B
Genotype B
差值
Difference
P
P value
QSn.sau-2D.2 2015 311.60(n=158) 275.56(n=211) 36.04 <0.001
2016 303.41(n=158) 263.75(n=211) 39.66 <0.001
2017 290.50(n=158) 234.36(n=211) 56.14 <0.001
QKl.sau-3D.2 2016 7.11(n=188) 7.43(n=175) 0.32 <0.001
2018 6.98(n=188) 7.45(n=175) 0.47 <0.001
2019 7.01(n=188) 7.64(n=175) 0.63 <0.001

Fig. 3

The effect of QSn.sau-2D.2 on spike numbers per unit area (a) andQKl.sau-3D.2 effect on kernel length (b) +: Lines containing the corresponding QTL; -: Lines without the corresponding QTL; ***: Significant at the level of P<0.001 "

Table 4

The effects of QSn.sau-2D.2 and QKl.sau-3D.2 on yield-related traits based on KASP molecular marker "

QTL 基因型
Genotype
株高
Plant
height (cm)
千粒重
1000 kernel
weight (g)
粒长
Kernel
length (mm)
粒宽
Kernel width
(mm)
粒径比
Kernel
diameter ratio
单位面积穗数
Spike numbers per unit area/m2
每穗粒重
Kernel weight per spike (g)
QSn.sau-2D.2 A 78.85*** 45.77*** 6.89*** 3.45*** 1.99*** 290.67*** 2.26***
B 88.47 49.58 7.30 3.50 2.09 234.49 2.62
QKl.sau-3D.2 A 80.25 45.89 6.90 3.46 1.99 281.48 2.29
B 88.26*** 49.95*** 7.34*** 3.50*** 2.10*** 235.13*** 2.62***

Fig. 4

Partial results of molecular markers KASP-AX-111151907(a) and KASP-AX-109962767 (b) in the RIL population of Chuannong17×Chuannong 11 "

