Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3878-3892.doi: 10.3864/j.issn.0578-1752.2020.19.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years

WU CaoYang1(),LIANG ShiHan1,QIU Jun2,GAO JinFeng1,GAO XiaoLi1,WANG PengKe1,FENG BaiLi1(),YANG Pu1()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    2National Agricultural Technology Extension Service Center, Beijing 100125
  • Received:2019-12-15 Accepted:2020-04-13 Online:2020-10-01 Published:2020-10-19
  • Contact: BaiLi FENG,Pu YANG E-mail:caoyang9728@163.com;7012766@163.com;yangpu5532@hotmail.com

Abstract:

【Objective】Aimed at analyzing agronomic traits and yield changes of national Tartary buckwheat varieties in regional trials over 12 consecutive years, and discussing improvements and existing problems with Tartary buckwheat varieties in China, so as to provide basis for future genetic improvements in Tartary buckwheat in China.【Method】Depending on influences of environmental factors such as climate and geography on characteristics of Tartary buckwheat and in terms of southern and northern trial groups classified according to the geographical division standards of North and South China, the cluster analysis, correlation analysis and multiple regression were employed to analyze variations of Tartary buckwheat varieties in growing duration, plant height, branch and node numbers of main stem, grain weight per plant, 1000-grains weight and yield in the National Tests of Tartary Buckwheat Varieties of China in 12 years from 2003 to 2014 and that examined correlations between different traits of Tartary buckwheat in the northern and southern trial groups, and traits differences of Tartary buckwheat varieties developed by the different breeding units between the two trial groups.【Result】Over the 12 years in question, the yields of the Tartary buckwheat varieties in the northern and southern trial groups increased by 21% and 32%, with an average annual rate of increase of 1.8% and 2.6%, respectively. There were totally 42 buckwheat varieties developed by 19 breeding units of 9 provinces, Shaanxi, Gansu, Yunnan, Guizhou, Jiangxi, Shanxi, Sichuan, Hunan and Chongqing. Of these breeding units, there were 5 units in Yunnan, 4 units in Guizhou, 3 units in Shaanxi, 2 units in Gansu, Shanxi and in Sichuan, and 1 unit in Jiangxi, Hunan and Chongqing City. The tested varieties developed by twelve breeding units from Yunnan, Guizhou and Shaanxi, three major Tartary buckwheat producers of China, made up 59.5% of all the tested varieties. The cluster analysis of Tartary buckwheat varieties from the different provinces (regions) showed that when the relative genetic distance was 5, the northern and southern trial groups can be divided into 4 and 3 classes, respectively. Of the northern group, the varieties from Shaanxi, Hunan and Shanxi were grouped into one class, the varieties from Gansu, Guizhou, Jiangxi and Yunnan were grouped into one class, and the varieties from Chongqing and Sichuan were grouped into one class; and of the southern trial group, the varieties from Guizhou, Jiangxi, Yunnan and Chongqing were grouped into one class, the varieties from Shaanxi, Gansu and Shanxi were grouped into one class, and the varieties from Sichuan and Hunan were grouped into one class. Correlation analysis showed that there was significantly positive correlations between the plant weights and yields of the northern and southern trial groups; significantly positive correlations between the grain weight per plant and yields of the northern trial group and significantly positive correlations of the grain weights per plant and plant heights with the branch numbers of main stems of the southern trial group; and there were different correlations in the other traits between the north and south trial groups. Multiple regression analysis showed that the growing durations, branch numbers of main stems, grain weights per plant and 1000-grains weights of the Tartary buckwheat varieties of the northern group jointly contributed 53.0% to their yield variation, and the growing durations, branch and node numbers of main stems, grain weights per plant and 1000-grains weights of the Tartary buckwheat varieties in the southern group jointly contributed 61.4% to their yield variation.【Conclusion】The national Tartary buckwheat variety regional tests in 12 years from 2003 to 2014 showed that certain improvements were made in the yield and related traits of Tartary buckwheat varieties in the northern and southern trial groups, with their yields increased to a certain extent and their growing durations shortened, but with their other traits not much changed. Of all the breeding units in question, the varieties developed by the breeding units in Yunnan, Guizhou and Jiangxi had wider environmental adaptabilities than the varieties developed by the other units in the other provinces. It was still the main goal in current Tartary buckwheat variety improvement to develop Tartary buckwheat varieties with high and stably yields, stress resistances and other excellent agronomic traits. Correlation analysis showed that it was an important approach in Tartary buckwheat variety breeding to improve Tartary buckwheat in grain weight per plant and branch numbers of main stems, etc. It was the key problem to develop Tartary buckwheat varieties with high flavonoids, easy hulling, good shattering and lodging resistances and uniform maturities and good suitability for mechanized cultivation for Tartary buckwheat production. Identifying new Tartary buckwheat germplasm resources and excellent genes, strengthening researches and developments and applications of new technologies such as molecular design breeding, and improving Tartary buckwheat variety improvement technologies and levels were the important directions in Tartary buckwheat variety improvement.

