Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (15): 3079-3086.doi: 10.3864/j.issn.0578-1752.2013.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Functional Characterization of the Plasma Intrinsic Protein Gene OsPIP2;6 in Rice

 LI  Rong-1, NIU  Xiang-Li-2, MIAO  Yan-Wen-1, XIONG  Fang-Jie-1, LIU  Yong-Sheng-12   

  1. 1.School of Life Sciences, Chongqing University, Chongqing 400030
    2.School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009
  • Received:2013-03-11 Online:2013-08-01 Published:2013-05-22

Abstract: 【Objective】 The current study aims to investigate the functional significance of a rice aquaporin (OsPIP2;6) by analyzing the phenotypic alteration resulting from overexpressing OsPIP2;6 in responses to stressed conditions.【Method】The overexpression vector of 35S::pHB-OsPIP2;6 was constructed and introduced into rice cv. Nipponbare by Agrobacterium-mediated transformation .The phenotypic analysis and molecular detection of transgenic plants were performed to verify the function of OsPIP2;6. 【Result】 Real-time PCR indicated that OsPIP2;6 was regulated by gibberellin (GA), abscisic acid (ABA) and the expression levels of OsPIP2;6 in transgenic lines were significantly increased. There was no obvious difference in growth between transgenic plants and wild type under normal condition. The performance of T2 transgenic seedlings revealed that OsPIP2;6 overexpression lines showed increased growth rates under stresses condition. 【Conclusion】 The phenotype of overexpressing OsPIP2;6 lines suggested a role of OsPIP2;6 in resistance to draught, waterlogging, and salt stress.

Key words: Oryza sativa L. , aquaporin , draught , salt stress

[1]Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant Cell Environment, 2002, 25: 173-194.

[2]Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weing A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 2001, 126(4): 1358-1369.

[3]Carbrey J M, Agre P. Discovery of the aquaporins and development of the field. Handbook of Experimental Pharmacology, 2009: 3-28.

[4]Azad A K, Katsuhara M, Sawa Y, Ishikawa T, Shibata H. Characterization of four plasma membrane aquaporins in tulip petals: A putative homolng is regulated by phesphorylation. Plant Cell Physiology, 2008, 49(8): 1196-1208.

[5]于利刚, 解莉楠, 李玉花. 植物抗逆反应中水孔蛋白的表达调控研究. 生物技术通报, 2011, 8: 5-13.

Yu L G, Jie L N, Li Y H. Advantage on the expression patterns of aquaporins in plant under abiotic stress. Biotechnology Bulletin, 2011, 8: 5-13. (in Chinese)

[6]Kammerloher W, Fischer U, Plechottka G P, Schaffner A R. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. The Plant Journal, 1994, 6(2): 187-199.

[7]刘迪秋, 李文娴, 葛锋, 王继磊. 植物水通道蛋白的结构特征及其表达调控. 安徽农业科学, 2008, 36(27): 11645-11647.

Liu D Q, Li W X, Ge F, Wang J L. Structural characteristics of aquaporins in plants and their expression and regulation. Journal of AnHui Agricultural Science, 2008, 36(27): 11645-11647. (in Chinese)

[8]Javot H, Maurel C. The role of aquaporins in root water uptake. Annais of Botany, 2002, 90: 301-313.

[9]Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 2005, 46(9): 1568-1577.

[10]Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. The Plant Journal, 1995. 7: 87-95.

[11]Fotiadis D, Jeno P, Mini T, Wirtz S, Muller S A, Fraysse L, Kjellbom P. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. The Journal of Biological Chemistry, 2001, 276(3): 1707-1714

[12]Azaizeh H, Steudle E. Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiology, 1991, 97(3): 1136-1145.

[13]Gao Z X, He X L, Zhao B C, Zhou C J, Liang Y Z, Ge R C, Shen Y Z, Huang Z J. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant and Cell Physiology, 2010, 51(5): 767-775.

[14]Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology, 2002, 43(10): 1229-1237.

[15]Hose E, Steudle E, Hartung W. Abscisic acid and hydraulic conductivity of maize roots: A study using cell and root pressure probe. Planta, 2000, 211: 874-882.

[16]Vera-Estrella R, Barkla B J, Bohner H J, Pantoja O. Novel regulation of aquaporins during osmotic stress. Plant Physiology, 2004, 135: 2318-2329.

[17]Lian H L, Yu X, Ye Q, Ding X S, Kitagawa Y, Kwak S S, Su W A, Tang Z C. The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 2004, 45(4): 481-489.

[18]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271-282.

[19]曹明霞, 卫志明, 黄健秋. 根癌农杆菌介导的水稻遗传转化. 植物生理学通讯, 2002, 38(5): 423-427.

Cao M X, Wei Z M, Huang J Q. Progress on transformation of rice mediated by Agrobacterium tumefaciens. Plant Physiology Communications, 2002, 38(5): 423-427. (in Chinese)

[20]Li L, Qu R, Kochko A D, Fauquet C, Beachy R N. An improved rice transformation system using the biolistic method. Plant Cell Reports, 1993, 12(5): 250-255.

[21]Zhu C F, Schraut D,Hartung W, Schaffner A R. Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany, 2005, 56(421): 2971-2981.

[22]Jang J Y, Kim D G, Kim Y O, Kim J S, Kang H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 2004, 54 (5): 713-725.

[23]Ruiz-Lozano J M, Alguacil M D M, Barzana G, Vernieri P, Aroca R. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 2009, 70(5): 565-579.

[24]Sun M H, Zhang M H, Liu H Y, Li L G, Yu X, Su W A, Tang Z C. Distribution of water channel protein RWC3 and its regulation by GA and sucrose in rice (Oryza sativa). Acta Botanica Sinica, 2004, 46(9): 1056-1064.

[25]Malz S, Sauter M. Expression of two PIP genes is rapidly growing internodes of rice in not primarily controlled by meristem activity or cell expansion. Plant Molecular Biology, 1999, 40: 985-995.

[26]Martinez-Ballesta M C, Bastías E, Zhu C F, Schaffner A R, Moro B G, Murua C G, Carvaja M. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiologia Plantarum, 2008, 132(4): 479-490.

[27]Mosa K A, Kumar K, Chhikara S, Mcdermott J, Liu Z J, Musante C, White J C, Dhankher O P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research, 2012, 21: 1265-1277.

[28]Li G W, Peng Y H, Yu X, Zhang M H, Cai W M, Sun W N, Su W A. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology, 2008, 165(18): 1879-1888.

[29]Guo L, Wang Z Y, Lin H, Cui W E, Chen J, Liu M, Chen Z L, Qu L J, Gu H. Expression and functional analysis of the rice plasma membrane intrinsic protein gene family. Cell Research, 2006, 16: 277-286.
[1] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[4] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[5] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[6] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[7] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[8] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[9] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[10] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[11] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[12] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[13] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[14] ChunHua PANG,Yuan ZHANG,YaNi LI. Effects of Soaking Seeds with Lanthanum Nitrate on Seed Germination and Seedling Growth of Quinoa Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(24): 4484-4492.
[15] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!