Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4954-4968.doi: 10.3864/j.issn.0578-1752.2021.23.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area

ZHANG Yan1(),WANG JinSong2,3,DONG ErWei2,3,WU AiLian2,3,WANG Yuan2,3,JIAO XiaoYan2,3()   

  1. 1School of Life Sciences, Shanxi University, Taiyuan 030006
    2College of Resources & Environment, Shanxi Agricultural University, Taiyuan 030031
    3Institute of Environment & Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
  • Received:2021-05-17 Accepted:2021-07-16 Online:2021-12-01 Published:2021-12-06
  • Contact: XiaoYan JIAO E-mail:1171167837@qq.com;xiaoyan_jiao@126.com

Abstract:

【Objective】Soil fertility is essential to crop growth and yield. The arable land per capita in China is low, and approximately 21.95% of the arable land has serious barriers for crop production. To ensure food security, it is necessary to exploit cultivated land reserves, along with the efforts to increase the productivity of arable land. Therefore, it is important to cultivate crops that can tolerate low-fertility in marginal lands, to avoid land competition with other main crops and meet increasing food demand. To better use marginal land for sorghum production, a field experiment was conducted in Yuci, Shanxi Province in 2019, to study the variation in low-fertility tolerance ability of different sorghum cultivars. This study aimed to identify the sorghum cultivars with strong tolerance to low-fertility and the index to evaluate low-fertility tolerance, and the results would provide evidence for sorghum selection in marginal land cultivation.【Method】In this study, a field experiment including 23 sorghum cultivars was conducted with contrasting soil fertility treatments, including high soil fertility (control) treatment and low soil fertility treatment (stress). A total of 15 parameters including yield and yield components, dry matter accumulation of shoot and nutrient uptake were investigated. The low-fertility index of each parameter was calculated. Principal component analysis (PCA) and cluster analysis were used to evaluate low-fertility tolerance and identify low-fertility tolerant cultivar. Low-fertility index and comprehensive evaluation value were used, combined with regression analysis and correlation analysis, to identify the optimal indicators for low-fertility tolerance.【Result】The results showed that the yield, grain number per spike, harvest index, dry matter accumulation at harvest and after heading, leaf area index (LAI), panicle length and width of sorghum were decreased by the low-fertility stress, compared with those in high-fertility plots. The decreasing rate was as follows: dry matter accumulation after heading>yield>grain number per spike>dry matter accumulation of shoot>LAI>panicle width>harvest index. The accumulation of N, P, K in both grains and shoot above ground was also decreased. The N accumulation was the most sensitive to low-fertility stress. The 15 parameters were categorized into five comprehensive indexes (the cumulative contribution rate was 89.28%) by principal component analysis, and the comprehensive evaluation value (D) of the low-fertility tolerance was calculated. According to the D value and the cluster analysis, the 23 sorghum cultivars were divided into four tolerance levels. Six, seven, seven and three cultivars were classified as stronger (0.633≤D≤0.755), strong (0.467≤D≤0.592), weak (0.310≤D≤0.421) and weaker (0.166≤D≤0.246) tolerance to low fertility, respectively. The cultivars Jiniang 2, Liaoza 19, Jinza 18, Jinza 22, Jinfeng 301 and Jinza 28 had the highest D value. Stepwise regression analysis was used to establish the optimal regression equation to evaluate the sorghum low-fertility tolerance. The yield, dry matter accumulation of shoot, N accumulation above ground, grain P accumulation, grain K accumulation and panicle width were selected, which had significant effects on the tolerance to low-fertility stress. The low-fertility index of yield, dry matter accumulation of shoot, N accumulation in shoot above ground, P accumulation in shoot above ground, grain N accumulation and grain P accumulation were significantly correlated with D value. The correlation coefficients were 0.845, 0.836, 0.766, 0.778, 0.761 and 0.757, respectively. 【Conclusion】There were large variation in low-fertility tolerance of the 23 sorghum cultivars. The cultivars of Jiniang 2, Liaoza 19, Jinza 18, Jinza 22, Jinfeng 301 and Jinza 28 were significantly tolerant to low-fertility land. The low-fertility index of grain yield, dry matter accumulation of shoot, N accumulation above ground and grain P accumulation were recommended in rapid screening of low-fertility tolerant sorghum cultivars.

