Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 26-35.doi: 10.3864/j.issn.0578-1752.2022.01.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy

ZHANG BeiJu(),CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian()   

  1. College of Agriculture, Guizhou University/Guizhou Branch of National Wheat Improvement Center, Guiyang 550025
  • Received:2021-06-01 Accepted:2021-07-30 Online:2022-01-01 Published:2022-01-07
  • Contact: MingJian REN E-mail:743665191@qq.com;rmj72@163.com

Abstract:

【Objective】 Sorghum is one of the main raw materials for wine making and feed. The ratio of amylose content to amylopectin content in its grains is closely related to liquor quality and feed quality. Traditional chemical detection methods of sorghum components are no longer suitable for high-throughput testing. Modified PLS is used to perform spectral preprocessing, score processing and result monitoring on the near-infrared spectra of sorghum samples to establish sorghum grain amylose and amylopectin. The prediction model of amylose content aims to obtain a fast, efficient and low-cost detection method, laying the foundation for genetic improvement and quality analysis of sorghum. 【Method】 From 450 sorghum resources, 112 representative varieties were selected as calibration set and verification set. The chemical values of amylose and amylopectin content in 112 sorghum varieties were measured, and near-infrared spectra with wavelengths of 850-1 048 nm were collected, and the spectrum was scanned data matrix and chemical data calculated score (PL1) processing and interpreting the differences between the spectra, and eliminating abnormal species with Global H (GH) greater than 3 to reduce modeling errors. Modified PLS regression technology is used for modeling, and different calibration models are established through different scattering processing and derivative processing methods. Determine the best model according to the cross-validation standard deviation (SECV) and cross-validation correlation coefficient (1-VR), and perform result monitoring and non-parametric testing to evaluate the predictive performance of the model.【Result】 The near-infrared prediction model SECV of amylose is 2.7732, 1-VR is 0.9503, and the correlation coefficient (RSQ) is 0.9688. Bias=0.229<2.7732(SECV)×0.6, that is, the deviation (Bias) is less than 0.6 times of the calibration model SECV; the predicted standard deviation (SEP)=1.266<2.7732(SECV)×1.3=3.60516, that is, the SEP is less than the calibration. The model SECV is 1.3 times, 11.01(SD)-10.81(SD)=0.2<11.02(SD)×0.2=2.204, that is, the difference between the standard deviation (SD) of the chemical data and the near-infrared prediction data is less than 20% of the chemical data SD. The near-infrared prediction model SECV of amylopectin is 1.7516, 1-VR is 0.8818, and RSQ is 0.9127. Bias=-0.014<1.7516(SECV)×0.6 means that Bias is less than 0.6 times of SECV of calibration model, SEP=1.316<1.7516(SECV)×1.3=2.2708 means SEP is less than 1.3 times of SECV of calibration model, 5.30-5.29=0.01<5.30×0.2=1.06, that is, the difference between the chemical data and the near-infrared prediction data SD is less than 20% of the chemical data SD. Using 30 sorghum grains outside the model to conduct a two-pair sample non-parametric test on the validity of the model, the results showed that the difference between the measured and predicted values of amylose content and amylopectin content was not significant (P=0.262>0.05; P=0.992>0.05).【Conclusion】 The established near-infrared model has high accuracy and good stability, can accurately and quickly detect the content of amylose and amylopectin in sorghum, and can be used for the genetic improvement of sorghum and the detection of sorghum quality.

