Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1475-1477.doi: 10.3864/j.issn.0578-1752.2019.09.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR

KOU ShuJun1,HUO AHong1,FU GuoQing1,JI JunJian1,WANG Yao1,ZUO ZhenXing1,LIU MinXuan2(),LU Ping2   

  1. 1 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-01-08 Accepted:2019-03-05 Online:2019-05-01 Published:2019-05-16
  • Contact: MinXuan LIU E-mail:liuminxuan@caas.cn

Abstract:

【Objective】Genetic diversity and population genetic structure of 131 broomcorn millet accessions in China were analyzed based on fluorescently labeled SSR markers for variety improvement and germplasm innovation as well as effective utilization of broomcorn millet germplasm.【Method】Six broomcorn millet accessions with phenotypical diversity from different geographical origins were used to select SSR markers with highly polymorphism by denaturing polyacrylamide gel electrophoresis. The polymorphic markers were labeled with four fluorescent dyes: 6-FAM, HEX, ROX and TAMRA at the 5' end of forward primers which used in subsequent analyses. The size of each allele locus was determined by DNA Analyzer to estimate the genetic diversity and genetic population structure of the tested accessions. 【Result】 Twenty-two polymorphic and stably amplifying markers were selected for both traditional denaturing PAGE electrophoresis detection and fluorescent SSR labeling-automatic analysis technology. A total of 128 alleles were detected with an average of 5.82 alleles per locus, the gene diversity index, polymorphism information content and Shannon's information index ranged from 0.3572 to 0.8132, 0.2934 to 0.8150 and 0.5427 to 1.7681, respectively, with an average of 0.6284, 0.5874 and 1.2062 respectively. Genetic distance and genetic identity of accessions from different ecotypes were 0.0764-0.7251 (average value is 0.3121) and 0.4843-0.9265 (average value is 0.7465), respectively, the smallest genetic distance was found between NSP ecotype and LPSS ecotype. UPGMA cluster analysis showed that NSP ecotype and LPSS ecotype were clustered into one group. The clustering result of the cultivars and landraces from NES ecotype was consistent, the cultivars from LPSS ecotype were divided into different groups. By plotting the relationship between K and ΔK, ΔK is the largest when K=4. Based on K and △K values, 131 broomcorn millet accessions were grouped four genotypes by the population genetic structure analysis. Group Ⅰ is composed of NSP ecotype. Group Ⅱ consist of NES ecotype. Most accessions of group Ⅲ are from NSP ecotype. Group Ⅳ mainly contain LPSS ecotype. Most of the accessions in same group have same genetic component while only a few accessions contained genetic component of other groups. The analysis result of population genetic structure was consistent with the UPGMA clustering, indicating that the genetic diversity is related to geographical region. 【Conclusion】 There have more abundant genetic diversity in NSP and LPSS ecotype than other regions. The cultivars of NES ecotype were bred mainly from the landraces. The cultivars of LPSS ecotype were introduced from a wide range of resources during the breeding process, harboring genetic exchanges with other ecological regions.

Key words: broomcorn millet, SSR fluorescently labeled markers, genetic diversity, population structure

Table 1

Genetic parameters of the 22 SSR markers used in this study"

位点
Locus
等位基因数目
Allele number
主要等位基因 Major allele 稀有基因数
Rare gene number
基因多样性指数
H
多态性信息含量
PIC
Shannon信息指数
I
片段大小
Size (bp)
频率
Frequency
BM552 7 240 0.4427 5 0.7403 0.7124 1.4924
BM637 5 167 0.3382 1 0.7373 0.6897 1.3527
BM787 5 290 0.6908 1 0.4874 0.4530 0.8807
BM2654 7 206 0.3015 1 0.7835 0.7525 1.6300
BM2715 6 227 0.3893 4 0.7324 0.6914 1.3745
BM2717 7 284 0.5916 5 0.6109 0.5825 1.2828
BM2729 4 122 0.6107 4 0.5593 0.5064 0.9212
BM2766 5 194 0.6450 1 0.5285 0.4817 1.0270
BM2792 5 132 0.4084 1 0.6626 0.5991 1.1651
BM6414 7 270 0.4618 5 0.7149 0.6814 1.3771
BM6573 2 118 0.7672 2 0.3572 0.2934 0.5427
BM6598 6 210 0.6450 1 0.5364 0.4964 1.0300
LMX503 5 226 0.6336 1 0.5489 0.5081 1.0867
LMX780 5 229 0.5076 1 0.6278 0.5659 1.1080
LMX836 8 224 0.4275 1 0.7562 0.7310 1.6617
LMX1553 6 192 0.7061 4 0.4788 0.4560 0.8776
LMX1959 5 266 0.4847 3 0.6584 0.6043 1.1549
LMX2019 8 250 0.3321 2 0.8132 0.7918 1.7681
LMX2068 8 289 0.7405 1 0.4411 0.4294 0.9994
LMX2281 5 248 0.6718 0 0.5140 0.4818 0.9819
LMX2382 8 195 0.2710 6 0.8350 0.8150 1.7779
LMX2734 4 210 0.4733 1 0.6826 0.6351 1.2678
合计Total 128 51
平均Average 5.8 0.5189 2.3 0.6284 0.5874 1.2062