Key words: Tartary buckwheat, regional adaptation test, yield, agronomic traits, cultivar improvement

Table 1

The performance of yield and agronomic traits of Tartary buckwheat in northern group from 2003 to 2014"

省(区)
Province
性状
Traits
年份 Year 平均
Average
2003—2005 2006—2008 2009—2011 2012—2014
陕西省
Shaanxi
生育日数Growing duration (d) 102.67±6.81 93.00±1.00 88.33±2.31 88.00±2.60 93.00±6.84
株高Plant height (cm) 138.20±6.06 109.70±2.65 113.00±2.23 119.06±5.28 119.99±12.74
主茎分枝数Branch numbers 5.73±0.12 5.50±0.36 5.80±0.75 5.53±0.48 5.64±0.15
主茎节数Node numbers 14.67±1.07 15.40±0.36 15.83±0.46 15.16±0.49 15.26±0.49
单株粒重Grain weight per plant (g) 5.53±0.45 3.93±0.59 3.40±0.56 4.03±0.97 4.23±0.92
千粒重1000-grains weight (g) 17.63±0.06 20.50±1.35 19.73±0.57 17.07±1.64 18.73±1.64
产量Yield (kg·hm-2) 2370.31±160.90 2005.36±436.53 1964.58±151.75 2141.59±278.50 2120.46±182.96
甘肃省
Gansu
生育日数Growing duration (d) 103.33±5.69 88.00±1.00 90.00±2.45 91.00±1.73 93.08±6.95
株高Plant height (cm) 126.70±5.93 102.43±1.33 114.43±4.51 131.53±1.34 118.78±13.06
主茎分枝数Branch numbers 6.10±0.26 6.80±0.62 6.03±0.85 5.47±0.60 6.10±0.55
主茎节数Node numbers 14.57±0.90 14.63±0.29 15.77±0.64 16.50±0.26 15.37±0.93
单株粒重Grain weight per plant (g) 4.50±0.36 3.77±0.31 3.82±0.49 4.97±1.80 4.26±0.58
千粒重1000-grains weight (g) 18.50±0.44 17.70±1.56 18.62±0.85 15.73±1.12 17.64±1.33
产量Yield (kg·hm-2) 2113.76±262.60 1854.51±427.81 1777.91±99.09 2390.61±339.56 2034.20±277.69
山西省
Shanxi
生育日数Growing duration (d) - 93.33±2.89 - 85.17±1.33 89.25±5.77
株高Plant height (cm) - 120.27±1.42 - 116.17±5.25 118.22±2.90
主茎分枝数Branch numbers - 6.40±0.36 - 5.25±0.56 5.83±0.81
主茎节数Node numbers - 15.93±0.42 - 14.05±0.47 14.99±1.33
单株粒重Grain weight per plant (g) - 4.47±0.06 - 4.30±0.69 4.38±0.12
千粒重1000-grains weight (g) - 18.03±1.07 - 17.30±0.83 17.67±0.52
产量Yield (kg·hm-2) - 2048.89±341.89 - 2278.20±214.09 2163.55±162.15
云南省
Yunnan
生育日数Growing duration (d) 107.13±6.03 90.56±4.28 89.33±2.52 95.75±11.46 95.69±8.11
株高Plant height (cm) 141.11±11.17 103.98±4.50 112.30±7.30 120.83±9.01 119.56±15.93
省(区)
Province
性状
Traits
年份 Year 平均
Average
2003—2005 2006—2008 2009—2011 2012—2014
主茎分枝数Branch numbers 5.60±0.80 6.33±0.34 6.13±0.93 5.78±0.97 5.96±0.33
主茎节数Node numbers 16.03±1.14 14.60±0.90 15.13±0.76 16.22±2.43 15.49±0.76
单株粒重Grain weight per plant (g) 4.48±0.35 4.00±0.76 3.80±0.46 4.07±1.36 4.09±0.28
千粒重1000-grains weight (g) 18.54±0.52 17.76±1.38 18.90±0.62 18.16±1.43 18.34±0.49
产量Yield (kg·hm-2) 1859.42±147.49 1924.57±369.45 2148.67±26.10 1895.43±388.70 1957.02±130.51
贵州省
Guizhou
生育日数Growing duration (d) 104.22±5.36 95.11±3.06 83.67±0.58 94.00±1.00 94.25±8.41
株高Plant height (cm) 131.80±7.96 117.60±6.22 109.30±1.04 124.90±9.82 120.90±9.67
主茎分枝数Branch numbers 5.80±0.35 6.20±0.54 5.33±0.67 5.77±0.42 5.78±0.35
主茎节数Node numbers 14.96±1.18 15.82±0.86 13.90±0.26 16.70±0.70 15.34±1.20
单株粒重Grain weight per plant (g) 5.50±0.67 3.80±0.59 3.70±0.36 4.53±0.65 4.38±0.83
千粒重1000-grains weight (g) 18.77±0.50 17.81±1.77 18.00±0.70 16.97±1.20 17.89±0.74
产量Yield (kg·hm-2) 2316.40±193.06 1869.48±392.46 1949.12±152.72 2186.14±251.20 2080.29±207.04
江西省
Jiangxi
生育日数Growing duration (d) 100.33±5.69 89.33±1.15 86.00±1.73 85.00±1.00 90.17±7.03
株高Plant height (cm) 126.73±5.45 107.30±3.66 111.47±3.33 119.90±5.67 116.35±8.68
主茎分枝数Branch numbers 5.63±0.12 5.37±0.12 6.40±0.80 5.67±0.55 5.77±0.44
主茎节数Node numbers 13.67±0.81 13.93±0.40 14.83±0.81 14.90±0.30 14.33±0.63
单株粒重Grain weight per plant (g) 4.60±0.30 3.37±0.32 3.67±0.55 4.13±0.78 3.94±0.54
千粒重1000-grains weight (g) 18.73±0.21 17.93±1.14 17.30±0.17 17.07±1.29 17.76±0.75
产量Yield (kg·hm-2) 2086.44±118.56 1795.34±389.54 2002.73±128.29 2186.25±219.11 2017.69±166.14
四川省
Sichuan
生育日数Growing duration (d) - 92.75±4.97 84.33±1.15 - 88.54±5.95
株高Plant height (cm) - 112.33±7.57 99.77±2.30 - 106.05±8.88
主茎分枝数Branch numbers - 5.69±0.57 6.07±1.03 - 5.88±0.27
主茎节数Node numbers - 15.21±1.01 13.93±0.81 - 14.57±0.90
单株粒重Grain weight per plant (g) - 3.44±0.51 3.47±1.10 - 3.45±0.02
千粒重1000-grains weight (g) - 17.90±1.22 17.30±0.17 - 17.60±0.42
产量Yield (kg·hm-2) - 1749.95±390.48 1816.48±34.42 - 1783.22±47.05
湖南省
Hunan
生育日数Growing duration (d) - - 85.50±1.38 - 85.50±1.38
株高Plant height (cm) - - 105.52±3.22 - 105.52±3.22
主茎分枝数Branch numbers - - 6.30±1.01 - 6.30±1.01
主茎节数Node numbers - - 14.37±0.73 - 14.37±0.73
单株粒重Grain weight per plant (g) - - 3.85±0.42 - 3.85±0.42
千粒重1000-grains weight (g) - - 17.48±0.69 - 17.48±0.69
产量Yield (kg·hm-2) - - 2132.77±120.46 - 2132.77±120.46
重庆市
Chongqing
生育日数Growing duration (d) - - - 85.33±1.15 85.33±1.15
株高Plant height (cm) - - - 120.17±8.06 120.17±8.06
主茎分枝数Branch numbers - - - 6.13±0.76 6.13±0.76
主茎节数Node numbers - - - 14.97±0.38 14.97±0.38
单株粒重Grain weight per plant (g) - - - 4.57±1.17 4.57±1.17
千粒重1000-grains weight (g) - - - 16.60±0.70 16.60±0.70
产量Yield (kg·hm-2) - - - 2237.99±203.21 2237.99±203.21