Key words: sorghum, low-fertility stress, comprehensive evaluation, regression analysis

Fig. 1

Daily rainfall and average daily temperature from May to September in 2019"

Table 1

Soil basic chemical properties"

肥力水平
Soil fertility
全氮
Total N (g·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
硝态氮
Nitrate N (mg·kg-1)
有机质
Organic matter (g·kg-1)
高肥力HF 0.97 10.77 199.03 20.71 17.17
低肥力LF 0.78 7.10 197.62 11.90 14.91

Table 2

Sorghum cultivars and planting density"

序号
Number
品种名称
Cultivars
选育单位
Origin
适宜密度
Planting density (×104 plant/hm2)
1 红缨子 Hongyingzi 仁怀市丰源有机高粱育种中心
Renhuai Fengyuan Organic Sorghum Breeding Center
12.0
2 晋杂104 Jinza 104 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
3 晋杂23 Jinza 23 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
4 晋杂18 Jinza 18 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
5 晋杂22 Jinza 22 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
6 冀酿2号Jiniang 2 河北省农林科学院谷子研究所
Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences
12.0
7 辽杂19 Liaoza 19 辽宁省农业科学院高粱研究所
Sorghum Research Institute, Liaoning Academy of Agricultural Sciences
12.0
8 晋杂28 Jinza 28 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
9 辽粘3号Liaonian 3 辽宁省农业科学院高粱研究所
Sorghum Research Institute, Liaoning Academy of Agricultural Sciences
12.0
10 晋早5564 Jinzao 5564 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
16.5
11 晋杂31 Jinza 31 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
12 晋糯3号Jinnuo 3 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
13 金丰301 Jinfeng 301 吉林省金果农业科技有限公司
Jinguo Agricultural Technology Company Limited of Jilin Province
12.0
14 凤杂4号Fengza 4 公主岭国家农业科技园区高科作物育种研究所
High-Tech Crop Breeding Institute, National Agricultural Science and Technology Park
12.0
15 晋梁116 Jinliang 116 山西冠丰高粱科技有限公司
Shanxi Guanfeng Sorghum Technology Limited Company
12.0
16 白杂11号Baiza 11 吉林省白城市农业科学院
Baicheng Academy of Agricultural Sciences of Jilin Province
12.0
17 晋杂33 Jinza 33 山西九源科技有限公司
Shanxi Jiuyuan Technology Limited Company
山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
18 吉杂127 Jiza 127 吉林省农业科学院作物研究所
Crop Germplasm Institute, Jilin Academy of Agricultural Sciences
12.0
19 晋杂35 Jinza 35 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
12.0
20 金糯粱4号
Jinnuoliang 4
四川省农业科学院水稻高粱研究所
Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences
12.0
21 金糯粱6号
Jinnuoliang 6
四川省农业科学院水稻高粱研究所
Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences
12.0
22 晋杂34 Jinza 34 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
16.5
23 汾酒粱1号
Fenjiuliang 1
山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agricultural Sciences
16.5

Table 3

Analysis of variance on agronomic traits in different sorghum cultivars"

变异来源
Source of variation
自由度
DF
FF value
产量
Y
千粒重
TWG
穗粒数
GNS
地上干物质积累
DMAS
抽穗后干物质积累
HDMA
收获指数
HI
叶面积指数
LAI
穗长
PL
穗宽
PW
肥力FT 1 10861.00** 22.47** 1885.67** 8937.50** 5078.24** 1374.27** 553.65** 174.91** 441.49**
品种Vr 22 61.80** 85.31** 39.55** 46.34** 84.06** 90.71** 27.77** 47.16** 27.87**
肥力×品种FT×Vr 22 21.33** 12.28** 7.01** 25.62** 20.01** 15.77** 8.36** 8.93** 3.11**

