Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (17): 3562-3570.doi: 10.3864/j.issn.0578-1752.2013.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Meta-Analysis of the Relationship Between Maize Crop Yield and Plant Density from 1950s to 2000s in China

 YANG  Jin-Zhong, CHEN  Ming-Li, ZHANG  Hong-Sheng   

  1. College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Provincial Key Laboratory of Dry Farming Techniques, Qingdao 266109, Shandong
  • Received:2013-01-21 Online:2013-09-01 Published:2013-04-21

Abstract: 【Objective】 The objective of the study is to reveal the general characteristics of yield-density relationships of maize plant density experiments in China, and to evaluate the suitability of meta-analysis as a tool to study maize yield response to plant density. 【Method】Based on requirements for meta-analysis, a collection of historical maize plant density experiments from 1950s to 2000s in China was built with some 1 500 pairs of plant densities and their crop yields. All eligible data sets were subject to statistical analysis such as gradients, boundary curves and 2-D kernel density. 【Result】Variation coefficient was 20.4% for optimum density, 33.65% for the highest yield and 30.8% for yield per plant under optimum density. Relative importance of yield components varied with combination zones of plant density and yield per plant. Upper boundary yields as a function of plant density followed the equation of Y=-0.0134x3+3.15x, within plant density range of [0.99, 15.0] plant/m2. Upper boundary yields as two stage functions of yield per plant were that increased along Y1=113.1x, then declined along Y2=-69.84x+33.87 when yield per plant is larger than 0.185 kg. Plant density range within which there is the highest possibility for the yield of 15 mg?hm-2 fell in [7.0, 9.7] plant/m2. The 90th quantile for yield loss percentage was 6.18% due to 15% offset from the optimal plant density, and the 90th quantile due to 1 plant/m2 offset was 0.88 t?hm-2. 【Conclusion】Meta-analysis facilitates the distillation and abstraction of bulk data from maize yield-density experiments with multiple views, and it is applicable to other crop science areas.

Key words: maize , optimal density , meta-analysis , gradient analysis , 2-D kernel density , boundary curve

[1]范福仁, 莫惠栋, 秦泰辰, 胡雪华. 玉米密植程度研究. 作物学报, 1963, 2(4): 381-398.

Fan F R, Mo H D, Qing T H, Hu X H. Studies of the planting rate of corn. Zuowu Xuebao, 1963, 2(4): 381-398. (in Chinese)

[2]河南省玉米协作组. 一九七五年河南省夏玉米密度试验总结. 河南农业大学学报, 1977(1): 22-26.

Maize Program of Henan Province. Summary of plant density experiments of summer maize in 1975. Journal of Henan Agricultural University, 1977(1): 22-26. (in Chinese)

[3]尹枝瑞, 田海云. 种植密度对玉米产量及生长发育的影响. 吉林农业科学, 1987(1): 12-17.

Yin Z R, Tian H Y. The influence of plant density on growth and yield in maize. Jilin Agricultural Sciences, 1987(1): 12-17. (in Chinese)

[4]刘克礼, 李春林, 刘国清, 刘卫东. 春玉米高产的适宜密度与氮素施用量研究. 内蒙古农业大学学报: 自然科学版, 1987, 8(1): 99-105.

Liu K L, Li C L, Liu G Q, Liu W D. A study on optimum plant density and nitrogen rate for spring maize. Journal of Inner Mongolia College of Agriculture and Animal Husbandry, 1987, 8(1): 99-105. (in Chinese)

[5]王懿波, 陆利行, 王文贤, 刘兴龙, 戴炳林. 六个玉米杂交种在不同条件下丰产潜力的初步研究. 河南农业科学, 1991(5): 3-5, 8.

Wang Y B, Lu L X, Wang W X, Liu X L, Dai B L. A study on yield potentials of 6 maize hybrids grown different conditions. Journal of Henan Agricultural University, 1991(5): 3-5, 8. (in Chinese)

[6]鲍巨松, 薛吉全, 杨成书, 马国胜. 不同株型玉米品种高产潜力及特征的研究. 玉米科学, 1994, 2(2): 48-51.

Bao J S, Xue J Q, Yang C S, Ma G S. Studies on high-yield potential and its characteristics of corn varities with different plant-type. Maize Science, 1994, 2(2): 48-51. (in Chinese)

[7]陈建生, 陈秀道, 杨少海, 张发宝, 苗青. 选用良种和合理密植对粤西玉米的增产效果. 广东农业科学, 1994(1): 12-13.

Chen J S, Chen X D, Yang S H, Zhang F B, Miao Q. Yielding effects of cultivars and plant densities in maize in western Guangdong Province. Guangdong Agricultural Sciences, 1994(1): 12-13. (in Chinese)

[8]赵久然, 孙政才, 陈国平, 尉得铭, 杨洪友. 紧凑型玉米适宜密植定额研究. 北京农业科学, 1995, 13(6): 10-12.

Zhao J R, Sun Z C, Chen G P, Yu D M, Yang H Y. A study of optimum plant density for compact type maize. Beijing Agricultural Sciences, 1995, 13(6): 10-12. (in Chinese)

[9]刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉. 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010, 21(7): 1737-174.

Liu W, Lv P, Su K, Yang J S, Zhang J W, Dong S T, Liu P, Sun Q Q. Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chinese Journal of Applied Ecology, 2010, 21(7): 1737-174. (in Chinese)

[10]史振声, 孙萌, 李凤海, 王志斌, 王宏伟, 吕香玲, 朱敏. 辽宁西部地区玉米密植潜力研究. 玉米科学, 2010, 18(4): 99-102.