Key words: near infrared spectroscopy, sorghum, amylose, amylopectin, improved least squares method

Table 1

Statistical parameters of chemical value of amylose and amylopectin content of sorghum varieties"

性状
Trait
校正集Calibration set 验证集Validation set
样品数
Sample size
范围
Range
均值
Mean
标准差
SD
样品数
Sample size
范围
Range
均值
Mean
标准差
SD
直链淀粉Amylose 82 1.08—40.08 18.23 12.49 30 6.81—40.08 20.59 11.01
支链淀粉Amylopectin 82 26.74—67.95 45.04 9.45 30 29.02—53.96 45.63 5.30

Fig. 1

Correction of the original near-infrared spectra of sorghum varieties and the near-infrared spectra of SNV+first derivative processing A: Original spectrum; B: Processed spectrum"

Fig.2

Corrected the three-dimensional display diagram of amylose and amylopectin GH of sorghum varieties A: Amylose; B: Amylopectin"

Table 2

Main evaluation parameters of amylose and amylopectin content in sorghum with different treatment methods"

处理方法
Approach
淀粉类型
Starch type
样品数量
Number of samples
定标标准
偏差
SEC
相关
系数
RSQ
交叉验证标准偏差
SECV
交叉验证相关系数
1-VR
标准正常化+散射处理+一阶导数SNV+detrend+first derivative 直链淀粉 Amylose 76 2.5045 0.9602 3.2933 0.9316
标准正常化+散射处理+二阶导数SNV+detrend+second derivative 直链淀粉 Amylose 79 2.7621 0.9516 3.3402 0.9298
无散射处理+一阶导数None+first derivative 直链淀粉 Amylose 81 3.3227 0.9288 3.8291 0.9053
无散射处理+二阶导数None+second derivative 直链淀粉 Amylose 81 3.0363 0.9406 3.7766 0.9079
标准正常化处理+一阶导数SNV+first derivative 直链淀粉 Amylose 75 2.7078 0.9508 3.3899 0.9229
标准正常化处理+二阶导数SNV+second derivative 直链淀粉 Amylose 76 2.1958 0.9688 2.7732 0.9503
去散射处理+一阶导数Detrend only+first derivative 直链淀粉 Amylose 80 3.1756 0.9332 3.7943 0.9045
去散射处理+二阶导数Detrend only+second derivative 直链淀粉 Amylose 81 3.2852 0.9304 3.6507 0.9139
多元离散校正+一阶导数MSC+first derivative 直链淀粉 Amylose 73 2.6378 0.9540 3.3120 0.9273
多元离散校正+二阶导数MSC+second derivative 直链淀粉 Amylose 79 2.4211 0.9624 2.9392 0.9447
反向多元离散校正+一阶导数Inverse-MSC+first derivative 直链淀粉 Amylose 76 3.0152 0.9409 3.4970 0.9208
反向多元离散校正+二阶导数Inverse-MSC+second derivative 直链淀粉 Amylose 77 3.3412 0.9245 3.5641 0.9138
加权散射校正+一阶导数Weighted MSC++first derivative 直链淀粉 Amylose 79 2.7588 0.9513 3.8374 0.9065
加权散射校正+二阶导数Weighted MSC+second derivative 直链淀粉 Amylose 80 2.7625 0.9507 3.3601 0.9273
标准正常化+散射处理+一阶导数SNV+detrend+first derivative 支链淀粉 Amylopectin 43 1.4723 0.9173 1.9041 0.8602
标准正常化+散射处理+二阶导数SNV+detrend+second derivative 支链淀粉Amylopectin 44 1.3861 0.9209 1.9073 0.8486
无散射处理+一阶导数None+first derivative 支链淀粉Amylopectin 44 1.9477 0.8434 2.3981 0.7607
无散射处理+二阶导数None+second derivative 支链淀粉Amylopectin 46 2.2004 0.8217 2.6703 0.7353
标准正常化处理+一阶导数SNV+first derivative 支链淀粉Amylopectin 44 1.5098 0.9127 1.7516 0.8818
标准正常化处理+二阶导数SNV+second derivative 支链淀粉Amylopectin 45 2.1107 0.8368 2.2006 0.8209
去散射处理+一阶导数Detrend only+first derivative 支链淀粉Amylopectin 46 2.2710 0.8100 2.5787 0.7531
去散射处理+二阶导数Detrend only+second derivative 支链淀粉Amylopectin 46 2.3122 0.8031 2.6936 0.7306
多元离散校正+一阶导数MSC+first derivative 支链淀粉Amylopectin 41 1.4930 0.9119 1.7521 0.8794
多元离散校正+二阶导数MSC+second derivative 支链淀粉Amylopectin 45 2.0743 0.8424 2.1851 0.8234
反向多元离散校正+一阶导数Inverse-MSC+first derivative 支链淀粉Amylopectin 44 1.5827 0.9029 1.7719 0.8790
反向多元离散校正+二阶导数Inverse-MSC+second derivative 支链淀粉Amylopectin 45 1.3854 0.9305 1.8142 0.8795
加权散射校正+一阶导数Weighted MSC+first derivative 支链淀粉Amylopectin 42 1.6364 0.8718 2.0300 0.8010
加权散射校正+二阶导数Weighted MSC+second derivative 支链淀粉Amylopectin 42 1.6410 0.8918 2.0391 0.8339

