Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1743-1755.doi: 10.3864/j.issn.0578-1752.2020.09.005

• SPECIAL FOCUS: APPLICATIONS OF RESTRICTED TWO-STAGE MULTI-LOCUS GENOME-WIDE ASSOCIATION ANALYSIS • Previous Articles     Next Articles

Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean

ShuGuang LI1,2,YongCe CAO1,JianBo HE1(),WuBin WANG1,GuangNan XING1,JiaYin YANG2,TuanJie ZHAO1,JunYi GAI1()   

  1. 1 Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture/State Key Laboratory for Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095;
    2 Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, Jiangsu
  • Received:2019-08-26 Accepted:2019-11-30 Online:2020-05-01 Published:2020-05-13
  • Contact: JianBo HE,JunYi GAI E-mail:hjbxyz@gmail.com;sri@njau.edu.cn

Abstract:

【Objective】Soybean is an important cash crop, a major source of plant protein and oil for human diet. As a major objective of soybean breeding, protein content is a complex trait controlled by multiple genes with varying genetic effects interacting with environment. A genome-wide association study (GWAS) was conducted to dissect the genetic architecture of protein content in a soybean nested association mapping (NAM) population, and the detected genetic constitution can be further used for molecular design in soybean breeding for high protein content. 【Method】Four soybean recombinant inbred line (RIL) populations (Linhe×M8206, Zhengyang×M8206, M8206×Tongshan and M8206×WSB) with a common parent (M8206) as a NAM population were constructed, genotyped with RAD-seq (restriction-site-associated DNA sequencing) and tested under multiple locations in 2012 - 2014. Protein content was measured at full maturity (R8) stage. The restricted two-stage multi-locus GWAS (RTM-GWAS) procedure was used to dissect the genetic architecture of seed protein content of the population. 【Result】The protein content varied widely in the population with trait heritability estimated as high as 85.00%. The analysis of variance for protein content showed significant differences across genotypes, environments and genotype-by-environment interactions. A total of 90 QTLs were detected to be associated with protein content, with 20 loci being novel ones. The phenotypic variation explained by each QTL ranged from 0.06% to 3.99%, with a sum of 45.60%. The number of alleles at each locus ranged from 2 to 5, and the allele effects ranged from -2.434% to 2.845%, while most of them were between -1.000% and 1.000%. From the detected QTLs, 73 candidate genes were annotated. Among these candidate genes, Glyma18g03540 involved in cysteine biosynthetic process, and Glyma20g24830 involved in glycine and aromatic amino acid family metabolic process. The two genes may be selected for further functional study. Based on the QTL-allele matrix of protein content, the predicted transgressive potential of cross progeny was as high as 56.5%. 【Conclusion】A total of 90 QTLs for protein content were detected with 20 loci being novel, from which 73 candidate genes were annotated, indicating that protein content is a complex trait conferred by multiple genes or a gene network.

Key words: soybean [Glycine max (L.) Merr.], nested association mapping population (NAM), protein content, restricted two-stage multi-locus genome-wide association analysis

Table 1

Frequency distribution and descriptive statistics for protein content (%) in the soybean NAM population"

环境
Env. a
组中值Mid-point 平均值
Mean
变幅
Range
CV b
(%)
h2
(%)
32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0
FY2012 0 0 0 0 0 7 18 54 100 118 162 92 49 13 5 1 0 41.0 36.1—46.5 3.0 81.0
JP2012 0 0 0 0 1 8 23 36 70 133 124 106 66 24 18 2 2 41.4 35.9—47.8 3.0 82.2
JP2013 0 0 0 0 0 1 3 12 32 76 118 133 113 73 40 17 1 42.5 36.6—47.2 3.1 80.6
JP2014 0 0 0 0 0 4 18 41 91 107 139 121 60 22 14 4 0 41.3 36.6—46.6 3.6 76.9
YC2014 3 7 22 26 48 54 85 99 103 76 53 28 9 3 4 2 0 38.5 31.5—46.1 3.5 90.0
均值Mean 0 0 0 0 0 3 15 58 85 162 147 97 40 13 2 1 0 40.9 36.6—46.0 3.3 85.0