Table 4

Effect of low-fertility stress on agronomic traits in different sorghum cultivars"

性状
Trait
高肥力High soil fertility 低肥力Low soil fertility 均值降低幅度
Decreasing rate (%)
均值
Mean
变化范围
Variation range
标准差
SD
CV
(%)
均值
Mean
变化范围
Variation range
标准差
SD
CV
(%)
产量Y (t·hm-2) 7.07 5.58—8.66 0.78 11.06 3.92 2.94—4.89 0.47 12.03 44.23
千粒重 TGW (g) 26.28 16.80—35.17 5.60 21.32 25.30 16.37—29.87 3.86 15.24 1.80
穗粒数 GNS 2228.56 1371.34—3320.73 439.56 19.72 1240.26 744.45—1987.52 268.47 21.65 43.72
收获指数 HI (%) 50.22 41.14—58.51 4.06 8.09 43.49 32.09—51.54 4.69 10.79 13.34
地上干物质积累DMAS (t·hm-2) 14.09 11.75—16.65 1.28 9.05 9.04 7.40—10.34 0.79 8.79 35.45
抽穗后干物质积累HDMA (t·hm-2) 6.10 3.39—8.60 1.49 24.36 2.42 0.33—4.21 0.92 37.86 60.69
叶面积指数 LAI 5.91 3.95—8.21 1.25 21.07 4.25 2.89—5.48 0.66 15.45 26.14
穗长 PL (cm) 28.76 21.63—36.53 3.82 13.29 26.24 20.57—31.37 2.79 10.63 8.01
穗宽 PW (cm) 9.65 7.13—13.87 1.60 16.52 7.31 5.40—10.53 1.30 17.82 23.82

Fig. 2

Effects of low-fertility stress on sorghum grain yield in different cultivars"

Table 5

Analysis of variance on N, P and K accumulation of grain and shoot above ground in different sorghum cultivars"

变异来源
Source of variation
自由度
DF
FF value
籽粒氮累积量
GNA
籽粒磷累积量
GPA
籽粒钾累积量
GKA
植株氮累积量
NAG
植株磷累积量
PAG
植株钾累积量
KAG
肥力FT 1 11525.78** 863.31** 2059.21** 14760.68** 1272.64** 1668.23**
品种Vr 22 38.75** 12.01** 6.27** 29.10** 11.38** 28.08**
肥力×品种FT×Vr 22 24.01** 10.47** 4.95** 29.07** 8.71** 8.71**

Table 6

Effect of low fertility stress on N, P and K accumulation of grain and shoot above ground (kg·hm-2) in different sorghum cultivars"

性状
Trait
高肥力High soil fertility 低肥力Low soil fertility 均值降低幅度
Decreasing rate (%)
均值
Mean
变化范围
Variation rang
标准差
SD
CV
(%)
均值
Mean
变化范围
Variation range
标准差
SD
CV
(%)
籽粒氮累积量GNA 105.62 80.38—130.50 15.91 15.06 37.49 28.60—47.31 4.98 13.30 63.90
籽粒磷累积量GPA 13.78 8.58—20.80 3.03 22.02 8.27 5.62—10.71 1.39 16.75 39.73
籽粒钾累积量GKA 21.64 15.77—25.97 2.02 9.31 11.41 8.73—14.42 1.49 13.05 46.58
植株氮累积量NAG 159.31 129.03—190.37 20.20 12.68 58.79 47.59—68.65 5.49 9.34 62.45
植株磷累积量PAG 18.64 13.14—25.82 3.45 18.53 10.38 7.91—12.97 1.53 14.77 44.33
植株钾累积量KAG 141.68 105.99—168.50 19.58 13.82 90.65 66.05—123.48 15.75 17.37 35.34

