Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (18): 3699-3708.doi: 10.3864/j.issn.0578-1752.2012.18.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Methylation Linkage Groups A and B in Sorghum with MSAP and SSR Markers and Analysis of Methylation Sites and Patterns

 DUAN  Yong-Hong, WANG  Ming, SUN  Yi, YANG  Wu-De   

  1. 1.山西农业大学农学院,山西太谷 030801
    2.山西省农业科学院生物技术研究中心,太原 030031
    3.农业部黄土高原作物基因资源与种质创制重点实验室,太原 030031
  • Received:2012-03-30 Online:2012-09-15 Published:2012-06-29

Abstract: 【Objective】 The genetic linkage groups of A and B with methylation sensitive markers of Sorghum bicolor L. were constructed, and the methylation sites and methylation patterns were analyzed. 【Method】 F2 segregating population with 150 individuals derived from the sorghum cross B2V4 ×1383-2 was analyzed based on MSAP and SSR markers, and linkage groups were constructed using Map maker/EXP (version 3.0) and Map/Draw 2.1. 【Result】 Methylation linkage groups were constructed. Group A was composed of 30 loci covering 93.7 cM, of which 20 loci were MSAP markers, including 13 loci from EcoRⅠ/MspⅠ enzyme digestion, 7 loci from EcoRⅠ/HpaⅡenzyme digestion, and 10 loci were SSR markers. Group B was composed of 43 loci covering 90.4 cM, of which 39 loci were MSAP markers, including 19 loci from EcoRⅠ/MspⅠenzyme digestion, 20 loci from EcoRⅠ/HpaⅡenzyme digestion and 4 loci were SSR markers. There were only methylation marker products existed from EcoRⅠ/MspⅠ enzyme digestion on linkage group A-a, but on other linkage groups, the methylation markers from both EcoRⅠ/HpaⅡ and EcoRⅠ/MspⅠenzyme digestion were found. Additionally, Group A-b and Group B-b each had a slightly dense methylation resign, nearby Xtxp302 and Xtxp304, while, a highly dense methylation regions, nearby Xtxp 296 in linkage group B-a, with clusters of the EcoRⅠ/Msp I and EcoRⅠ/HpaⅡenzyme digestion MSAP markers were revealed. Based on polymorphism of methylation fragments between parents and their segregation among the F2 population, cytosine methylation patterns between hybrid and their parents were divided into two major groups. 【Conclusion】 MSAP markers can detect a large number of different methylated fragment, with anchor SSR markers, it is an efficient technique in constructing methylation genetic linkage groups or methylation genetic linkage map. High-density methylation regions were revealed near SSR markers Xtxp 302 on Group A-b, Xtxp 96 on Group B-a and Xtxp 304 on Group B-b. Among these loci the number of demethylated loci was higher than the number of methylated loci in hybrid F1 compared to its parents,which might imply a decreased methylation level in the hybrid genome.

Key words: sorghum, SSR, MSAP, DNA methylation

[1]袁爱萍, 毛  雪, 侯爱斌, 张福耀, 李润植. 高粱基因组学研究的新进展. 生物技术通报, 2003(1): 8-12.

Yuan A P, Mao X, Hou A B, Zhang F Y, Li R Z. Advance in Sorghum genomics. Biotechnology Bulletin, 2003(1): 8-12. (in Chinese)

[2]Bird A. DNA methylation patterns and epigeneticmemory. Genes and Development, 2002, 16(1): 6-21.

[3]Henikoff S, Matzke M A. Exploring and explaining of epigenetic effects. Trends in Genetics, 1997, 13: 293-295.

[4]孟凡荣, 司志飞, 刘昊英. 植物DNA的甲基化及其生物学功能. 安徽农业科学, 2007, 35(36): 11757-11759.

Meng F R, Si Z F, Liu H Y. DNA methylation and its biological role in plant. Journal of Anhui Agricultural Science, 2007, 35(36): 11757-11759. (in Chinese)

[5]Isabelle V, Jerzy P. Role of histone and DNA methylation in gene regulation. Plant Biology, 2007, 10: 528-533.

[6]Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics. Science, 2001, 293: 1068-1070.

[7]Tsaftaris A S, Polidoros A N, Koumproglou R, Tani E, Kovacevic N, Abatzidou E. Epigenetic mechanisms in plants and their implications in plant breeding. Avenue Media, 2005: 157-171.