Fig. 1

Alleles of 45 broomcorn millet accessions at marker locus BM2654 M: DNA molecular weight standard;Number 61-105 is the serial number of varieties listed in supplement table 1; The vertical arrow indicates heterozygous sites band patterns; The horizontal arrow indicates six different alleles"

Fig. 2

Peak patterns detected in seven broomcorn millet accessions at fluorescent marker locus BM2654 Two alleles were detected in variety 71049 because of heterozygosity at this locus. The Y axis indicates the intensity of fluorescent signals. The X axis indicates six different sizes of amplified fragment(bp)"

Table 2

Evaluation of genetic diversity of different ecotypes of broomcorn millet"

生态区
Ecotype
类型
Type
资源数
Accessions
等位基因数
Allele number
基因多样性指数
H
多态性信息含量
PIC
Shannon信息指数
I
东北春糜子区
NES
育成品种 Cultivars 20 3.8636 0.5474 0.4953 0.9848
农家种 Landraces 11 3.3636 0.5373 0.4901 0.9225
材料数 Number 31 4.3182 0.5732 0.5291 1.0562
华北夏糜子区
NSU
育成品种 Cultivars 0
农家种 Landraces 3 2.0455 0.3838 0.3197 0.4402
材料数 Number 3 2.0455 0.3838 0.3197 0.4402
北方春糜子区
NSP
育成品种 Cultivars 32 4.4091 0.5521 0.5042 1.1074
农家种 Landraces 26 4.5455 0.6221 0.5725 1.1114
材料数 Number 58 5.0455 0.6083 0.5607 1.1283
黄土高原春夏糜子区 LPSS 育成品种 Cultivars 20 4.3636 0.5808 0.5337 1.0379
农家种 Landraces 16 4.0000 0.5250 0.4993 0.9290
材料数 Number 36 5.1364 0.6020 0.5576 1.1222
西北春夏糜子区 NWSS 育成品种 Cultivars 0
农家种 Landraces 3 2.1818 0.4621 0.3811 0.5001
材料数 Number 3 2.1818 0.4621 0.3811 0.5001

Table 3

Genetic distance and genetic identity of broomcorn millet accessions with different ecotypes"

生态区
Ecotype
东北春糜子区
NES
北方春糜子区
NSP
华北夏糜子区
NSU
西北春夏糜子区
NWSS
黄土高原春夏糜子区
LPSS
东北春糜子区 NES 0.8548 0.6408 0.7078 0.8814
北方春糜子区 NSP 0.1569 0.5993 0.8552 0.9265
华北夏糜子区 NSU 0.4451 0.5120 0.4843 0.6463
西北春夏糜子区 NWSS 0.3456 0.1564 0.7251 0.8684
黄土高原春夏糜子区 LPSS 0.1263 0.0764 0.4364 0.1411

Fig. 3

Cluster diagram of broomcorn millet accessions with different ecotypes based on genetic distance"

Fig. 4

Cluster diagram of 131 broomcorn millet accessions based on data from 22 SSR markers"

Fig. 5

Graphical relationship between K and Δk for 131 broomcorn millet accessions"

Fig. 6

Population genetic structure of 131 broomcorn millet accessions"