Fig. 1

Performance of Tartary buckwheat characters in Northern group and Southern group in each round of regional trials from 2003 to 2014 CK (North) and CK (South) represent the changes of the control variety Jiujiangkuqiao in four rounds. a: Growing duration; b: Plant height; c: Branch numbers; d: Node numbers; e: Grain weight per plant; f: 1000-grains weight; g: Yield"

Table 2

The performance of yield and agronomic traits of Tartary buckwheat in southern group from 2003 to 2014"

省(区)
Province
性状
Traits
年份 Year 平均
Average
2003—2005 2006—2008 2009—2011 2012—2014
陕西省
Shaanxi
生育日数Growing duration (d) 94.67±3.21 82.67±3.79 84.33±1.53 82.11±2.80 85.94±5.89
株高Plant height (cm) 117.40±9.61 79.93±6.54 106.17±4.92 115.77±8.12 104.82±17.31
主茎分枝数Branch numbers 4.77±0.50 4.37±1.10 5.37±1.03 4.52±0.81 4.76±0.44
主茎节数Node numbers 17.03±0.57 13.17±1.36 14.13±0.50 14.20±1.38 14.63±1.67
单株粒重Grain weight per plant (g) 3.90±1.25 2.97±1.01 5.70±1.30 4.77±0.74 4.33±1.17
千粒重1000-grains weight (g) 21.43±2.48 21.23±0.76 20.83±0.93 20.47±1.32 20.99±0.43
产量Yield (kg·hm-2) 2023.41±117.30 1387.13±387.19 2312.04±483.40 2144.98±358.67 1966.89±404.21
甘肃省
Gansu
生育日数Growing duration (d) 92.33±5.51 81.00±4.00 84.00±1.79 81.67±2.08 84.75±5.22
株高Plant height (cm) 101.27±4.73 90.30±8.57 108.15±6.27 127.30±3.10 106.75±15.54
主茎分枝数Branch numbers 4.97±0.49 5.40±0.92 5.37±0.77 4.33±0.57 5.02±0.50
主茎节数Node numbers 16.10±1.08 14.00±0.56 14.57±0.62 14.30±0.79 14.74±0.93
单株粒重Grain weight per plant (g) 3.60±0.75 4.53±0.91 5.28±0.80 4.37±0.74 4.45±0.69
千粒重1000-grains weight (g) 22.33±1.81 21.03±0.76 20.32±0.79 19.43±0.45 20.78±1.23
产量Yield (kg·hm-2) 1783.33±264.53 1894.32±284.12 2362.90±302.14 1970.25±296.74 2002.70±252.10
山西省
Shanxi
生育日数Growing duration (d) - 85.00±4.00 - 80.67±2.58 82.83±3.06
株高Plant height (cm) - 110.70±7.12 - 112.45±6.21 111.58±1.24
主茎分枝数Branch numbers - 5.47±1.11 - 4.23±0.73 4.85±0.87
主茎节数Node numbers - 15.20±0.69 - 13.17±1.09 14.18±1.44
单株粒重Grain weight per plant (g) - 3.93±0.40 - 4.77±0.16 4.35±0.59
千粒重1000-grains weight (g) - 20.10±0.61 - 21.32±0.59 20.71±0.86
产量Yield (kg·hm-2) - 1988.97±130.17 - 2194.04±325.44 2091.50±145.00
云南省
Yunnan
生育日数Growing duration (d) 95.38±5.76 84.56±4.10 83.67±2.31 84.67±4.56 87.07±5.56
株高Plant height (cm) 110.10±10.04 97.53±2.54 118.27±5.00 114.58±8.81 110.12±9.03
主茎分枝数Branch numbers 4.21±0.93 5.61±1.05 5.60±1.06 4.68±0.74 5.02±0.70
主茎节数Node numbers 17.03±1.20 14.87±1.17 14.43±0.64 14.27±1.73 15.15±1.28
单株粒重Grain weight per plant (g) 3.33±0.95 4.56±0.94 6.70±0.82 4.58±0.60 4.79±1.40