[8]Paterson A H, Bowers J E, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti A K, Chapman J, Feltus F A, Gowik U, Grigoriev I V, Lyons E, Maher C A, Martis M, Narechania A, Otillar R P, Penning B W, Salamov A A, Wang Y, Zhang L, Carpita N C, Freeling M, Gingle A R, Hash C T, Keller B, Klein P, Kresovich S, McCann M C, Ming R, Peterson D G, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer K F, Messing J, Rokhsar D S. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(29): 551-556.

[9]Guan Y A, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in Sorghum. Euphytica, 2011, 182: 431-440.

[10]Kebede H, Subudhi P K, Rosenow D T. Quantitative trait loci influencing drought tolerance in grain Sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics, 2001, 103: 266-276.

[11]Tao Y Z, Henzell R G, Jordan D R, Butler D G, Kelly A M, Mclntyre C L. Identification of genomic regions associated with stay green in Sorghum by testing RILs in mutiple environments. Theoretical and Applied Genetics, 2000, 100: 1225-1232.

[12]Haussmann B I G, Mahalakshmi V, Reddy B V S, Seetharama N, Hash C T, Geiger H H. QTL mapping of staygreen in two Sorghum recombinant inbred populations. Theoretical and Applied Genetics, 2002, 106: 133-142.

[13]Klein R R, Rodriguez-Herrera R, Schlueter J A, Klein P E, Yu Z H, Rooney Z H. Identification of genomic regions that affect grain mold incidence and other traits of agronomic importance in Sorghum. Theoretical and Applied Genetics, 2001, 102: 307-319.

[14]王子成, 李忠爱, 李锁平. MSAP技术及其在植物上的应用. 生物技术通报, 2006(增1): 195-196.

Wang Z C, Li Z A, Li S P. The technology of MSAP and its applications in plant. Biotechnology Bulletin, 2006(Suppl. 1): 195-196. (in Chinese)

[15]Xiong L Z, Xu C G, Maroof M A, Zhang Q F. Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics, 1999, 261: 439-446.

[16]仪治本, 孙  毅, 牛天堂, 梁小红, 刘龙龙, 赵威军, 李炳林. 高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究. 作物学报, 2005, 31(9): 1138-1143.

Yi Z B, Sun Y, Niu T T, Liang X H, Liu L L, Zhao W J, Li B L. Patterns of DNA cytosine methylation between hybrids and their parents in Sorghum genome. Acta Agronomica Sinica, 2005, 31(9): 1138-1143. (in Chinese)

[17]仪治本, 孙  毅, 牛天堂, 梁小红, 刘龙龙, 闫  敏, 赵威军. 玉米杂交种及其亲本基因组DNA胞嘧啶甲基化水平研究. 西北植物学报, 2005, 25(12): 2420-2425.

Yi Z B, Sun Y, Niu T T, Liang X H, Liu L L, Yan M, Zhao W J. Genomic DNA cystoine methylation of corn hybrids and their parents. Acta Botanica Boreale-Occidentalia Sinica, 2005, 25(12): 2420-2425. (in Chinese)

[18]Jiang C D, Deng C Y, Xiong Y Z. Different of cytosine methylation in parental lines and hybrid F1 of Large White × Meishan and their effects on F1 performance. Journal of Agricultural Biotechnology, 2005, 13(1): 46-51.

[19]洪  柳, 邓秀新. 应用MSAP技术对脐橙品种进行DNA甲基化分析. 中国农业科学, 2005, 38(11): 2301-2307.

Hong L, Deng X X. Analysis of DNA methylation in navel oranges based on MSAP marker. Scientia Agricultura Sinica, 2005, 38(11): 2301-2307. (in Chinese)

[20]洪  舟, 施季森, 郑仁华, 杨立伟, 陈孝丑, 翁玉榛, 黄金华. 杉木亲本自交系及其杂交种DNA甲基化和表观遗传变异. 分子植物育种, 2009, 7(3): 591-598.

Hong Z, Shi J S, Zheng R H, Yang L W, Chen X C, Weng Y Z, Huang J H. Epigenetic inheritance and variation of DNA methylation in Chinese fir (Cunninghamia lancelets) intraspecific hybrids. Molecular Plant Breeding, 2009, 7(3):591-598. (in Chinese)

[21]李际红, 邢世岩, 王聪聪, 张  倩, 付茵茵. 银杏基因组DNA甲基化修饰位点的MSAP分析. 园艺学报, 2011, 38(8): 1429-1436.