Table 4

Distribution of 131 broomcorn millet accessions based on STRUCTURE analysis(K=4)"

省份 Province 红色 Red 绿色 Green 蓝色 Blue 黄色 Yellow
山西省Shanxi 3 3 15 6
甘肃省Gansu 8 2 2
内蒙古自治区Inner Mongolia 7 9 1
青海省Qinghai 7 1
宁夏回族自治区Ningxia 6 1 4 4
黑龙江省Heilongjiang 3 10 2 1
陕西省Shaanxi 1 1 2 5
辽宁省 Liaoning 1 2 1
吉林省 Jilin 3 1 6
河北省 Hebei 6 3
新疆维吾尔自治区 Xinjiang 1 2
山东省 Shandong 1
合计 Total 35 21 43 32

Table 5

Distribution of Q-value of four groups"

类群
Group
各群体品种数量
Number of varieties in each group
品种数量Number of varieties
Q<0.6 Q≥0.6 Q≥0.8 Q≥0.9
1 35 1 34 26 21
2 21 3 18 15 14
3 43 12 31 18 14
4 32 7 25 18 15
合计 Total 131 24 107 76 63
[1] BARTON L, NEWSOME S D, CHEN F H, WANG H, GUILDERSON T P, BETTINGER R L . Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(14):5523-5528.
doi: 10.1073/pnas.0809960106
[2] HU X Y, WANG J F, LU P, ZHANG H S . Assessment of genetic diversity in broomcorn millet(Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics, 2009,36(8):491-500.
[3] 王瑞云 . 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017.
WANG R Y. Research Advances on the Genetic Diversity and Evolution of Broomcorn Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017. (in Chinese)
[4] 黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民 . 中国作物分子育种现状与发展前景. 作物学报, 2010,36(9):1425-1430.
doi: 10.3724/SP.J.1006.2010.01425
LI Y, WANG J K, QIU L J, MA Y Z, LI X H, WAN J M . Crop molecular breeding in China: Current status and perspectives. Acta Agronomica Sinica, 2010,36(9):1425-1430. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01425
[5] M'RIBU H K, HILU K W . Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theoretical and Applied Genetics, 1994,88(3):412-416.
doi: 10.1007/BF00223653 pmid: 24186027
[6] KARAM D, WESTRA P, NISSEN S J, WARD S M, FIGUEIREDO J E F . Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique. Planta Daninha, 2004,22(2):167-174.
[7] LÁGLER R, GYULAI G, HUMPHREYS M, SZABÓ Z, HORVÁTH L, BITTSÁNSZKY A, KISS J, HOLLY L, HESZKY L . Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica, 2005,146:77-85.
doi: 10.1007/s10681-005-5814-7
[8] RAJPUT S G, PLYLER-HARVESON T, SANTRA D K . Development and characterization of SSR markers in Proso Millet based on switchgrass genomics. American Journal of Plant Sciences, 2014,5(1):175-186.
doi: 10.4236/ajps.2014.51023
[9] 刘秀云, 李慧, 刘志国, 赵锦, 刘孟军 . 基于SSR标记的255个枣品种亲缘关系和群体结构分析. 中国农业科学, 2016,49(14):2772-2791.
doi: 10.3864/j.issn.0578-1752.2016.14.011
LIU X Y, LI H, LIU Z G, ZHAO J, LIU M J . Genetic diversity and structure of 255 cultivars of Ziziphus jujuba Mill. Scientia Agricultura Sinica, 2016,49(14):2772-2791. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.14.011
[10] 吴承来, 张倩倩, 董炳雪, 李圣福, 张春庆 . 我国部分玉米自交系遗传关系和群体结构解析. 作物学报, 2010,36(11):1820-1831.
doi: 10.3724/SP.J.1006.2010.01820
WU C L, ZHANG Q Q, DONG B X, LI S F, ZHANG C Q . Analysis of genetic structure and genetic relationships of partial maize inbred lines in China. Acta Agronomica Sinica, 2010,36(11):1820-1831. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01820
[11] 高帆, 张宗文, 吴斌 . 中国苦荞SSR分子标记体系构建及其在遗传多样性分析中的应用. 中国农业科学, 2012,45(6):1042-1053.
doi: 10.3864/j.issn.0578-1752.2012.06.002
GAO F, ZHANG Z W, WU B . Construction and application of SSR molecular markers system for genetic diversity analysis of Chinese Tartary buckwheat germplasm resources. Scientia Agricultura Sinica, 2012,45(6):1042-1053. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.06.002