千粒重1000-grains weight (g) 22.36±1.43 20.38±0.60 20.67±0.38 21.31±0.51 21.18±0.88
产量Yield (kg·hm-2) 1785.14±384.19 2188.02±304.55 2796.93±150.02 2060.83±354.52 2207.73±427.28
贵州省
Guizhou
生育日数Growing duration (d) 92.78±5.31 86.11±3.41 79.00±1.00 83.00±4.58 85.22±5.82
株高Plant height (cm) 110.97±5.51 104.56±10.28 109.40±1.77 114.27±5.85 109.80±4.04
主茎分枝数Branch numbers 4.86±0.61 5.14±1.00 5.23±1.12 4.47±0.58 4.93±0.35
主茎节数Node numbers 16.74±1.17 15.01±0.94 13.37±0.47 14.00±1.47 14.78±1.47
单株粒重Grain weight per plant (g) 4.38±0.95 4.07±1.09 6.27±1.93 5.20±0.30 4.98±0.98
千粒重1000-grains weight (g) 22.78±1.96 19.82±1.14 20.63±0.15 20.57±0.51 20.95±1.27
产量Yield (kg·hm-2) 2083.01±242.18 1823.59±251.16 3122.37±451.41 2043.17±432.23 2268.03±580.87
江西省
Jiangxi
生育日数Growing duration (d) 91.00±6.00 83.67±3.51 83.00±1.00 81.67±3.06 84.83±4.19
株高Plant height (cm) 107.60±0.50 101.80±4.36 114.30±2.69 116.87±4.01 110.14±6.80
主茎分枝数Branch numbers 4.10±0.72 4.73±1.25 5.43±0.91 4.37±0.35 4.66±0.58
主茎节数Node numbers 14.83±0.59 14.07±1.05 14.43±0.70 13.67±1.31 14.25±0.50
省(区)
Province
性状
Traits
年份 Year 平均
Average
2003—2005 2006—2008 2009—2011 2012—2014
单株粒重Grain weight per plant (g) 4.00±0.70 3.97±0.93 5.57±0.12 4.93±0.72 4.62±0.78
千粒重1000-grains weight (g) 22.20±1.57 19.90±0.66 19.47±0.81 20.70±0.26 20.57±1.20
产量Yield (kg·hm-2) 1997.65±372.73 2038.94±355.64 2739.88±421.23 2229.39±363.26 2251.47±340.89
四川省
Sichuan
生育日数Growing duration (d) - 83.42±4.12 79.33±1.15 - 81.38±2.89
株高Plant height (cm) - 97.57±8.07 107.50±1.32 - 102.53±7.02
主茎分枝数Branch numbers - 5.24±1.17 5.97±0.72 - 5.60±0.51
主茎节数Node numbers - 14.28±0.84 14.33±0.74 - 14.30±0.04
单株粒重Grain weight per plant (g) - 3.98±0.75 7.10±0.87 - 5.54±2.20
千粒重1000-grains weight (g) - 20.13±0.54 20.10±0.26 - 20.12±0.02
产量Yield (kg·hm-2) - 2053.63±251.55 2829.64±282.74 - 2441.64±548.72
湖南省
Hunan
生育日数Growing duration (d) - - 82.33±0.52 - 82.33±0.52
株高Plant height (cm) - - 105.50±2.58 - 105.50±2.58
主茎分枝数Branch numbers - - 6.05±0.71 - 6.05±0.71
主茎节数Node numbers - - 14.17±0.52 - 14.17±0.52
单株粒重Grain weight per plant (g) - - 5.73±0.94 - 5.73±0.94
千粒重1000-grains weight (g) - - 19.50±0.54 - 19.50±0.54
产量Yield (kg·hm-2) - - 2736.19±302.84 - 2736.19±302.84
重庆市
Chongqing
生育日数Growing duration (d) - - - 81.00±2.65 81.00±2.65
株高Plant height (cm) - - - 115.00±6.91 115.00±6.91
主茎分枝数Branch numbers - - - 5.00±0.82 5.00±0.82
主茎节数Node numbers - - - 14.57±1.03 14.57±1.03
单株粒重Grain weight per plant (g) - - - 4.90±0.98 4.90±0.98
千粒重1000-grains weight (g) - - - 20.83±0.12 20.83±0.12
产量Yield (kg·hm-2) - - - 2201.52±330.01 2201.52±330.01