Li J H, Xing S Y, Wang C C, Zhang Q, Fu Y Y. Analysis on genomic DNA methylation modification of Ginkgo biloba by methylation- sensitive amplification polymorphism. Acta Horticulturae Sinica, 2011, 38(8): 1429-1436. (in Chinese)

[22]Menz M A, Klein R R, Mullet J E, Obert J A, Unruh N C, Klein P E. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP, and SSR markers. Plant Molecular Biology, 2002, 48: 483-499.

[23]Klein R R , Morishige D T, Klein P E , Dong J , Mullet J E. High throughput BAC DNA isolation for physical map construction of sorghum (Sorghum bicolor). Plant Molecular Biology, 1998, 16: 351-364.

[24]Duan Y H, Qian J, Sun Y, Yi Z B, Yan M. Construction of methylation linkage map based on MSAP and SSR markers in Sorghum bicolor (L.). International Union of Biochemistry and Molecular Biology, 2009, 61(16): 663-669.

[25]Haussmann B I G, Hess D E, Seetharama N, Welz H G, Geiger H H. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP and RAPD markers, and comparison with other sorghum maps. Theoretical and Applied Genetics, 2002, 105(4): 629-637.

[26]卞云龙, 邓德祥, 王益军, 才宏伟. 基于AFLP和SSR标记的高粱分子遗传连锁图构建. 分子植物育种, 2007, 5(5): 661-666.

Bian Y L, Deng D X, Wang Y J, Cai H W. Construction of genetic linkage map based on AFLP and SSR markers in sorghum. Molecular Plant Breeding, 2007, 5(5): 661-666. (in Chinese)

[27]赵姝华, 李钥莹, 邹剑秋, Folkertsma R, Hash C T. 高粱分子遗传图谱的构建. 杂粮作物, 2005, 25(1): 11-13.

Zhao S H, Li Y Y, Zou J Q, Folkertsma R, Hash C T. Construction of a molecular genetic map of Sorghum (Sorghum bicolor L. Moench). Rain Fed Crops, 2005, 25(1): 11-13. (in Chinese)

[28]侯雷平, 李梅兰. DNA甲基化与植物的生长发育. 植物生理通讯, 2001, 37(6): 584-588.

Hou L P, Li M L. DNA methylation and plant growth and development. Plant Physiology Communications, 2001, 37(6): 584-588. (in Chinese)

[29]付胜杰, 王  晖, 冯丽娜, 孙  一, 杨文香, 刘大群. 叶锈菌胁迫下的小麦基因组MSAP分析. 遗传, 2009, 31(3): 297-304.

Fu S J, Wang H, Feng L N, Sun Y, Yang W X, Liu D Q. Analysis of methylation-sensitive amplified polymorphism in wheat genome under the wheat leaf rust stress. Hereditas, 2009, 31(3): 297-304. (in Chinese)

[30]彭  海, 席  婷, 张  静, 吴先军. 胁迫条件下植物DNA甲基化的稳定性. 中国农业科学, 2011, 44(12): 2431-2438.

Peng H, Xi T, Zhang J, Wu X J. Stability of stress-induced DNA methylation in plant. Scientia Agricultura Sinica, 2011, 44(12): 2431-2438. ( in Chinese)

[31]Agrama H A, Widle G E, Reese J C, Campbell L R, Tuinstra M R. Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theoretical and Applied Genetics, 2002, 104: 1373-1378.

[32]王亚琴. 植物转基因沉默的发生机理和应用.吉首大学学报: 自然科学版, 2006, 27(2): 92-95.

Wang Y Q. Mechanism and application of transgenic silencing in plant. Journal of Jishou University: Natural Science Edition, 2006, 27(2): 92-95. (in Chinese)

[33]郭广平, 袁金玲, 吴晓丽, 顾小平. DNA甲基化在植物研究中的应用现状与前景. 植物遗传资源学报, 2011, 12(3): 425-430.

Guo G P, Yuan J L, Wu X L, Gu X P. DNA methylation and its application in plant research. Journal of Plant Genetic Resources, 2011, 12(3): 425-430. (in Chinese)
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[3] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[4] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[10] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[11] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[12] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[13] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[14] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[15] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!