Fig. 3

Test results of calibration model for amylose and amylopectin A: Amylose; B: Amylopectin"

Table 3

Comparison of the results of chemical measurements and the predicted values of the near-infrared model"

序号
No.
测定值 Measured value 预测值 Predicted value 测定值与预测值差异 Difference of value
直链淀粉Amylose 支链淀粉Amylopectin 直链淀粉Amylose 支链淀粉Amylopectin 直链淀粉Amylose 支链淀粉Amylopectin
1 12.030 49.610 12.094 50.893 -0.064 -1.238
2 9.730 48.780 8.933 48.967 0.797 -0.187
3 38.020 29.020 39.256 28.190 -1.236 0.830
4 30.260 38.710 31.733 38.206 -1.472 0.504
5 9.740 48.500 10.817 48.644 -1.077 -0.144
6 38.440 37.160 36.908 37.452 1.532 -0.292
7 40.080 47.100 39.215 45.670 0.865 1.430
8 31.760 41.400 31.298 42.629 0.462 -1.229
9 28.420 43.520 27.056 44.158 1.364 -0.638
10 12.370 47.390 12.00 48.180 0.370 -0.790
11 27.580 46.110 26.088 47.377 1.492 -1.267
12 13.720 52.230 13.368 49.854 0.352 2.376
13 15.550 45.840 14.400 48.761 1.150 -2.921
14 8.890 47.510 9.847 48.098 -0.957 -0.588
15 12.500 47.260 11.744 49.650 0.756 -2.390
16 14.420 46.300 16.154 46.405 -1.734 -0.105
17 13.420 48.460 12.164 47.136 1.256 1.324
18 7.650 47.730 8.144 49.223 -0.494 -1.493
19 6.810 51.890 9.679 53.231 -2.869 -1.341
20 21.380 50.440 19.716 47.841 1.664 2.599
21 9.730 49.870 8.744 48.124 0.986 1.746
22 24.820 47.410 24.288 47.009 0.532 0.401
23 39.620 35.310 38.362 34.939 1.258 0.371
24 24.430 47.140 23.864 45.625 0.566 1.515
25 31.040 42.130 32.280 42.999 -1.240 -0.869
26 34.280 41.390 32.245 42.238 2.035 -0.848
27 15.840 46.650 14.222 46.316 1.618 0.334
28 10.260 53.960 10.258 52.351 0.002 1.609
29 25.500 45.370 27.481 44.757 -1.981 0.613
30 9.490 44.690 8.549 44.383 0.941 0.307

Table 4

One-sample Kolwingokrov-Sminov test"

指标
Index
直链淀粉
Amylose
支链淀粉
Amylopectin
个案数No. of cases 30 30
正态参数a,b Normal parameter 平均值Mean 20.59 45.63
标准差SD 11.01 5.30
最极端差值
The most extreme difference
绝对Absolute 0.200 0.183
正Positive 0.200 0.082
负Negative -0.105 -0.183
检验统计Test statistics 0.200 0.183
渐进显著性(双尾)c
Progressive significance (two-tailed)
0.003c 0.012c