Shi Z S, Sun M, Li F H, Wang Z B, Wang H W, Lv X L, Zhu M. Study on potential densities of maize in the west of Liaoning Province. Journal of Maize Sciences, 2010, 18(4): 99-102. (in Chinese)

[11]李向岭, 李从锋, 葛均筑, 侯海鹏, 赵明. 播期和种植密度对玉米产量性能的影响. 玉米科学, 2011, 19(2): 95-100.

Li X L, Li C F, Ge J Z, Hou H P, Zhao M. Effects of planting date and planting density on yield performance of maize. Journal of Maize Sciences, 2011, 19(2): 95-100. (in Chinese)

[12]Miguez F, Bollero G. Review of corn yield response under winter cover cropping systems using meta-analytic methods. Crop Science, 2005, 45(6): 2318-2329.

[13]杨锦忠, 张洪生, 杜金哲. 玉米产量-密度关系年代演化趋势的Meta分析. 作物学报, 2013, 39(3): 515-519.

Yang J Z, Zhang H S, Du J Z. Meta-analysis of evolution trend from 1950s to 2000s in the relationship between crop yield and plant density in maize. Acta Agronomica Sinica, 2013, 39(3): 515-519. (in Chinese)

[14]Silverman B W. Density Estimation for Statistics and Data Analysis. New York: Chapman and Hall, 1986: 76.

[15]胡昌浩, 董树亭, 王空军, 孙庆泉. 我国不同年代玉米品种生育特性演进规律研究Ⅰ产量性状的演进. 玉米科学, 1998, 6(2): 44-48.

Hu C H, Dong S T, Wang C J, Sun Q Q. Yield advances of maize introduced in decades in ChinaⅠ.Evolution of yield characteristic. Maize Sciences, 1998, 6(2): 44-48. (in Chinese)

[16]李少昆, 王崇桃. 玉米生产技术创新与扩散. 北京: 科学出版社, 2010: 1-32.

Li S K, Wang C T. Maize Production Techniques: Innovation and Transfer. Beijing: Science Press, 2010: 1-32. (in Chinese)

[17]Abbott A J, Best G R, Webb R A. The relation of achene number to berry weight in strawberry fruit. Journal of Horticultural Science, 1970, 45: 215-222.

[18]Shatar T M, McBratney A. Boundary-line analysis of field-scale yield response to soil properties. Journal of Agricultural Science, 2004, 142: 553-560.

[19]Makowski D, Dor´ec T, Monodb H. A new method to analyze relationships between yield components with boundary lines. Agronomy for Sustainable Development, 2007, 27: 119-128.

[20]Imhoff S, Kay B D, Pires da Silva A, Hajabbasi M A. Evaluating responses of maize to soil physical conditions using a boundary line approach. Soil & Tillage Research, 2010, 106(2): 303-31.

[21]Quesnel P O, Cote B, Fyles J W. Optimum nutrient concentrations and CND scores of mature white spruce determined using a boundary-line approach and spatial variation of tree growth and nutrition. Journal of Plant Nutrition, 2006, 29(11): 1999-2018.

[22]Lafond J. Boundary-line approach to determine minimum and maximum leaf micronutrient concentrations in wild lowbush blueberry in Quebec, Canada. International Journal of Fruit Science, 2013, 13: 3, 345-355.

[23]Blanco-Macías F, Magallanes-Quintanar R, Valdez-Cepeda R D, Vázquez-Alvarado R, Olivares-Sáenz E, Gutiérrez-Ornelas E, Vidales-Contreras J A. Comparison between CND norms and boundary-line approach nutrient standards. Revista Chapingo Serie Horticultura, 2009, 15(2): 217-223.

[24]陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38(1): 80-85.

Chen G B, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Analysis on distribution, yield structure and key culture techniques of maize super-high yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)

[25]王永宏, 王克如, 赵如浪, 王楷, 赵健, 王喜梅, 李健, 梁明晰, 李少昆. 高产春玉米源库特征及其关系. 中国农业科学, 2013, 46(2): 257-269.

Wang Y H, Wang K R, Zhao R L, Wang K, Zhao J, Wang X M, Li J, Liang M X, Li S K. Relationship between the source and sink of spring maize with high yield. China Agriculture Science, 2013, 46(2): 257-269. (in Chinese)

[26]Zhang Z H, Hu G, Zhu J D, Luo D H, Ni J. Spatial patterns       and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 2010, 25: 1151-1160.

[27]王志刚, 高聚林, 张宝林, 罗瑞林, 杨恒山, 孙继颖, 于晓芳, 苏治军, 胡树平. 内蒙古平原灌区高产春玉米(15 t?hm-2以上)产量性能及增产途径. 作物学报, 2012, 38(7): 1318-1327.

Wang Z G, Gao J L, Zhang B L, Luo R L, Yang H S, Sun J Y, Yu X F, Su Z J, Hu S P. Productivity performance of high-yield spring maize and approaches to increase grain yield (above 15 t?ha-1) in irrigated Plain of Inner Mongolia. Acta Agronomica Sinica, 2012, 38(7): 1318-1327. (in Chinese)

[28]Coulter J A, Nafziger E D, Janssen M R, Pedersen P. Response of Bt and near-isoline corn hybrids to plant density. Agronomy Journal, 2010, 102(1): 103-111.

[29]王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000 kg?hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445.

Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!