[12] 刘岩, 程须珍, 王丽侠, 王素华, 白鹏, 吴传书 . 基于SSR标记的中国绿豆种质资源遗传多样性研究. 中国农业科学, 2013,46(20):4197-4209.
doi: 10.3864/j.issn.0578-1752.2013.20.003
LIU Y, CHENG X Z, WANG L X, WANG S H, BAI P, WU C S . Genetic diversity research of mungbean germplasm resources by SSR markers in China. Scientia Agricultura Sinica, 2013,46(20):4197-4209. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.20.003
[13] CHO Y I, CHUNG J W, LEE G A, MA K H, DIXIT A, GWAG J G, PARK Y J . Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet(Panicum miliaceum L.). Genes﹠Genomics, 2010,32:267-273.
doi: 10.1007/s13258-010-0007-8
[14] HUNT H V, CAMPANA M G, LAWES M C, PARK Y J, BOWER M A, HOWE C J, JONES M K . Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Molecular Ecology, 2011,20(22):4756-4771.
doi: 10.1111/j.1365-294X.2011.05318.x pmid: 22004244
[15] 连帅, 陆平, 乔志军, 张琦, 张茜, 刘敏轩, 王瑞云 . 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016,49(17):3264-3275.
doi: 10.3864/j.issn.0578-1752.2016.17.002
LIAN S, LU P, QIAO Z J, ZHANG Q, ZHANG Q, LIU M X, WANG R Y . Genetic diversity in broomcorn millet (Panicum miliaceum L.) from China and abroad by using SSR markers. Scientia Agricultura Sinica, 2016,49(17):3264-3275. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.17.002
[16] LIU M X, XU Y, HE J L, ZHANG S, WANG Y Y, LU P . Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. International Journal of Molecular Sciences, 2016,17:370-388.
doi: 10.3390/ijms17030370 pmid: 4813230
[17] 薛延桃, 陆平, 乔志军, 刘敏轩, 王瑞云 . 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018,51(15):2846-2859.
XUE Y T, LU P, QIAO Z J, LIU M X, WANG R Y . Genetic diversity and genetic relationship of broomcorn millet (Panicum miliaceum L.) germplasm based on SSR markers. Scientia Agricultura Sinica, 2018,51(15):2846-2859. (in Chinese)
[18] 王银月, 刘敏轩, 陆平, 乔志军, 杨天育, 李海, 崔喜艳 . 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志, 2014(4):32-38.
WANG Y Y, LIU M X, LU P, QIAO Z J, YANG T Y, LI H, CUI X Y . The SSR primers screening of broomcorn millet(Panicum miliaceum L.) for construction of genetic map. Crop Journal, 2014(4):32-38. (in Chinese)
[19] DAVIES H, DICKS E, STEPHENS P, COX C, TEAGUE J, GREENMAN C, BIGNELL G, MEARA S O, EDKINS S, PARKER A, STEVENS C, MENZIES A, BLOW M, BOTTOMLEY B, DRONSFIELD M, FUTREAL P A, STRATTON M R, WOOSTER R . High throughput DNA sequence variant detection by conformation sensitive capillary electrophoresis and automated peak comparison. Genomics, 2006,87(3):427-432.
doi: 10.1016/j.ygeno.2005.11.008 pmid: 16406726
[20] 雍洪军, 张世煌, 张德贵, 李明顺, 李新海, 郝转芳, 刘晓鑫, 白丽, 谢传晓 . 利用SSR荧光标记分析90个糯玉米地方品种的遗传多样性. 玉米科学, 2009,17(1):6-12.
YONG H J, ZHANG S H, ZHANG D G, LI M S, LI X H, HAO Z F, LIU X X, BAI L, XIE C X . Analysis of genetic diversity among 90 waxy corn landraces using fluorescent SSR markers. Maize Science, 2009,17(1):6-12. (in Chinese)
[21] 郑永胜, 张晗, 王东健, 孙加梅, 王雪梅, 段丽丽, 李华, 王玮, 李汝玉 . 基于荧光检测技术的小麦品种SSR鉴定体系的建立. 中国农业科学, 2014,47(19):3725-3735.
doi: 10.3864/j.issn.0578-1752.2014.19.001
ZHENG Y S, ZHANG H, WANG D J, SUN J M, WAGN X M, DUAN L L, LI H, WAGN W, LI R Y . Development of a wheat variety identification system based on fluorescently labeled SSR markers. Scientia Agricultura Sinica, 2014,47(19):3725-3735. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.19.001