Fig.3

Correlation analysis of low-fertility tolerant index of each trait of sorghum cultivars *, **and*** mean significant at the 0.05, 0.01 and 0.001 probability levels, respectively"

Table 7

Eigenvalue and contribution of each comprehensive index"

主成分
Principal component
特征值
Eigenvalue
贡献率
Contributive rate (%)
累积贡献率
Cumulative contributive rate (%)
1 4.64 30.91 30.91
2 2.63 17.53 48.44
3 2.62 17.45 65.89
4 2.01 13.41 79.30
5 1.50 9.98 89.28

Table 8

Matrix of principal component loading"

指标
Index
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
产量Y 0.685 -0.273 0.143 0.495 0.379
千粒重TWG 0.286 -0.153 -0.178 0.882 0.060
穗粒数GNS 0.290 -0.188 0.868 -0.188 -0.085
收获指数HI 0.201 -0.652 -0.235 0.469 0.469
地上干物质积累DMAS 0.678 0.403 0.501 0.179 -0.064
抽穗后干物质积累HDMA 0.580 -0.523 0.175 0.490 0.108
叶面积指数LAI -0.192 0.852 -0.030 -0.304 0.243
穗长PL -0.166 0.296 0.812 -0.314 0.053
穗宽PW 0.010 0.151 0.834 0.190 0.176
籽粒氮累积量GNA 0.784 -0.243 -0.008 0.389 0.150
籽粒磷累积量GPA 0.893 -0.184 0.030 -0.007 0.224
籽粒钾累积量GKA 0.246 -0.055 0.142 0.079 0.909
植株氮累积量NAG 0.848 0.123 0.015 0.258 -0.019
植株磷累积量PAG 0.944 -0.046 0.007 0.038 0.080
植株钾累积量KAG 0.132 0.828 0.313 0.085 -0.330

Table 9

Value of each comprehensive index, index weight, and comprehensive evaluation value (D)"

品种
Cultivars
U (1) U (2) U (3) U (4) U (5) 综合评价值Comprehensive evaluation value (D) 排序
Order
红缨子Hongyingzi 0.280 0.531 0.483 0.093 0.000 0.310 20
晋杂104 Jinza 104 0.317 1.000 0.636 0.187 0.305 0.493 12
晋杂23 Jinza 23 0.550 0.628 0.698 0.391 0.544 0.570 10
晋杂18 Jinza 18 0.910 0.562 0.545 0.734 0.369 0.683 3
晋杂22 Jinza 22 1.000 0.221 0.309 0.788 0.748 0.652 4
冀酿2号Jiniang 2 0.874 0.384 1.000 0.555 0.881 0.755 1
辽杂19 Liaoza 19 0.862 0.404 0.657 0.759 0.710 0.700 2
晋杂28 Jinza 28 0.943 0.129 0.409 0.802 0.723 0.633 6
辽粘3号Liaonian 3 0.396 0.383 0.232 0.518 0.512 0.393 16
晋早5564 Jinzao 5564 0.877 0.339 0.000 0.832 0.687 0.572 9
晋杂31 Jinza 31 0.712 0.087 0.471 0.831 1.000 0.592 7
晋糯3号Jinnuo 3 0.548 0.704 0.577 0.515 0.513 0.575 8
金丰301 Jinfeng 301 0.905 0.219 0.343 0.884 0.812 0.647 5
凤杂4号Fengza 4 0.817 0.000 0.002 1.000 0.732 0.515 11
晋梁116 Jinliang 116 0.425 0.070 0.129 0.761 0.577 0.365 18
白杂11号Baiza 11 0.578 0.095 0.034 0.764 0.529 0.399 15
晋杂33 Jinza 33 0.381 0.224 0.175 0.506 0.524 0.345 19
吉杂127 Jiza 127 0.644 0.273 0.135 0.670 0.570 0.467 13
晋杂35 Jinza 35 0.163 0.869 0.653 0.097 0.163 0.388 17
金糯粱4号 Jinnuoliang 4 0.076 0.417 0.033 0.152 0.508 0.194 22
金糯粱6号 Jinnuoliang 6 0.000 0.662 0.035 0.000 0.258 0.166 23
晋杂34 Jinza 34 0.121 0.715 0.035 0.145 0.311 0.246 21
汾酒粱1号 Fenjiuliang 1 0.547 0.356 0.159 0.344 0.706 0.421 14
权重Wj 0.346 0.196 0.195 0.150 0.112