Table 2

Joint analysis of variance for protein content under multiple environments in the soybean NAM population"

变异来源Source of variation 自由度Degree of freedom 均方Mean square FF value PP value
环境Environment 4 3652.54 49.46 <0.01
重复(环境)Replicate (Environment) 10 71.82 40.08 <0.01
基因型Genotype 622 33.05 6.79 <0.01
基因型×环境Genotype × Environment 2467 4.95 2.76 <0.01
误差Error 5589 1.79
总计Total 8692

Fig. 1

Manhattan and quantile-quantile plots for genome-wide association study of protein content in the soybean NAM population The horizontal dashed line indicates significance level of 0.01, where the -lgP values are ranged from 2.0 -89.2. The -lgP values greater than 10 were shown as values randomly sampled from 8-11"

Table 3

QTLs associated with the protein content detected in the soybean NAM population"

QTL 染色体
Chr.
位置
Position (bp)
等位变异
No. allele
-lgP R2(%) SoyBase QTLa GWAS QTLb
qProt-6-1 6 5723944—5861193 3 89.2 3.99 30-5, 005, 007, 015 [16-17]
qProt-7-2 7 7895394—7951423 4 54.5 2.46 33-5 [18]
qProt-20-8 20 45758806—45958325 5 52.6 2.42
qProt-19-3 19 45138372—45336506 5 39.9 1.85 2-2, 36-31 [19]
qProt-6-4 6 13682742—13879752 4 38.4 1.74 34-2 [20,17]
qProt-2-2 2 8795893—8902236 4 37.8 1.71 21-4 [20]
qProt-5-5 5 38956925—39141177 4 36.1 1.64 2-1, 9-1, 12-1, 34-1, 011, 014
qProt-18-1 18 2346289—2531952 5 31.1 1.45 26-12, 28-5, 36-25 [21]
qProt-8-5 8 31139492—31248131 5 27.6 1.30
qProt-14-2 14 6415938—6607451 3 23.2 1.02 1-6, 4-10, 45-1 [21]
qProt-13-1 13 5277987—5435217 3 22.5 0.99 36-21
qProt-1-3 1 52165879—52301103 3 21.6 0.95 36-9 [5]
qProt-4-2 4 47959591—48019889 5 19.3 0.92 4-2, 37-2 [21]
qProt-16-3 16 34706667—34803913 5 19.1 0.91 41-6
qProt-10-1 10 3262276 2 19.2 0.79 41-11 [22]
qProt-20-4 20 18696597—18710242 3 17.7 0.73 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 31-1, 36-26, 37-8, 47-8, 003 [23]
qProt-13-4 13 39868073—40038639 5 14.8 0.72 26-11
qProt-6-7 6 20701467—20900668 5 13.9 0.68 012
qProt-6-9 6 41656522—41677922 3 13.9 0.61
QTL 染色体
Chr.
位置
Position (bp)
等位变异
No. allele
-lgP R2(%) SoyBase QTLa GWAS QTLb
qProt-7-4 7 18234251 2 14.3 0.58 47-1
qProt-6-3 6 10921339—11119531 3 12.9 0.57
qProt-14-3 14 9912397—10112026 3 12.9 0.57 21-8
qProt-9-1 9 35965266—36048472 4 12.0 0.56 5-3, 33-3, 34-6, 35-4, 36-28, 36-29, 36-30, 37-11
qProt-11-1 11 5786106—5983572 5 11.1 0.55 3-2, 16-1, 34-7, 36-2, 37-1 [20-23]
qProt-2-1 2 4025110 2 12.9 0.52 [24]
qProt-5-2 5 1708219 2 12.4 0.50
qProt-5-3 5 32642277—32673061 3 11.4 0.50 36-1
qProt-7-1 7 176227—372535 5 10.1 0.50
qProt-19-2 19 39675711—39753005 4 9.2 0.44 30-7, 36-32
qProt-20-3 20 10292622—10303142 4 9.2 0.44 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 36-26, 37-8, 47-8 [25]
qProt-6-6 6 16510997—16689830 4 9.1 0.43 21-3, 26-7, 35-1, 36-7, 36-8
qProt-10-3 10 43721962—43903254 5 8.3 0.42 27-5 [1,26]
qProt-20-6 20 34459783—34480867 4 8.6 0.41 26-5, 34-11 [26]
qProt-1-4 1 54251785—54443212 5 7.9 0.40 36-9 [22]