[1] CHAVES M S, MARTINELLI J A, WESP-GUTERRES C, GRAICHEN F, BRAMMER S P, SCAGLIUSI S M, SILVA P R, WIETHOLTER P, TORRES G, LAU E Y, CONSOLI L, CAVES A. The importance for food security of maintaining rust resistance in wheat. Food Security, 2013, 5(2):157-176.
doi: 10.1007/s12571-013-0248-x
[2] RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6):e66428.
doi: 10.1371/journal.pone.0066428
[3] CAO S, XU D, HANIF M, XIA X, HE Z. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020, 133(6):1811-1823.
doi: 10.1007/s00122-020-03562-8
[4] YANG J, ZHOU Y, WU Q, CHEN Y, ZHANG P, ZHANG Y, HU W, WANG X, ZHAO H, DONG L, HAN J, LIU Z, CAO T. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132(6):1799-1814.
doi: 10.1007/s00122-019-03316-1
[5] SU Z, HAO C, WANG L, DONG Y, ZHANG X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122:211-223.
doi: 10.1007/s00122-010-1437-z
[6] ZHANG P, HE Z, TIAN X, GAO F, XU D, LIU J, WEN W, FU L, LI G, SUI X, XIA X, WANG C, CAO S. Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Molecular Breeding, 2017, 37:78.
doi: 10.1007/s11032-017-0676-y
[7] QIN L, HAO C, HOU J, WANG Y, LI T, WANG L, MA Z, ZHANG X. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biology, 2014, 14(1):1-36.
doi: 10.1186/1471-2229-14-1
[8] 张福彦, 范家霖, 陈晓杰, 陈锋, 齐红志, 王嘉欢, 程仲杰, 杨保安, 张建伟. 小麦粒重相关基因的遗传定位和分子标记辅助育种进展. 植物遗传资源学报, 2020, 21(3):507-516.
ZHANG F Y, FAN J L, CHEN X J, CHEN F, QI H Z, WANG J H, CHENG Z J, YANG B A, ZHANG J W. Genetic localization and marker assisted breeding of grain weight-related genes in common wheat. Journal of Plant Genetic Resources, 2020, 21(3):507-516. (in Chinese)
[9] GAO F, WEN W, LIU J, RASHEED A, YIN G, XIA X, WU X, HE Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015, 6:1099.
[10] 胡洋山, 汤颖子, 李治, 晏本菊, 任正隆, 任天恒. 小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价. 麦类作物学报, 2018, 38(1):8-15.
HU Y S, TANG Y Z, LI Z, YAN B J, REN Z L, REN T H. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population. Journal of Triticeae Crops, 2018, 38(1):8-15. (in Chinese)
[11] FAN X, CUI F, JI J, ZHANG W, ZHAO X, LIU J, MENG D, TONG Y, WANG T, LI J. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10:187.
doi: 10.3389/fpls.2019.00187
[12] MOHLER V, ALBRECHT T, CASTELL A, DIETHELM M, SCHWEIZER G, HARTL L. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 2016, 57:467-476.
doi: 10.1007/s13353-016-0349-2
[13] 刘子会, 刘畅, 彭义峰, 李国良, 张华宁, 张红梅, 段硕楠, 郭秀林. 小麦耐热分子标记Xwmc44的鉴定及分析. 植物遗传资源学报, 2021, 22(1):95-101.
LIU Z H, LIU C, PENG Y F, LI G L, ZHANG H N, ZHANG H M, DUAN S N, GUO X L. Identification and analysis of heat-tolerant molecular marker Xwmc44 in wheat . Journal of Plant Genetic Resources, 2021, 22(1):95-101. (in Chinese)
[14] 陈泠, 高春保, 王翠, 朱展望, 佟汉文, 刘易科, 张宇庆, 邹娟, 何伟杰. 穗发芽抗性相关分子标记Tamyb10DVp1B3在红白粒小麦中的有效性验证. 湖北农业科学, 2018, 57(24):66-69.
CHEN L, GAO C B, WANG C, ZHU Z W, TONG H W, LIU Y K, ZHANG Y Q, ZOU J, HE W J. Validation of Tamyb10D and Vp1B3 associated with pre-harvest sprouting tolerance in red-grained and white-grained wheat varieties . Hubei Agricultural Sciences, 2018, 57(24):66-69. (in Chinese)
[15] LI C, TANG H P, LUO W, ZHANG X M, MU Y, DENG M, LIU Y X, JIANG Q T, CHEN G Y, WANG J R, QI P F, PU Z E, JIANG Y F, WEI Y M, ZHENG Y L, LAN X J, MA J. A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theoretical and Applied Genetics, 2020, 133:3381-3393.
doi: 10.1007/s00122-020-03675-0
[16] MA J, ZHANG H, LI S, ZOU Y Y, LI T, LIU J J, DING P Y, MU Y, TANG H P, DENG M, LIU Y X, JIANG Q T, CHEN G Y, KANG H Y, LI W, PU Z E, WEI Y M, ZHENG Y L, LAN X J. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genetics, 2019, 20(1):77.
doi: 10.1186/s12863-019-0782-4
[17] REN T H, FAN T, CHEN S L, LI C S, CHEN Y Y, OU X, JIANG Q, REN Z L, TAN F Q, LUO P G, CHEN C, LI Z. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theoretical and Applied Genetics, 2020, https://doi.org/10.1007/s00122-020-03732-8.
[18] REN T H, HU Y S, TANG Y Z, LI C S, YAN B J, REN Z L, TAN F Q, TANG Z X, FU S L, LI Z. Utilization of a wheat55K SNP Array for mapping of major QTL for memporal expression of the tiller number. Frontiers in Plant Science, 2018, 9:333.