Fig. 4

Cluster of low-fertility tolerance of 23 sorghum cultivars"

Table 10

Correlations of the comprehensive evaluation value (D) for low-fertility tolerance with index in sorghum"

指标
Index
相关性系数
Correlation coefficient
P
P value
产量Y 0.836** 0.000
千粒重TWG 0.438* 0.037
穗粒数GNS 0.520* 0.011
收获指数HI 0.252 0.246
地上干物质积累DMAS 0.845** 0.000
抽穗后干物质积累HDMA 0.684** 0.000
叶面积指数LAI -0.135 0.539
穗长PL 0.168 0.444
穗宽PW 0.497* 0.016
籽粒氮累积量 GNA 0.761** 0.000
籽粒磷累积量GPA 0.757** 0.000
籽粒钾累积量GKA 0.477* 0.021
植株氮累积量 NAG 0.766** 0.000
植株磷累积量 PAG 0.778** 0.000
植株钾累积量 KAG 0.270 0.212
[1] 农业农村部. 2019年全国耕地质量等级情况公报. 中国农业综合开发, 2020(6):6-12.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2019 national bulletin on cultivated land quality grades. Agricultural Comprehensive Development in China, 2020(6):6-12. (in Chinese)
[2] 曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张佳宝, 李家洋. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 中国科学院院刊, 2021, 36(3):336-348.
CAO X F, SUN B, CHEN H B, ZHOU J M, SONG X W, LIU X J, DENG X D, LI X J, ZHAO Y G, ZHANG J B, LI J Y. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 2021, 36(3):336-348. (in Chinese)
[3] YANG P, CAI X M, KHANNA M. Farmers' heterogeneous perceptions of marginal land for biofuel crops in US Midwestern states considering biophysical and socioeconomic factors. Global Change Biology Bioenergy, 2021, 13(5):849-861.
doi: 10.1111/gcbb.v13.5
[4] MELLOR P, LORD R A, JOÃO E, THOMAS R, HURSTHOUSE A. Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision-A review and holistic definition. Renewable and Sustainable Energy Reviews, 2021, 135:e110220.
[5] 陈冰嬬, 李继洪, 王阳, 李淑杰, 胡喜连, 李伟, 马英慧, 高鸣, 高士杰. 高粱(Sorghum bicolor(L.) Moench)种质资源研究进展. 西北农林科技大学学报(自然科学版), 2013, 41(1):67-72+77.
CHEN B R, LI J H, WANG Y, LI S J, HU X L, LI W, MA Y H, GAO M, GAO S J. Advances in germplasm resources of sorghum (Sorghum bicolor (L.) Moench). Journal of Northwest A&F University (Natural Science Edition), 2013, 41(1):67-72+77. (in Chinese)
[6] 白文斌, 张福跃, 焦晓燕, 董良利, 柳青山, 平俊爱. 中国高粱产业工程技术研究的定位思考. 中国农学通报, 2013, 29(11):107-110.
BAI W B, ZHANG F Y, JIAO X Y, DONG L L, LIU Q S, PING J A. Thinking on the orientation of the research on sorghum industrial engineering technology in China. Chinese Agricultural Science Bulletin, 2013, 29(11):107-110. (in Chinese)
[7] MOORE J W, DITMORE M, TEBEEST D O. The effects of cropping history on grain sorghum yields and anthracnose severity in Arkansas. Crop Protection, 2009, 28(9):737-743.
doi: 10.1016/j.cropro.2009.04.008
[8] FARRÉ I, MARÍA FACI J. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management, 2005, 83(1):135-143.
doi: 10.1016/j.agwat.2005.11.001
[9] 米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23(6):1525-1535.
MI G H. Nutrient use efficiency in crops and its genetic improvement. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1525-1535. (in Chinese)
[10] KANT S, BI Y M, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 2011, 62(4):1499-1509.
doi: 10.1093/jxb/erq297
[11] 王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015, 41(8):1269-1278.