Fig. 2

The cluster analysis of Tartary buckwheat cultivars in different province a: Tartary buckwheat in northern group; b: Tartary buckwheat in southern group"

Table 3

The correlation among yield and yield related traits of Tartary buckwheat in northern group and Tartary buckwheat in southern group"

性状
Trait
生育日数
Growing duration
株高
Plant height
主茎分枝数
Branch numbers
主茎节数
Node numbers
单株粒重
Grain weight per plant
千粒重
1000-grains weight
产量
Yield
生育日数Growing duration 0.5501 -0.5168 0.7280* 0.1057 0.7689* -0.3775
株高Plant height -0.0207 -0.4492 0.7614* 0.8308** 0.1954 0.4583
主茎分枝数Branch numbers -0.5019 -0.5130 -0.2343 -0.0704 -0.6097 0.1644
主茎节数Node numbers 0.6598* 0.2379 -0.3475 0.5892 0.3712 0.1295
单株粒重Grain weight per plant -0.5037 -0.3705 0.8875** -0.2938 -0.2111 0.8269**
千粒重1000-grains weight 0.6028 0.4917 -0.8535** 0.7421* -0.7660* -0.3988
产量Yield -0.3914 -0.3320 0.8493** -0.4213 0.9369** -0.8380**
[1] LIN R F. The development and utilization of Tartary buckwheat. Resources, Proceedings of the 9th International Symposium on Buckwheat. Prague, 2004: 252-257.
[2] 屈洋, 周瑜, 王钊, 王鹏科, 高金锋, 高小丽, 冯佰利. 苦荞产区种质资源遗传多样性和遗传结构分析. 中国农业科学, 2016, 49(11): 2049-2062.
doi: 10.3864/j.issn.0578-1752.2016.11.002
QU Y, ZHOU Y, WANG Z, WANG P K, GAO J F, GAO X L, FENG B L. Analysis of genetic diversity and structure of Tartary buckwheat resources from production regions. Scientia Agricultura Sinica, 2016, 49(11): 2049-2062. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.002
[3] LI S Q, ZHANG Q H. Advances in the development of functional foods from buckwheat. Critical Reviews in Food Science and Nutrition, 2001, 41(6): 451-464.
pmid: 11592684
[4] 高帆, 张宗文, 吴斌. 中国苦荞SSR分子标记体系构建及其在遗传多样性分析中的应用. 中国农业科学, 2012, 45(6): 1042-1053.
doi: 10.3864/j.issn.0578-1752.2012.06.002
GAO F, ZHANG Z W, WU B. Construction and application of SSR molecular markers system for genetic diversity analysis of chinese Tartary buckwheat germplasm resources. Scientia Agricultura Sinica, 2012, 45(6): 1042-1053. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.06.002
[5] 李成磊, 赵海霞, 温国琴, 周婧, 孙家宜, 姚攀峰, 陈惠, 王安虎, 吴琦. 苦荞细胞色素CYP81家族同源基因FtP450-R4的克隆、分子鉴定及其功能分析. 农业生物技术学报, 2015, 23(2): 181-192.
LI C L, ZHAO H X, WEN G Q, ZHOU J, SUN J Y, YAO P F, CHEN H, WANG A H, WU Q. Molecular cloning, characterization and functional analysis of a cytochrome CYP81 family homologous gene FtP450- R4 from Fagopyrum tataricum. Journal of Agricultural Biotechnology, 2015, 23(2): 181-192. (in Chinese)
[6] NAKAMURA K, NARAMOTO K, KOYAMA M. Blood-pressure- lowering effect of fermented buckwheat sprouts in spontaneously hypertensive rats. Journal of Functional Foods, 2013, 5: 406-415.
doi: 10.1016/j.jff.2012.11.013
[7] ZHENG C, HUA C, MA X, PENG C, ZHANG H, QIN L. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum(L.) Gaertn. Food Chemistry, 2012, 132: 433-438.
pmid: 26434312
[8] 黎瑞源, 石桃雄, 陈其皎, 潘凡, 陈庆富. 中国35个苦荞审定品种EST-SSR指纹图谱构建与遗传多样性分析. 植物科学学报, 2017, 35(2): 267-275.
LI R Y, SHI T X, CHEN Q J, PAN F, CHEN Q F. Construction of EST-SSR fingerprinting and analysis of genetic diversity of thirty-five registered Tartary buckwheat cultivars (Fagopyrum tataricum) in China. Plant Science Journal, 2017, 35(2): 267-275. (in Chinese)