Table 5

Wilkerson signed rank test"

指标
Index
直链淀粉测定值-直链淀粉预测值
Measured value of amylose-predicted value of amylose
支链淀粉测定值-支链淀粉预测值
Measured value of amylopectin-predicted value of amylopectin
Z统计量Z statistics -1.121a -0.010a
渐进显著性(双尾)
Progressive significance (two-tailed)
0.262 0.992
[1] 焦少杰, 王黎明, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 高粱与固态白酒关系的研究综述. 酿酒, 2015, 42(1): 13-16.
JIAO S J, WANG L M, JIANG Y X, YAN H D, SU D F, SUN G Q. A review of the research on the relationship between sorghum and solid liquor. Wine Making, 2015, 42(1): 13-16. (in Chinese)
[2] OMAR J, SLOWIKOWSKI B, BOIX A. Chemometric approach for discriminating tobacco trademarks by near infrared spectroscopy. Forensic Science International, 2019, 294: 15-20.
doi: 10.1016/j.forsciint.2018.10.016
[3] CHEN H, TAN C, LIN Z, LI H J. Quantifying several adulterants of Noto ginseng powder by near-infrared spectroscopy and multivariate calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 211: 280-286.
doi: 10.1016/j.saa.2018.12.003
[4] SIRSOMBOON P, POSOM J. On-line measurement of activation energy of ground bamboo using near infrared spectroscopy. Renewable Energy, 2019, 133: 480-488.
doi: 10.1016/j.renene.2018.10.051
[5] 陈雪萍, 刘世尧, 尹能文, 荆凌云, 魏丽娟, 林呐, 肖阳, 徐新福, 李加纳, 刘列钊. 甘蓝型油菜茎秆纤维组分含量和木质素单体G/S近红外模型构建. 中国农业科学, 2018, 51(4): 688-698.
CHEN X P, LIU S Y, YIN N W, JING L Y, WEI L J, LIN N, XIAO Y, XU X F, LI J N, LIU L Z. Construction of NIR model of fiber component content and lignin monomer G/S in Brassica napus stalk. Scientia Agricultura Sinica, 2018, 51(4): 688-698. (in Chinese)
[6] TKACHUK R. Oil and protein analysis of whole rapeseed kernels by near infrared reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 1981, 58(8): 819-822.
doi: 10.1007/BF02665588
[7] PANFORD J A, WILLIAMS P C, DEMAN J M. Analysis of oilseeds for protein, oil, fiber and moisture by near-infrared reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 1988, 65(10): 1627-1634.
doi: 10.1007/BF02912567
[8] 王翠秀, 曹建飞, 顾振飞, 徐明雪, 吴泉源. 基于近红外光谱大豆蛋白质、脂肪快速无损检测模型的优化构建. 大豆科学, 2019, 38(6): 968-976.
WANG C X, CAO J F, GU Z F, XU M X, WU Q Y. Optimized construction of a rapid non-destructive detection model for soybean protein and fat based on near-infrared spectroscopy. Soybean Science, 2019, 38(6): 968-976. (in Chinese)
[9] ZHANG Y M, GUO W C. Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology. International Journal of Food Science and Technology. 2020, 55: 631-640.
doi: 10.1111/ijfs.v55.2
[10] 李佳佳, 洪慧龙, 万明月, 储丽, 赵敬会, 汪明华, 徐志鹏, 张阴, 黄志平, 张文明, 王晓波, 邱丽娟. 基于近红外光谱的大豆茎秆化学组分含量检测模型构建与应用. 中国农业科学, 2021, 54, 54(5): 887-900.
LI J J, HONG H L, WAN M Y, CHU L, ZHAO J H, WANG M H, XU Z P, ZHANG Y, HUANG Z P, ZHANG W M, WANG X B, QIU L J. Construction and application of soybean stem chemical composition detection model based on near infrared spectroscopy. Scientia Agricultura Sinica, 2021, 54, 54(5): 887-900. (in Chinese)
[11] 黄朝晖, 陆平, 杨楠, 孟宪军, 任贵兴. 近红外光谱法测定高粱原花青素含量. 食品科技, 2008(10): 207-210.
HUANG Z H, LU P, YANG N, MENG X J, REN G X. Determination of proanthocyanidins content of sorghum by near infrared spectroscopy. Food Science and Technology, 2008(10): 207-210. (in Chinese)