doi: 10.3389/fpls.2018.00333
[19] 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9):14-16.
LI R H, XIA Y S, LIU S Z, SUN L L, GUO P G, MIAO S Y, CHEN J H. CTAB-improved method of DNA extraction in plant. Research and Exploration in Laboratory, 2009, 28(9):14-16. (in Chinese)
[20] 李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵, 秦娜娜, 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11):1284-1292.
LI C, MA J, LIU H, DING F Y, YANG C C, ZHANG H, QIN N N, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11):1284-1292. (in Chinese)
[21] 任正隆. 雨养农业区的小麦育种. 北京: 科学出版社, 2011: 534.
REN Z L. Rain-Fed Agricultural Region of Wheat Breeding. Beijing: Science Press, 2011: 534. (in Chinese)
[22] 任正隆. 中国南方小麦优质高效生产的若干问题. 四川农业大学学报, 2002, 20(3):302.
REN Z L. Several limiting factors of wheat production in south area of China and the new approach of wheat breeding. Journal of Sichuan Agricultural University, 2002, 20(3):302. (in Chinese)
[23] 谭飞泉, 张怀琼, 任正隆. “协调型”小麦新品种的产量潜力及其构成的研究. 四川农业大学学报, 2003, 21(3):189-192.
TAN F Q, ZHANG H Q, REN Z L. Study on yield potential and its components of the "Coordination-type" wheat new cultivars. Journal of Sichuan Agricultural University, 2003, 21(3):189-192. (in Chinese)
[24] 郝艳玲, 张紫晋, 粟永英, 张怀渝, 任正隆. 西南麦区高产多穗型小麦单株分蘖特征研究. 核农学报, 2016, 30(11):2248-2257.
HAO Y L, ZHANG Z J, SU Y Y, ZHANG H Y, REN Z L. Morphological characteristics of tillers per plant in high-yield and multi-spike type wheat in Southwest China. Journal of Nuclear Agricultural Sciences, 2016, 30(11):2248-2257. (in Chinese)
[25] SUN C W, DONG Z D, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6):1354-1360.
doi: 10.1111/pbi.v18.6
[26] 张兆萍, 周丽敏, 宋晓朋, 连俊方, 孙道杰. 小麦穗发芽抗性鉴定及相关分子标记的有效性验证. 麦类作物学报, 2015, 35(3):300-305.
ZHANG Z P, ZHOU L M, SONG X P, LIAN J F, SUN D J. Identification of PHS tolerance in wheat varieties and validation of molecular markers associated with PHS tolerance. Journal of Triticeae Crops, 2015, 35(3):300-305. (in Chinese)
[27] WANG S S, ZHANG X F, CHEN F, CUI D Q. A Single-Nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Frontiers in Plant Science, 2015, 6(1166):1166.
[28] CUI F, ZHANG N, FAN X L, ZHANG W, ZHAO C H, YANG L J, PAN R Q, CHEN M, HAN J, ZHAO X Q, JI J, TONG Y P, ZHANG H X, JIA J Z, ZHAO G Y, LI J M. Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7(1):3788.
doi: 10.1038/s41598-017-04028-6
[29] 魏广辉, 李执, 陈强, 李阳, 陈诗豪, 裴英, 周勇, 程梦萍, 唐豪, 王际睿, 魏育明, 刘登才, 陈黎, 郑有良, 蒲至恩. 人工合成小麦SHW-L1高硒含量KASP分子标记开发及其应用. 中国农业科学, 2020, 53(20):4103-4112.
WEI G H, LI Z, CHEN Q, LI Y, CHEN S H, PEI Y, ZHOU Y, CHENG M P, TANG H, WANG J R, WEI Y M, LIU D C, CHEN L, ZHENG Y L, PU Z E. Development and utilization of KASP marker for Se concentration in synthetic wheat SHW-L1. Scientia Agricultura Sinica, 2020, 53(20):4103-4112. (in Chinese)
[30] SALAMEH A, BUERSTMAYR M, STEINER B, NEUMAYER A, LEMMENS M, BUERSTMAYRET H. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2011, 28(4):485-494.
doi: 10.1007/s11032-010-9498-x
[31] GRIFFITHS S, WINGEN L, PIETRAGALLA J, GARCIA G, HASAN A, MIRALLES D, CALDERINI D F, ANKLESHWARIA J B, WAITE M L, SIMMONDS J, SNAPE J, REYNOLDS M. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE, 2015, 10(3):e0118847.
doi: 10.1371/journal.pone.0118847
[32] PINTHUS M J, MILLET E. Interactions among number of spikelets, number of grains and grain weight in the spikes of wheat (Triticum aestivum L.). Annals of Botany, 1978, 42(4):839-848.
doi: 10.1093/oxfordjournals.aob.a085523
[33] CALDERINI D F, SAVIN R, ABELEDO L G, REYNOLDS M P, SLAFER G A. The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica, 2001, 119(1/2):199-204.
doi: 10.1023/A:1017597923568
[34] LI F J, WEN W E, HE Z H, LIU J D, JIN H, CAO S H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018, 131:1-22.
doi: 10.1007/s00122-017-2954-9
[35] LIN Y, JIANG X J, TAO Y, YANG X L, WANG Z Q, WU F K, LIU S H, LI C X, DENG M, MA J, CHEN G D, WEI Y M, ZHENG Y L, LIU Y X. Identification and validation of stable quantitative trait loci for grain filling rate in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133:2377-2385.
doi: 10.1007/s00122-020-03605-0
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!