[9] 杨明君, 杨媛, 郭忠贤, 杨芳. 旱作苦荞麦籽粒产量与主要性状的相关分析. 北方农业学报, 2010(2): 49-50.
YANG M J, YANG Y, GUO Z X, YANG F. Correlation analysis between grain yield and main character of Tartary buckwheat in dry land. Inner Mongolia Agricultural Science and Technology, 2010(2): 49-50. (in Chinese)
[10] 王佳婧, 何芳, 王勇, 侯宪斌. 2012-2016年四川省水稻区试中籼晚熟组参试组合分析. 南方农业学报, 2018, 49(11): 2177-2185.
WANG J J, HE F, WANG Y, HOU X B. Analysis on the regional trial data of late-maturing medium indica rice tested varieties in Sichuan Province from 2012 to 2016. Journal of Southern Agriculture, 2018, 49(11): 2177-2185. (in Chinese)
[11] 陈志谊, 刘永锋, 吉健安, 刘邮洲, 苏东平. 2001-2005年江苏省水稻区试品种(系)抗病性鉴定和评价. 江苏农业学报, 2006(4): 384-387.
CHEN Z Y, LIU Y F, JI J A, LIU Y Z, SU D P. Assessment and evaluation of diseases resistance of main rice varieties in Jiangsu. Jiangsu Journal of Agricultural Sciences, 2006(4): 384-387. (in Chinese)
[12] 蒋云, 张洁, 郑建敏, 王相权, 刘登才, 宣朴, 王颖, 郭元林. 四川省近10年小麦区试产量性状分析. 四川农业大学学报, 2019, 37(5): 589-595.
JIANG Y, ZHANG J, ZHENG J M, WANG X Q, LIU D C, XUAN P, WANG Y, GUO Y L. Wheat yield traits of Sichuan Province trials in last decade. Journal of Sichuan Agricultural University, 2019, 37(5): 589-595. (in Chinese)
[13] 曹颖妮, 余大杰, 赵光华, 郝学飞, 胡卫国, 汪红, 裴金花, 张可可, 胡京枝. 2006-2016年河南省小麦区域试验品种(系)的品质性状分析. 麦类作物学报, 2018, 38(8): 893-899.
CAO Y N, YU D J, ZHAO G H, HAO X F, HU W G, WANG H, PEI J H, ZHANG K K, HU J Z. Quality character analysis of wheat variaties(lines) in Henan regional tests from 2006 to 2016. Journal of Triticeae Crops, 2018, 38(8): 893-899. (in Chinese)
[14] 张增川, 李勤, 尹素芬, 肖磊, 王胜宝, 葛红心, 龙德祥, 张秀英, 徐海军, 吴可夫. 近5年陕西省春播玉米区试品种主成分变化趋势. 农学学报, 2016: 6(7): 1-5.
ZHANG Z C, LI Q, YIN S F, XIAO L, WANG S B, GE H X, LONG D X, ZHANG X Y, XU H J, WU K F. Principal components variation of spring maize regional trial varieties in Shaanxi. Journal of Agriculture, 2016, 6(7): 1-5. (in Chinese)
[15] 谢文锦, 李宁, 杨海龙, 付俊, 张中伟. 辽宁省玉米区试品种丰产稳产性比较. 作物研究, 2019, 33(6): 528-530.
XIE W J, LI N, YANG H L, FU J, ZHANG Z W. Analysis of high and stable yield of maize varieties in Liaoning. Crop Research, 2019, 33(6): 528-530. (in Chinese)
[16] 何孟霞, 刘立峰, 李玉荣, 程增书, 徐桂真, 齐丽雅. 河北省花生区域试验各参试品系与对照品种农艺性状分析. 中国农学通报, 2008(4): 192-194.
HE M X, LIU L F, LI Y R, CHENG Z S, XU G Z, QI L Y. Analysis of the agronomic traits for the tested lines and the controls of peanut regional test in Hebei province. Chinese Agricultural Science Bulletin, 2008(4): 192-194. (in Chinese)
[17] 陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51(21): 4020-4029.
doi: 10.3864/j.issn.0578-1752.2018.21.002
CHEN X M, LIANG X G, ZHAO X, GAO Z, WU G, SHEN S, LIN S, ZHOU L L, ZHOU S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Scientia Agricultura Sinica, 2018, 51(21): 4020-4029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.21.002
[18] 陆大雷, 孙世贤, 陆卫平. 国家鲜食甜玉米区域试验品种产量和品质性状分析. 中国农学通报, 2016, 32(13): 164-171.
LU D L, SUN S X, LU W P. Yield and quality of fresh sweet maize in national regional test. Chinese Agricultural Science Bulletin, 2016, 32(13): 164-171. (in Chinese)