WANG J S, JIAO X Y, JING Y C, DONG E W, BAI W B, WANG L G, WU A L. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium. Acta Agronomica Sinica, 2015, 41(8):1269-1278. (in Chinese)
[12] HAN L P, STEINBERGER Y, ZHAO Y L, XIE G H. Accumulation and partitioning of nitrogen, phosphorus and potassium in different cultivars of sweet sorghum. Field Crops Research, 2011, 120(2):230-240.
doi: 10.1016/j.fcr.2010.10.007
[13] 张桂香, 赵学孟, 高儒萍, 王丰林, 张秋萍. 高粱遗传资源的耐瘠性鉴定研究. 山西农业科学, 1997, 25(3):12-16.
ZHANG G X, ZHAO X M, GAO R P, WANG F L, ZHANG Q P. Study on identification of tolerance to low-fertility of sorghum genetic resources. Journal of Shanxi Agricultural Science, 1997, 25(3):12-16. (in Chinese)
[14] 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价. 作物杂志, 2020, 36(6):30-37.
WANG R, PING J A, ZHANG F Y, ZHAN P J, CHU J Q. Identification and evaluation of sorghum breeding resources for low-fertility tolerance. Crops, 2020, 36(6):30-37. (in Chinese)
[15] 李振姣, 井苗, 强羽竹, 王彩兰, 付治忠, 薛志和. 榆林市谷子新品系抗旱耐瘠性评价及资源筛选. 陕西农业科学, 2020, 66(5):5-8.
LI Z J, JING M, QIANG Y Z, WANG C L, FU Z Z, XUE Z H. Evaluation and resources for drought resistance and low-fertility tolerance of new foxtail millet variety in Yulin. Shaanxi Journal of Agricultural Sciences, 2020, 66(5):5-8. (in Chinese)
[16] 潘中涛, 张秀伟, 蔡甫格. 安单系列玉米自交系耐瘠性鉴定指标筛选及耐瘠性评价. 中国种业, 2017(9):54-57.
PAN Z T, ZHANG X W, CAI F G. Screening of evaluation indexes of sterility tolerance and evaluation of sterility tolerance of Andan series maize inbred lines. China Seed Industry, 2017(9):54-57. (in Chinese)
[17] 连盈, 卢娟, 胡成梅, 牛胤全, 史雨刚, 杨进文, 王曙光, 张文俊, 孙黛珍. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报, 2020, 28(4):523-534.
LIAN Y, LU J, HU C M, NIU Y Q, SHI Y G, YANG J W, WANG S G, ZHANG W J, SUN D Z. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28(4):523-534. (in Chinese)
[18] 张楚, 张永清, 路之娟, 刘丽琴, 杨春婷. 低氮胁迫对不同苦荞品种苗期生长和根系生理特征的影响. 西北植物学报, 2017, 37(7):1331-1339.
ZHANG C, ZHANG Y Q, LU Z J, LIU L Q, YANG C T. Effect of low nitrogen stress on the seeding growth and root physiological traits of Fagopyrum tataricum cultivars with different low-N treatments. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7):1331-1339. (in Chinese)
[19] PELTONEN-SAINIO P, KANGAS A, SALO Y, JAUHIAINEN L. Grain number dominates grain weight in temperate cereal yield determination: Evidence based on 30 years of multi-location trials. Field Crop Research, 2007, 100(2):179-188.
doi: 10.1016/j.fcr.2006.07.002
[20] 张桂香, 王呈祥, 高儒萍, 张秋萍. 高粱主要性状与耐瘠性的相关分析. 山西农业科学, 1998, 26(4):24-26.
ZHANG G X, WANG C X, GAO R P, ZHANG Q P. Correlation analysis between main characters and sterility tolerance in sorghum. Journal of Shanxi Agricultural Science, 1998, 26(4):24-26. (in Chinese)
[21] 陈志伟, 姜琪, 许建华, 张婉, 何婷, 郭桂梅, 王亦菲, 马运涛, 黄剑华, 刘成洪, 陆瑞菊. 不同低氮胁迫对大麦地方品种苗期耐低氮性的影响. 植物生理学报, 2019, 55(5):642-648.
CHEN Z W, JIANG Q, XU J H, ZHANG W, HE T, GUO G M, WANG Y F, MA Y T, HUANG J H, LIU C H, LU R J. Effects of different low nitrogen stresses on low nitrogen tolerance of barley landraces at seedling stage. Plant Physiology Journal, 2019, 55(5):642-648. (in Chinese)