[12] 刘敏轩, 黄赟文, 韩建国. 高粱籽粒中多酚类物质的傅里叶变换近红外光谱分析. 分析化学, 2009, 37(9): 1275-1280.
LIU M X, HUANG Y W, HAN J G. Fourier transform near infrared spectroscopy analysis of polyphenols in sorghum grains. Chinese Journal of Analytical Chemistry, 2009, 37(9): 1275-1280. (in Chinese)
[13] SIMEONE M L F, PARRELLA R A C, SCHAFFERT R E S, DAMASCENO C M B, LEAL M C B, PASQUINI C. Near infrared spectroscopy determination of sucrose, glucose and fructose in sweet sorghum juice. Microchemical Journal, 2017, 134: 125-130.
doi: 10.1016/j.microc.2017.05.020
[14] 纪楠. 大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D]. 哈尔滨: 东北农业大学, 2016.
JI N. Research on the correlation model between lignin and cellulose content of soybean straw and near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[15] CELIO P. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Society, 2003, 4(1): 198-219.
[16] GB/T15683-2008, 大米直链淀粉含量的测定. 北京: 中国标准出版社, 2008.
GB/T15683-2008, Determination of amylose content in rice. Beijing: China Standard Press, 2008. (in Chinese)
[17] GARRIDOVARO A, GARCIAOLMO J, FEARN T. A note on Mahalanobis and related distance measures in WinISI and The Unscrambler. Journal of Near Infrared Spectroscopy, 2019, 27(4): 253-258.
doi: 10.1177/0967033519848296
[18] BAI T C, WANG T, CHEN Y Q, MERCATORIS B. Comparison of near-infrared spectrum pretreatment methods for Jujube leaf moisture content detection in the sand and dust area of southern Xinjiang. Spectroscopy and Spectral Analysis, 2019, 39: 1323-1328.
[19] 郑震璇. 近红外光谱分析技术在饲料加工行业的应用. 福建农机, 2019, 40(1): 24-27.
ZHENG Z X. Application of near infrared spectroscopy analysis technology in feed processing industry. Fujian Agricultural Machinery, 2019, 40(1): 24-27. (in Chinese)
[20] VAMADEVAN V, BERTOFT E. Structure-function relationships of starch components. Starch-Stärke, 2015, 67(1/2): 55-68.
doi: 10.1002/star.v67.1-2
[21] LEE J H, YOU S, KWEON D K, CHUNG H J, LIM S T. Dissolution behaviors of waxy maize amylopectin in aqueous-DMSO solutions containing NaCl and CaCl2. Food Hydrocolloids, 2014, 35: 115-121.
doi: 10.1016/j.foodhyd.2013.05.003
[22] BERTOFT E. Understanding starch structure: Recent progress. Agronomy 2017, 7: 1-29.
doi: 10.3390/agronomy7010001
[23] 郝勇. 近红外光谱微量分析方法研究[D]. 天津: 南开大学, 2009.
HAO Y. Research on near infrared spectroscopy microanalysis method[D]. Tianjin: Nankai University. 2009. (in Chinese)
[24] 梁晓燕, 吉海彦. 近红外光谱技术在农作物品质分析方面的应用. 中国农学通报, 2006, 22(1): 366-371.
LIANG X Y, JI H Y. Application of near infrared spectroscopy technology in crop quality analysis. Chinese Agricultural Science Bulletin, 2006, 22(1): 366-371. (in Chinese)
[25] 王家多, 周向阳, 金同铭, 胡祥娜, 钟娇娥, 吴启堂. 近红外光谱检测技术在农业和食品分析上的应用. 光谱学与光谱分析, 2004, 24(4): 447-450.
WANG J D, ZHOU X Y, JIN T M, HU X N, ZHONG J E, WU Q T. The application of near-infrared spectroscopy detection technology in agriculture and food analysis. Spectroscopy and Spectral Analysis, 2004, 24(4): 447-450. (in Chinese)
[26] 刘红梅, 肖正午, 申涛, 蒋鹏, 单双吕, 邹应兵. 稻米直链淀粉含量近红外检测模型的建立. 湖南农业大学学报, 2019, 45(2): 189-193.