qProt-8-3 8 23303969—23383404 3 9.2 0.40
qProt-1-1 1 2560155—2683983 4 8.2 0.39 [21-22]
qProt-15-1 15 3194114 2 9.5 0.38 30-3 [1,16]
qProt-1-2 1 4621764—4727603 5 7.1 0.37 [21]
qProt-15-3 15 50539746—50738644 5 7.1 0.37
qProt-14-5 14 16634057—16648499 3 7.5 0.33
qProt-16-1 16 4780910 2 8.2 0.32 4-7 [6,25]
qProt-8-1 8 7846414—8000705 5 5.8 0.31 26-1, 30-4, 34-4, 34-5, 013, 016
qProt-16-5 16 37249323—37294601 4 6.5 0.31 41-6
qProt-18-4 18 51679638—51878009 4 6.2 0.30 34-9
qProt-8-6 8 46434966—46595148 3 6.5 0.28 14-1, 21-1 [25]
qProt-3-1 3 1011738 2 7.1 0.27 010
qProt-3-2 3 39567898—39600101 5 4.9 0.27 36-34, 21-9, 36-37
qProt-5-1 5 1531632—1531635 2 6.8 0.26
qProt-18-3 18 5553907—5635734 2 6.7 0.26 47-6
qProt-1-5 1 55836890—55889699 3 5.8 0.25
qProt-4-1 4 41014079 2 6.5 0.25
qProt-2-5 2 49426511—49624658 4 5.0 0.24 37-4
qProt-16-4 16 34859125—35032972 5 5.5 0.24 41-6 [27]
qProt-13-2 13 18987333-18987363 2 6.0 0.23 26-13, 36-20, 36-21, 36-23 [5]
qProt-15-2 15 4817369 2 6.1 0.23 30-3 [18,27-29]
qProt-6-11 6 48032833—48165768 4 4.4 0.22 13-2
qProt-6-2 6 6233427—6256962 2 5.6 0.21 30-5, 31-4, 005, 007, 015
QTL 染色体
Chr.
位置
Position (bp)
等位变异
No. allele
-lgP R2(%) SoyBase QTLa GWAS QTLb
qProt-6-8 6 22700125—22889619 4 4.2 0.21
qProt-8-4 8 27091794—27092100 3 4.9 0.21
qProt-11-3 11 36538681—36538733 2 5.6 0.21 26-6
qProt-20-7 20 42051825—42200759 5 3.8 0.21
qProt-12-1 12 36587265 2 5.5 0.20 5-2, 21-10, 33-1
qProt-17-1 17 33206802—33271301 4 4.1 0.20 36-14, 36-16
qProt-6-5 6 14689566—14795226 4 3.8 0.19 34-2 [1]
qProt-6-10 6 42894533—43089859 4 3.7 0.19 24-1
qProt-14-1 14 4726017—4860851 4 3.7 0.19 1-6, 4-11, 45-1 [22]
qProt-20-2 20 5157137 2 4.5 0.16 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 36-26, 37-8, 47-8
qProt-3-3 3 44249912—44442395 3 3.4 0.15 36-35, 27-4
qProt-6-12 6 48187414 2 4.2 0.15 13-2 [20-21]
qProt-8-2 8 8219073—8363193 5 2.4 0.15 26-1, 30-4, 34-4, 34-5, 013, 016 [6,26]
qProt-14-4 14 13291266 2 4.2 0.15
qProt-18-8 18 62050016—62248618 5 2.5 0.15 30-10
qProt-20-9 20 46154443 2 4.2 0.15
qProt-3-4 3 44486103—44672295 4 3.3 0.14 36-35, 27-4
qProt-18-2 18 2963699—3158571 5 2.2 0.14 20-1, 47-6 [6]
qProt-20-5 20 33207484—33279787 3 2.9 0.13 1-1, 1-2, 15-1, 26-5, 34-11, 39-4 [30]
qProt-7-3 7 18234233 2 3.5 0.12 47-1
qProt-7-5 7 35580968—35653659 3 2.8 0.12 41-9
qProt-18-7 18 60127020—60312441 5 1.9 0.12 3-10, 30-10
qProt-2-4 2 47360405 2 3.2 0.11 40-5 [23]
qProt-11-2 11 7962963 2 3.2 0.11
qProt-16-2 16 33179205 2 3.1 0.11
qProt-13-3 13 36897211 2 3.0 0.10 6-2, 24-2
qProt-18-5 18 52822014 2 3.0 0.10 3-8, 28-2
qProt-18-6 18 54160848 2 2.9 0.10 3-9
qProt-2-3 2 12237524 2 2.6 0.09 36-12
qProt-19-1 19 37053052—37053084 2 2.4 0.08
qProt-20-1 20 1315771—1315813 2 2.5 0.08 26-3, 26-4, 37-7, 37-9, 41-4
qProt-5-4 5 38098083 2 2.1 0.07 12-1, 011, 014 [6]
qProt-10-2 10 40629142—40629143 2 1.9 0.06 27-5, 40-1
LC QTL 10 42 19.58
SC QTL 80 261 26.06
总计Total 90 303 45.64 67(119) 33(45)