[22] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16):3214-3225.
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16):3214-3225. (in Chinese)
[23] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014, 40(7):1259-1273.
LUO J J, OU Q M, YE C L, WANG F, WANG Y Z, CHEN Y L. Comprehensive valuation of drought resistance and screening of indices of important flax cultivars. Acta Agronomica Sinica, 2014, 40(7):1259-1273. (in Chinese)
[24] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32(8):1656-1663.
ZHONG S R, GONG S Y, ZHANG S C, CHEN R X, LIU Q Y, ZHAI X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. Journal of Nuclear Agricultural Sciences, 2018, 32(8):1656-1663. (in Chinese)
[25] 王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52(22):4166-4176.
WANG J S, DONG E W, WU A L, BAI W B, WANG Y, JIAO X Y. Responses of fertilization on sorghum grain yield, quality and nutrient utilization to soil fertility. Scientia Agricultura Sinica, 2019, 52(22):4166-4176. (in Chinese)
[26] 李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明. 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015, 21(4):873-883.
LI C S, TANG Y L, WU C, WU X L, HUANG G, HE G, GUO D M. Effect of N rate on growth and grain filling of wheat in Sichuan Basin. Journal of Plant Nutrition and Fertilizer, 2015, 21(4):873-883. (in Chinese)
[27] 高雪, 朱林, 苏莹. 基于隶属函数法的甜高粱孕穗期耐盐性综合评价. 南方农业学报, 2018, 49(9):1736-1744.
GAO X, ZHU L, SU Y. Comprehensive evaluation on salt tolerance of Sorghum bicolor at booting stage by membership function method. Journal of Southern Agriculture, 2018, 49(9):1736-1744. (in Chinese)
[28] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性. 作物学报, 2021, 47(3):566-574.
doi: 10.3724/SP.J.1006.2021.03023
XU T J, LÜ T F, ZHAO J R, WANG R H, ZHANG Y, CAI W T, LIU Y E, LIU X Z, CHEN C Y, XING J F, WANG Y D, LIU C G. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region. Acta Agronomica Sinica, 2021, 47(3):566-574. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03023
[29] DING C, YOU J, CHEN L, WANG S, DING Y. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Reports, 2014, 33(2):363-371.
doi: 10.1007/s00299-013-1536-9
[30] 王夏雯, 王绍华, 李刚华, 王强盛, 刘正辉, 余翔, 丁艳锋. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008, 34(12):2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
WANG X W, WANG S H, LI G H, WANG Q S, LIU Z H, YU X, DING Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles of japonica rice and its relation with spikelet development. Acta Agronomica Sinica, 2008, 34(12):2184-2189. (in Chinese)
doi: 10.3724/SP.J.1006.2008.02184
[31] 李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51(2):246-256.
LI S B, TANG C C, CHEN F, XIE G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China. Scientia Agricultura Sinica, 2018, 51(2):246-256. (in Chinese)
[32] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51(16):3074-3083.
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A, BAI W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Scientia Agricultura Sinica, 2018, 51(16):3074-3083. (in Chinese)