[19] 刘贺梅, 孙建权, 胡秀明, 殷春渊, 王和乐, 田芳慧, 马朝阳, 马晓红, 王书玉. 优质高产水稻新品种新科稻31的选育与应用. 安徽农业科学, 2019, 47(2): 28-30.
LIU H M, SUN J Q, HU X M, YIN C Y, WANG H L, TIAN F H, MA C Y, MA X H, WANG S Y. Breeding and application of new rice variety Xinkedao 31 with good quality and high yield. Journal of Anhui Agricultural Sciences, 2019, 47(2): 28-30. (in Chinese)
[20] 李国锋. 高产优质抗倒玉米新品种ND367的选育与高产栽培技术. 农业科技通讯, 2019(9): 226-227.
LI G F. Breeding and high-yield cultivation techniques of new high-yield and good-quality maize variety ND367. Bulletin of Agricultural Science and Technology, 2019(9): 226-227. (in Chinese)
[21] 于亮, 钮力亚, 王伟伟, 陆莉, 王奉芝, 王伟, 王连鹏, 王艳, 藏秀金. 抗逆丰产型小麦新品种‘沧麦14’的选育. 作物研究, 2018, 32(2): 108-110.
YU L, NIU L Y, WANG W W, LU L, WANG F Z, WANG W, WANG L P, WANG Y, ZANG X J. Breeding of resistant and high yield new wheat variety ‘Cangmai 14’. Crop Research, 2018, 32(2): 108-110. (in Chinese)
[22] 李豪圣, 刘建军, 宋健民, 曹新有, 程敦公, 王灿国, 刘成, 郭军, 翟胜男, 韩冉, 訾妍, 赵振东, 刘爱峰. 优质强筋小麦济麦229选育实践与思考. 山东农业科学, 2019, 51(8): 21-24.
LI H S, LIU J J, SONG J M, CAO X Y, CHENG D G, WANG C G, LIU C, GUO J, ZHAI S N, HAN R, ZI Y, ZHAO Z D, LIU A F. Breeding practice and consideration of wheat variety Jimai 229 with high quality and strong gluten. Shandong Agricultural Sciences, 2019, 51(8): 21-24. (in Chinese)
[23] 李少昆, 张万旭, 王克如, 俞万兵, 陈永生, 韩冬生, 杨小霞, 刘朝巍, 张国强, 王浥州, 柳枫贺, 陈江鲁, 杨京京, 谢瑞芝, 侯鹏, 明博. 北疆玉米密植高产宜粒收品种筛选. 作物杂志, 2018(4): 62-68.
LI S K, ZHANG W X, WANG K R, YU W B, CHEN Y S, HAN D S, YANG X X, LIU C W, ZHANG G Q, WANG Y Z, LIU F H, CHEN J L, YANG J J, XIE R Z, HOU P, MING B. The selection of high yield maize cultivars suitable for dense planting and grain mechanical harvesting in North of Xinjiang. Crops, 2018(4): 62-68. (in Chinese)
[24] 张建华, 尚保华, 行翠平, 史民芳, 安林利. 晚播早熟节水小麦新品种沃麦608选育. 山西农业科学, 2019, 47(8): 1309-1310, 1315.
ZHANG J H, SHANG B H, XING C P, SHI M F, AN L L. Breeding of a new late-sowing, early-maturing and water-saving wheat variety Womai 608. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1309-1310, 1315. (in Chinese)
[25] 韩彦龙. 多抗耐密型玉米新品种DH919的选育. 农业科技通讯, 2019(8): 297-298.
HAN Y L. Breeding of a new multi-resistance and high-tolerance maize variety DH919. Bulletin of Agricultural Science and Technology, 2019(8): 297-298. (in Chinese)
[26] 张向前, 王瑞, 张瑞霞, 郭晓霞, 鉴军帅, 程玉臣, 吴慧, 孙峰成. 内蒙古适宜籽粒机械化收获春玉米品种筛选. 北方农业学报, 2018, 46(1): 25-29.
ZHANG X Q, WANG R, ZHANG R X, GUO X X, JIAN J S, CHENG Y C, WU H, SUN F C. Screening varieties suitable for mechanical harvesting of spring maize kernel in Inner Mongolia. Journal of Northern Agriculture, 2018, 46(1): 25-29. (in Chinese)
[27] 柳延涛, 付郭. 新饲玉17号的选育报告及其栽培技术要点. 种子科技, 2017, 35(5): 50-51.
LIU Y T, FU G. Breeding report of Xinsiyu No.17 and its cultivation techniques. Seed Science & Technology, 2017, 35(5): 50-51. (in Chinese).
[28] 南成虎, 师颖, 曹丽萍. 甜荞育种趋势与发展动态. 山西农业科学, 2013(3): 1-6.
NAN C H, SHI Y, CAO L P. Development of common buckwheat breeding method and its tendency. Journal of Shanxi Agricultural Sciences, 2013(3): 1-6. (in Chinese)
[29] 杨子梅. 通渭县苦荞产业发展现状及对策. 甘肃农业, 2010(2): 72-73.
YANG Z M. Status and countermeasures of Tartary buckwheat industry in Tongwei county. Gansu Nongye, 2010(2): 72-73. (in Chinese)