Fig. 2

Graphical representation of QTL-allele matrix of protein content detected in the soybean NAM population The horizontal axis indicates accessions arranged in ascending order of protein content (%), while the vertical axis indicates QTL arranged in ascending order of their positive allele frequency. Every row indicates the allele distribution among accessions at a QTL, while every column indicates the allele constitution of an accession over all QTLs. Allele effects are expressed in color cells where warm colors indicate positive effects, cool colors indicate negative effects, and color gradient indicates effect size"

Table 4

The predicted protein content value of progenies derived from the possible crosses among the five parental lines in the soybean NAM population"

组合
Cross
观测值
Observation
独立模型
Independence model
连锁模型
Linkage model
Y1 Y2 均值 Mean P5 P95 均值 Mean P5 P95
蒙8206×临河 (LM) 36.3 47.8 42.1 33.1 51.1 42.0 37.8 46.3
蒙8206×正阳 (LZ) 36.3 44.7 40.5 35.8 45.2 40.5 37.1 43.9
蒙8206×通山 (MT) 36.3 45.1 40.7 35.8 45.6 40.7 37.5 43.9
蒙8206×WSB (MW) 36.3 42.9 39.6 34.3 45.0 39.6 36.4 42.7
临河×正阳 Linhe×Zhengyang 47.8 44.7 46.3 36.4 56.1 46.2 41.5 50.9
临河×通山Linhe×Tongshan 47.8 45.1 46.4 36.3 56.5 46.5 42.2 50.8
临河×WSB Linhe×WSB 47.8 42.9 45.4 35.7 54.8 45.3 40.6 50.2
正阳×通山 Zhengyang×Tongshan 44.7 45.1 44.9 39.9 49.8 44.9 41.7 48.1
正阳×WSB Zhengyang×WSB 44.7 42.9 43.8 36.7 50.7 43.8 39.6 48.0
通山×WSB Tongshan×WSB 45.1 42.9 44.0 36.9 51.1 44.0 39.9 48.1

Fig. 3

The function annotation of candidate genes for protein content Ⅰ-Ⅵ: The six groups of biological processes for the candidate genes of protein content"