[33] WORKU M, BÄNZIGER M, SCHULTE AUF′M ERLEY G, FRIESEN D, DIALLO A O, HORST W J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 2007, 47(2):519-528.
doi: 10.2135/cropsci2005.05.0070
[34] 陈卓, 胡怡凡, 韩永亮. 油菜氮素吸收和根系性状对低氮胁迫的响应. 湖北农业科学, 2020, 59(5):57-62.
CHEN Z, HU Y F, HAN Y L. Response of nitrogen uptake and root traits of rapeseed to the low nitrogen stress. Hubei Agricultural Sciences, 2020, 59(5):57-62. (in Chinese)
[35] 孟德恺, 徐志鹏, 刘宁宁, 王萌, 王楚, 刘桂丰. 白桦转BpGH3.5基因叶片早衰突变株的光合特性及生长分析. 南京林业大学学报(自然科学版), 2019, 43(5):37-43.
MENG D K, XU Z P, LIU N N, WANG M, WANG C, LIU G F. Characterization of photosynthetic and growth traits of precocious leaf senescence mutant of BpGH3.5 transgenic lines in Betula platyphylla. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(5):37-43. (in Chinese)
[36] 赵冬兰, 周志林, 唐君, 曹清河, 张安, 戴习彬. 不同基因型甘薯的耐瘠性研究. 江苏农业科学, 2019, 47(3):74-78.
ZHAO D L, ZHOU Z L, TANG J, CAO Q H, ZHANG A, DAI X B. Study on poor-soil-fertility tolerance of sweet potato with different genotypes. Jiangsu Agricultural Science, 2019, 47(3):74-78. (in Chinese)
[37] 高峰, 颉振东, 吕剑, 张天浩, 郁继华, 肖雪梅, 李静, 秦海娟. 基于模糊数学隶属函数法综合评价黄瓜生物质栽培基质. 甘肃农业大学学报, 2019, 54(6):93-101.
GAO F, JIE Z D, LV J, ZHANG T H, YU J H, XIAO X M, LI J, QIN H J. Comprehensive evaluation of cucumber biomass cultivation substrate based on fuzzy mathematics method. Journal of Gansu Agricultural University, 2019, 54(6):93-101. (in Chinese)
[38] 缪李飞, 于晓晶, 张秋悦, 封超年. 沿海地区4个杜梨半同胞家系耐盐性分析. 南京林业大学学报(自然科学版), 2020, 44(5):157-166.
MIAO L F, YU X J, ZHANG Q Y, FENG C N. Salt tolerance of four half-sib families of Pyrus betulaefolia Bunge from coastal areas. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(5):157-166. (in Chinese)
[39] 路之娟, 张永清, 张楚, 刘丽琴, 杨春婷. 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017, 50(17):3311-3322.
LU Z J, ZHANG Y Q, ZHANG C, LIU L Q, YANG C T. Comprehensive evaluation and indicators of the drought resistance of different genotypes of Fagopyrum tataricum at seedling stage. Scientia Agricultura Sinica, 2017, 50(17):3311-3322. (in Chinese)
[40] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47(7):1290-1300.
DAI H F, WU H, MAIMAIATILI A M G L, WANG L H, APIZI M M T, ZHANG J S. Analysis of salt-tolerance and determination of salt-tolerance evaluation indicators in cotton seedings of different genotypes. Scientia Agricultura Sinica, 2014, 47(7):1290-1300. (in Chinese)
[41] 裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物营养与肥料学报, 2007, 28(2):1-6.
PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007, 28(2):1-6. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[6] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[7] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[10] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[11] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[12] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[13] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[14] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[15] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!