LIU H M, XIAO Z W, SHEN T, JIANG P, SHAN S L, ZOU Y B. Establishment of near infrared detection Model of rice amylose content. Journal of Hunan Agricultural University, 2019, 45(2): 189-193. (in Chinese)
[27] 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱技术评估高粱中粗蛋白质、水分含量的研究. 动物营养学报, 2020, 32(3): 1353-1361.
WANG Y S, LI J, WANG B, ZHANG Y T, GENG J L. Research on the evaluation of crude protein and moisture content in sorghum based on near-infrared spectroscopy technology. Chinese Journal of Animal Nutrition, 2020, 32(3): 1353-1361. (in Chinese)
[28] 巫小建, 曾凡荣, 岳文浩, 汪军妹. 大麦籽粒总淀粉含量近红外快速无损检测模型的构建. 浙江农业科学, 2021, 62(1): 40-41.
WU X J, ZENG F R, YUE W H, WANG J M. Construction of a near-infrared rapid non-destructive detection model for the total starch content of barley grains. Zhejiang Agricultural Sciences, 2021, 62(1): 40-41. (in Chinese)
[29] 韩浩楠, 王美娟, 赵训超, 鲁鑫, 周志强, 李明顺, 张德贵, 郝传芳, 翁剑峰, 雍红军, 李新海. 玉米粉淀粉含量近红外模型建立与优化. 玉米科学, 2020, 28(6): 81-87.
HAN H N, WANG M J, ZHAO X C, LU X, ZHOU Z Q, LI M S, ZHANG D G, HAO C F, WENG J F, YONG H J, LI X H. Establishment and optimization of near-infrared model of corn flour starch content. Maize Science, 2020, 28(6): 81-87. (in Chinese)
[30] KIM G, HONG S J, LEE A Y, LEE Y E, LM S. Moisture content measurement of broadleaf litters using near-infrared spectroscopy technique. Remote Sensing, 2017, 9(12): 1212.
doi: 10.3390/rs9121212
[31] CHEN J M, LI M L, PAN T, PANG L W, YAO L J, ZHANG J. Rapid and non-destructive for the identification of multi-grain rice seeds with near-infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219(5): 179-185.
doi: 10.1016/j.saa.2019.03.105
[1] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[2] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[3] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[4] ZHANG HengDong,HUANG Min,ZOU YingBin,CHEN JiaNa,SHAN Shuang Lv. Amylose Accumulation Properties in the Grains of Noodle Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364.
[5] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[6] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[7] LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506.
[8] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
[9] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
[10] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
[11] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[12] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[13] ZOU JianQiu,WANG YanQiu,LI JinHong,ZHU Kai. Dwarfing Effect and Molecular Mechanism of An Elite Sorghum Male Sterile Line 01-26A in Its Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(14): 2814-2827.
[14] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[15] ZHAO ChunFang,YUE HongLiang,HUANG ShuangJie,ZHOU LiHui,ZHAO Ling,ZHANG YaDong,CHEN Tao,ZHU Zhen,ZHAO QingYong,YAO Shu,LIANG WenHua,LU Kai,WANG CaiLin. Eating Quality and Physicochemical Properties in Nanjing Rice Varieties [J]. Scientia Agricultura Sinica, 2019, 52(5): 909-920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!