[1] HWANG E Y, SONG Q, JIA G, SPECHT J E, HYTEN D L, COSTA J, CREGAN P B . A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014,15(1):1-12.
[2] PATIL G, MIAN R, VUONG T, PANTALONE V, SONG Q J, CHEN P Y, SHANNON G J, CARTER T C, NGUYEN H T . Molecular mapping and genomics of soybean seed protein: A review and perspective for the future. Theoretical and Applied Genetics, 2017,130(10):1975-1991.
doi: 10.1007/s00122-017-2955-8 pmid: 28801731
[3] KARIKARI B, LI S G, BHAT J A, CAO Y C, KONG J J, YANG J Y, GAI J Y, ZHAO T J . Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. International Journal of Molecular Sciences, 2019,20(4):979.
doi: 10.3390/ijms20040979 pmid: 30813455
[4] ZHANG Y, LI W, LIN Y, ZHANG L, WANG C, XU R . Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing BMC Genomics, 2018,19(1):641.
doi: 10.1186/s12864-018-5035-9 pmid: 30157757
[5] LI D M, ZHAO X, HAN Y P, LI W B, XIE F T . Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019,111(1):90-95.
doi: 10.1016/j.ygeno.2018.01.004 pmid: 29325965
[6] WANG Y Y, LI Y Q, WU H Y, HU B, ZHENG J J, ZHAI H, LÜ S X, LIU X L, CHEN X, QIU H M, YANG J, ZONG C M, HAN D Z, WEN Z X, WANG D C, XIA Z J . Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Frontiers in Plant Science, 2018,9:610.
doi: 10.3389/fpls.2018.00610 pmid: 29868067
[7] 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民 . 中国作物分子设计育种. 作物学报, 2011,37(2):191-201.
doi: 10.3724/SP.J.1006.2011.00191
WANG J K, LI H H, ZHANG X C, YIN C B, LI Y, MA Y Z, LI X H, QIU L J, WAN J M . Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011,37(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00191
[8] LI H, BRADBURY P, ERSOZ E, BUCKLER E S, WANG J . Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011,6(3):e17573.
doi: 10.1371/journal.pone.0017573 pmid: 21423655
[9] CARDON L R, PALMER L J . Population stratification and spurious allelic association. The Lancet, 2003,361(9357):598-604.
doi: 10.1016/S0140-6736(03)12520-2 pmid: 12598158
[10] BUCKLER E S, HOLLAND J B, BRADBURY P J, ACHARYA C B, BROWN P J, BROWNE C, ERSOZ E, FLINT-GARCIA S, GARCIA A, GLAUBITZ J C, GOODMAN M M, HARJES C, GUILL K, KROON D E, LARSSON S, LEPAK N K, LI H, MITCHELL S E, PRESSOIR G, PEIFFER J A, ROSAS M O, ROCHEFORD T R, ROMAY M C, ROMERO S, SALVO S, SANCHEZ V H, DA S H S, SUN Q, TIAN F, UPADYAYULA N, WARE D, YATES H, YU J, ZHANG Z, KRESOVICH S, MCMULLEN M D . The genetic architecture of maize flowering time. Science, 2009,325(5941):714-718.
doi: 10.1126/science.1174276 pmid: 19661422
[11] LI S, CAO Y, HE J, ZHAO T, GAI J . Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017,130(11):2297-2314.
doi: 10.1007/s00122-017-2960-y pmid: 28799029
[12] HE J, MENG S, ZHAO T, XING G, YANG S, LI Y, GUAN R, LU J, WANG Y, XIA Q, YANG B, GAI J . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130(11):2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506
[13] 贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒 . 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018,44(9):1274-1289.
HE J B, LIU F D, XING G N, WANG W B, ZHAO T J, GUAN R Z, GAI J Y . Characterization and analytical programs of the restricted two-stage multi- locus genome-wide association analysis. Acta Agronomica Sinica, 2018,44(9):1274-1289. (in Chinese)
[14] MCCOUCH S, CHO Y, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T . Report on QTL nomenclature. Rice Genetics Newsletter, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016
[15] SCHMUTZ J, CANNON S B, SCHLUETER J, MA J, MITROS T, NELSON W, HYTEN D L, SONG Q, THELEN J J, CHENG J, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, PETO M, GRANT D, SHU S, GOODSTEIN D, BARRY K, FUTRELL-GRIGGS M, ABERNATHY B, DU J, TIAN Z, ZHU L, GILL N, JOSHI T, LIBAULT M, SETHURAMAN A, ZHANG X C, SHINOZAKI K, NGUYEN H T, WING R A, CREGAN P, SPECHT J, GRIMWOOD J, ROKHSAR D, STACEY G, SHOEMAKER R C, JACKSON S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463(7278):178-183.