[30] 张丽君, 马名川, 刘龙龙, 康国帅, 周建萍, 崔林. 山西省苦荞品种资源的研究. 河北农业科学, 2015, 19(1): 69-74.
ZHANG L J, MA M C, LIU L L, KANG G S, ZHOU J P, CUI L. Studies on the germplasm resources of Tartary buckwheat in Shanxi Province. Journal of Hebei Agricultural Sciences, 2015, 19(1): 69-74. (in Chinese)
[31] 李月, 石桃雄, 黄凯丰, 汤晓辛, 何娟, 简永, 陈庆富. 苦荞生态因子及农艺性状与产量的相关分析. 西南农业学报, 2013, 26(1): 35-41.
LI Y, SHI T X, HUANG K F, TANG X X, HE J, JIAN Y, CHEN Q F. Correlation analysis of Tartary buckwheat seed yield with ecological factors and agronomic traits. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 35-41. (in Chinese)
[32] 汪灿, 胡丹, 杨浩, 阮仁武, 袁晓辉, 易泽林, 宋志成, 赵丹. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志, 2013(6): 18-22.
WANG C, HU D, YANG H, RUAN R W, YUAN X H, YI Z L, SONG Z C, ZHAO D. Multiple analysis of relationship between main agronomic traits and yield in Tartary buckwheat. Crops, 2013(6): 18-22. (in Chinese)
[33] 吕凤, 杨帆, 范滔, 刘京, 李乾, 王林刚, 龙晓波. 1977-2018年水稻品种审定数据分析. 中国种业, 2019(2): 35-46.
LÜ F, YANG F, FAN T, LIU J, LI Q, WANG L G, LONG X B. Analysis of validation data of rice varieties from 1977 to 2018. China Seed Industry, 2019(2): 35-46. (in Chinese)
[34] 2018年国家审定品种. 种业导刊, 2018(5): 40-47.
Nationally Validation Varieties in 2018. Seed Industry Guide, 2018(5): 40-47. (in Chinese)
[35] 杨扬, 王凤格, 赵久然, 刘亚维. 中国玉米品种审定现状分析. 中国农业科学, 2014, 47(22): 4360-4370.
doi: 10.3864/j.issn.0578-1752.2014.22.002
YANG Y, WANG F G, ZHAO J R, LIU Y W. Analysis of the current situation of accredited maize varieties in China. Scientia Agricultura Sinica, 2014, 47(22): 4360-4370. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.22.002
[36] 赵建栋, 李秀莲, 陈稳良, 史兴海, 高伟. 山西荞麦育种成就、存在问题及对策. 农业科技通讯, 2019(7): 40-43.
ZHAO J D, LI X L, CHEN W L, SHI X H, GAO W. Shanxi buckwheat breeding achievements, problems and countermeasures. Bulletin of Agricultural Science and Technology, 2019(7): 40-43. (in Chinese)
[37] ZHANG L J, LI X X, MA B, GAO Q, DU H L, HAN Y H, LI Y, CAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, CUI L, LIU H M, LIANG C Z, QIAO Z J. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017, 10(9): 1224-1237.
doi: 10.1016/j.molp.2017.08.013 pmid: 28866080
[38] 宫风秋, 张莉, 李志西, 杜双奎, 金杰. 加工方式对传统荞麦制品芦丁含量及功能特性的影响. 西北农林科技大学学报(自然科学版), 2007(9): 179-183.
GONG F Q, ZHANG L, LI Z X, DU S K, JIN J. Effects of processing methods on rutin content and functional characteristics of traditional buckwheat products. Journal of Northwest A & F University(Natural Science Edition), 2007(9): 179-183. (in Chinese)
[39] 赵玉平, 肖春玲. 苦荞麦不同器官总黄酮含量测定及分析. 食品科学, 2004(10): 264-266.
ZHAO Y P, XIAO C L. Determination of total flavones on fagopyrum gaertn of variety organs. Food Science, 2004(10): 264-266. (in Chinese)
[40] 徐建飞, 金黎平. 马铃薯遗传育种研究:现状与展望. 中国农业科学, 2017, 50(6): 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
XU J F, JIN L P. Advances and perspectives in research of potato genetics and breeding. Scientia Agricultura Sinica, 2017, 50(6): 990-1015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.06.003
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!