[22] 何其芳, 李荣华, 郭培国, 宁正详, 邱妙文, 赵伟才, 夏岩石, 白盼 . 利用SSR荧光标记技术分析烟草种质的遗传多样性. 中国农学通报, 2012,28(10):95-102.
doi: 10.3969/j.issn.1000-6850.2012.10.018
HE Q F, LI R H, GUO P G, NING Z X, QIU M W, ZHAO W C, XIA Y S, BAI P . Genetic diversity analysis for tobacco germplasm by using fluorescent SSR technique. Chinese Agricultural Science Bulletin, 2012,28(10):95-102. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2012.10.018
[23] 许鲲, 李峰, 吴金峰, 谷铁城, 陈碧云, 高桂珍, 闫贵欣, 李俊, 乔江伟, 汪念, 伍晓明 . SSR荧光标记毛细管电泳法与国家冬油菜区试指纹鉴定平台的构建. 中国油料作物学报, 2014,36(2):150-159.
doi: 10.7505/j.issn.1007-9084.2014.02.003
XU K, LI F, WU J F, GU T C, CHEN B Y, GAO G G, YAN G X, LI J, QIAO J W, WAMG N, WU X M . Fingerprint identification platform of capillary electrophoresis detection with fluorescent SSR markers on national winter rapeseed varieties (lines) field trials. Chinese Journal of Oil Crop Sciences, 2014,36(2):150-159. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2014.02.003
[24] 王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军 . 利用荧光SSR分子中国糜子遗传多样性. 作物学报, 2017,43(4):530-548.
doi: 10.3724/SP.J.1006.2017.00530
WANG R Y, JI X, LU P, LIU M X, XU Y, WANG L, WANG H G, QIAO Z J . Analysis of genetic diversity in common millet(Panicum miliaceum) using fluorescent SSR in China. Acta Agronomica Sinica, 2017,43(4):530-548. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00530
[25] 柴岩, 冯佰利, 王宏岩 . 中国黄米食品. 杨凌: 西北农林科技大学出版社, 2012.
CHAI Y, FENG B L, WAGN H Y. Food of Proso Millet in China. Yangling: Northwest A&F University Press, 2012. (in Chinese)
[26] LIU K, MUSE S V . PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 2005,21:2128-2129.
doi: 10.1093/bioinformatics/bti282
[27] YEH F C, BOYLE T J . Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,129:157.
[28] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S . MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 2011,665:2731-2739.
[29] FALUSH D, STEPHENS M, PRICTHARD J K . Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587.
doi: 10.3410/f.1015548.197423 pmid: 12930761
[30] EVANNO G, REGNAUT S, GOUDET J . Detecting the number of cluster of individuals using the software structure: A simulation study. Molecular Ecology, 2005,14:2611-2620.
doi: 10.1111/mec.2005.14.issue-8
[31] 王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军 . 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017,50(20):3848-3859.
doi: 10.3864/j.issn.0578-1752.2017.20.002
WANG R Y, LIU X Y, WANG H G, LU P, LIU M X, CHEN L, QIAO Z J . Evaluation of genetic diversity of common millet (Panicum miliaceum) germplasm available in China using high motif nucleotide repeat SSR markers. Scientia Agricultura Sinica, 2017,50(20):3848-3859. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.002
[32] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军 . 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015,48(16):3121-3131.
doi: 10.3864/j.issn.0578-1752.2015.16.003
DONG J L, WANG H G, CHEN L, WANG J J, CAO X N, WANG L, QIAO Z J . Analysis of genetic diversity and structure of Proso millet core germplasm. Scientia Agricultura Sinica, 2015,48(16):3121-3131. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.16.003
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[9] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!