doi: 10.1038/nature08670 pmid: 20075913
[16] BANDILLO N, JARQUIN D, SONG Q J, NELSON R, CREGAN P, SPECHT J, LORENZ A . A population structure and genome-wide association analysis on the USDA soybean germplasm collection. The Plant Genome, 2015,8(3):1-13.
[17] LIU Z X, LI H H, FAN X H, HUANG W, YANG J Y, WEN Z X, LI Y H, GUAN R X, GUO Y, CHANG R Z, WANG D C, CHEN P Y, WANG S M, QIU L J . Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). Plant Science, 2017,256:72-86.
doi: 10.1016/j.plantsci.2016.11.009 pmid: 28167041
[18] WEN Z, BOYSE J F, SONG Q, CREGAN P B, WANG D . Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 2015,16:671.
doi: 10.1186/s12864-015-1872-y pmid: 26334313
[19] HAN Y, ZHAO X, LIU D, LI Y, LIGHTFOOT D A, YANG Z, ZHAO L, ZHOU G, WANG Z, HUANG L, ZHANG Z, QIU L, ZHENG H, LI W . Domestication footprints anchor genomic regions of agronomic importance in soybeans. The New Phytologist, 2016,209(2):871-884.
doi: 10.1111/nph.13626 pmid: 26479264
[20] DIAS D A, POLO L R T, LAZZARI F, SILVA G J D, SCHUSTER I . IGenome-wide association for mapping QTLs linked to protein and oil contents in soybean. Pesquisa Agropecuária Brasileira, 2017,52(10):896-904.
[21] ZHANG K, LIU S, LI W, LIU S, LI X, FANG Y, ZHANG J, WANG Y, XU S, ZHANG J, SONG J, QI Z, TIAN X, TIAN Z, LI W X, NING H . Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies. Frontiers in Plant Science, 2018,9:1690.
doi: 10.3389/fpls.2018.01690 pmid: 30519252
[22] FANG C, MA Y M, WU S W, LIU Z, WANG Z, YANG R, HU G H, ZHOU Z K, YU H, ZHANG M, PAN Y, ZHOU G A, REN H X, DU W G, YAN H R, WANG Y P, HAN D Z, SHEN Y T, LIU S L, LIU T F, ZHANG J X, QIN H, YUAN J, YUAN X H, KONG F J, LIU B H, LI J Y, ZHANG Z W, WANG G D, ZHU B G, TIAN Z X . Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017,18(1):161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[23] ZHANG Y H, HE J B, MENG S, LIU M F, XING G N, LI Y, YANG S P, YANG J Y, ZHAO T J, GAI J Y . Identifying QTL-allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions. Euphytica, 2018,214(9):157.
[24] LI Y H, REIF J C, HONG H L, LI H H, LIU Z X, MA Y S, LI J, TIAN Y, LI Y F, LI W B, QIU L J . Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Science, 2018,266:95-101.
doi: 10.1016/j.plantsci.2017.04.013 pmid: 29241572
[25] SONAH H, O'DONOUGHUE L, COBER E, RAJCAN I, BELZILE F . FIdentification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnology Journal, 2015,13(2):211-221.
doi: 10.1111/pbi.12249 pmid: 25213593
[26] LIU Z, LI H, WEN Z, FAN X, LI Y, GUAN R, GUO Y, WANG S, WANG D, QIU L . Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Frontiers in Plant Science, 2017,8:2014.
doi: 10.3389/fpls.2017.02014 pmid: 29250088
[27] ZHANG J P, WANG X Z, LU Y M, BHUSAL S J, SONG Q J, CREGAN P B, YEN Y, BROWN M, JIANG G L . Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant, 2018,11(3):460-472.
doi: 10.1016/j.molp.2017.12.016 pmid: 29305230
[28] VAUGHN J N, NELSON R L, SONG Q J, CREGAN P B, LI Z L . The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. Genes Genomes Genetics, 2014,4(11):2283-2294.
doi: 10.1534/g3.114.013433 pmid: 25246241
[29] ZHANG D, KAN G Z, HU Z B, CHENG H, ZHANG Y, WANG Q, WANG H, YANG Y M, LI H Y, HAO D R, YU D Y . Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theoretical and Applied Genetics, 2014,127(9):1905-1915.
doi: 10.1007/s00122-014-2348-1 pmid: 24952096
[30] LEE S, VAN K, SUNG M, NELSON R, LAMANTIA J, MCHALE L K, MIAN M A R . Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Theoretical and Applied Genetics, 2019,132(6):1639-1659.
doi: 10.1007/s00122-019-03304-5 pmid: 30806741
[31] 盖钧镒 . 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005,27(1):130-136.
GAI J Y . Segregation analysis of genetic system of quantitative traits in plants. Hereditas (Beijing), 2005,27(1):130-136. (in Chinese)
[32] TAJUDDIN T, WATANABE S, YAMANAKA N, HARADA K . Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breeding Science, 2003,53(2):133-140.
doi: 10.1270/jsbbs.53.133
[33] PATHAN S M, VUONG T, CLARK K, LEE J D, SHANNON J G, ROBERTS C A, ELLERSIECK M R, BURTON J W, CREGAN P B, HYTEN D L, NGUYEN H T, SLEPER D A . Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Science, 2013,53(3):765-774.
doi: 10.2135/cropsci2012.03.0153
[34] ESKANDARI M, COBER E R, RAJCAN I . Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theoretical and Applied Genetics, 2013,126(6):1677-1687.
doi: 10.1007/s00122-013-2083-z pmid: 23536049
[35] MANSUR L M, ORF J H, CHASE K, JARVIK T, CREGAN P B, LARK K G . Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science, 1996,36(5):1327-1336.
[36] MAO T T, JIANG Z F, HAN Y P, TENG W L, ZHAO X, LI W B . Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breeding, 2013,132(6):630-641.
doi: 10.1111/pbr.12091
[37] LU W G, WEN Z X, LI H C, YUAN D H, LI J Y, ZHANG H, HUANG Z W, CUI S Y, DU W J . Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013,126(2):425-433.
doi: 10.1007/s00122-012-1990-8 pmid: 23052024
[38] KABELKA E A, DIERS B W, FEHR W R, LEROY A R, BAIANU I C, YOU T, NEECE D J, NELSON R L . Putative alleles for increased yield from soybean plant introductions. Crop Science, 2004,44(3):784-791.
doi: 10.2135/cropsci2004.7840
[39] REINPRECHT Y, POYSA V W, YU K, RAJCAN I, ABLETT G R, PAULS K P . Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006,49(12):1510-1527.
doi: 10.1139/g06-112 pmid: 17426766
[40] LIANG H Z, YU Y L, WANG S F, LIAN Y, WANG T F, WEI Y L, GONG P T, LIU X Y, FANG X J, ZHANG M C . QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010,9(8):1108-1116.
doi: 10.1016/S1671-2927(09)60197-8
[41] DIERS B W, KEIM P, FEHR W R, SHOEMAKER R C . RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992,83(5):608-612.
doi: 10.1007/BF00226905 pmid: 24202678
[42] LEE S H, BAILEY M A, MIAN M A, JR CARTER T, SHIPE E R, ASHLEY D A, PARROTT W A, HUSSEY R S, BOERMA H R . RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics, 1996,93(5):649-657.
doi: 10.1007/BF00224058 pmid: 24162390
[43] AKOND M, LIU S M, BONEY M, KANTARTZI S K, MEKSEM K, BELLALOUI N, LIGHTFOOT D A, KASSEM M A . Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. American Journal of Plant Sciences, 2014,5(1):158-167.
[44] ZHANG Y H, LIU M F, HE J B, WANG Y F, XING G N, LI Y, YANG S P, ZHAO T J, GAI J Y . Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 2015,128(6):1061-1072.
doi: 10.1007/s00122-015-2490-4 pmid: 25754423
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[4] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[5] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[6] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[7] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[8] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[9] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[10] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[11] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[12] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[13] XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004.
[14] ZHAO DeQiang,LI Tong,HOU YuTing,YUAN JinChuan,LIAO YunCheng. Benefits and Marginal Effect of Dry Matter Accumulation and Yield in Maize and Soybean Intercropping Patterns [J]. Scientia Agricultura Sinica, 2020, 53(10): 1971-1985.
[15] ZHANG WenQiang,CHEN QingJun,ZHANG GuoQing,SHI ShiDa,CAO Na,ABLAT· Tohtirjap,GUO YuXin,LIN WenCai. Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 2091-2100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!