Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1355-1364.doi: 10.3864/j.issn.0578-1752.2012.07.013

• HORTICULTURE • Previous Articles     Next Articles

The Association Analysis of Phenotypic Traits with SRAP Markers in Chrysanthemum

 LI  Ren-Wei, WANG  Chen, DAI  Si-Lan, LUO  Xin-Yan, LI  Bao-Qin, ZHU  Jun, LU  Jie, LIU  Qian-Qian   

  1. 北京林业大学园林学院/国家花卉工程技术研究中心,北京 100083
  • Received:2011-09-01 Online:2012-04-01 Published:2012-03-28

Abstract: 【Objective】 In order to provide a genetic basis for studies on complex quantitive traits and for molecular assisted breeding of chrysanthemum, the SRAP markers associated with important chrysanthemum horticulture traits were screened.【Method】 The genomic regions with selection sweep were detected through scanning 58 representative chrysanthemum cultivars using 19 SRAP markers. Population structure was firstly analyzed, then association analysis between SRAP markers and 18 important phenotypic traits were performed using TASSEL GLM.【Result】 Genetic structure analysis showed that the selected cultivar population was composed of 5 subpopulations, namely flat type subgroup, tube type subgroup, irregular type subgroup, anemone type subgroup and Japanese subgroup. There were 6 SRAP loci associated with 5 quantitative characters (P<0.01), among which 3 flower traits were associated with 5 loci, while 1 stem and 1 leaf traits were associated with 1 locus, respectively. The rate of explanation on the phenotype of related locus ranged from 0.0738 to 0.4791.【Conclusion】It is feasible to estimate and differentiate chrysanthemum population’s structure effectively using SRAP markers, and the markers obtained in this study are promising in molecular assisted breeding.

Key words: Chrysanthemum×morifolium, phenotypic traits, SRAP, association analysis

[1]戴思兰. 中国菊花与世界花卉园艺. 河北科技师范学院学报, 2004, 18(2): 1-7.

Dai S L. Chinese florist’s chrysanthemum and the world flower horticulture. Journal of Hebei Normal University of Science﹠Technology, 2004, 18(2): 1-7. (in Chinese)

[2]张莉俊, 戴思兰. 菊花种质资源研究进展. 植物学报, 2009, 44(5): 526-535.

Zhang L J, Dai S L. Research advance on germplasm resource of Chrysanthemum×morifolium. Chinese Bulletin of Botany, 2009, 44(5): 526-535.  (in Chinese)

[3]Anderson N O. Breeding flower seed crops//McDonald M, Kwong F. Flower Seeds CABI, 2004.

[4]Anderson N O. Chrysanthemum. Dendranthema. grandiflora Tzvelv. //Anderson N O. Flower Breeding and Genetics: Issues, Challenges, and Opportunities for the 21stCentury. Dordrecht: Springer, 2006.

[5]戴思兰, 钟  杨, 张晓艳.中国菊属植物部分种的数量分类研究.北京林业大学学报, 1995, 17(4): 9-14.

Dai S L, Zhong Y, Zhang X Y. Study on numerical taxonomy of some Chinese species of Dedranthema(DC)Des Moul. Journal of Beijing Forestry University, 1995, 17(4): 9-14. (in Chinese)

[6]戴思兰, 陈俊愉. 菊属7个种的人工种间杂交试验.  北京林业大学报,1996, 18(4):16-21.

Dai S L, Chen J Y. Artificial interspecific cross among seven species of  Dendranthema in China. Journal of Beijing Forestry University, 1996, 18(4):16-21. (in Chinese)

[7]戴思兰, 王文奎, 黄家平. 菊属系统学及菊花起源研究进展. 北京林业大学学报, 2002, 24(5/6): 230-234.

Dai S L, Wang W K, Huang J P. Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum. Journal of Beijing Forestry University, 2002, 24(5/6): 230-234. (in Chinese)

[8]戴思兰, 陈俊愉. 中国菊属一些种的分支分类学研究.武汉植物学研究, 1997, 15(1): 27-34.

Dai S L, Chen J Y. A cladistic study on some Dendranthema spp. in China. Journal of Wuhan Botanical Research, 1997, 15(1): 27-34. (in Chinese)

[9]田  赟, 雒新艳, 戴思兰. 菊花芽变和相似品种的RAPD分析. 分子植物育种, 2008, 6(6): 1223-1232.

Tian Y, Luo X Y, Dai S L. RAPD analysis of sporting and similar cultivars in Chrysanthemum. Molecular Plant Breeding, 2008, 6(6): 1223-1232. (in Chinese)

[10]戴思兰, 陈俊愉, 李文斌. 菊花起源的RAPD分析. 植物学报, 1998, 40(11): 1053-1059.

Dai S L, Chen J Y, Li W B. Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Botanica Sinica, 1998, 40(11): 1053-1059. (in Chinese)

[11]周春玲, 戴思兰. 部分菊属植物的AFLP分析. 北京林业大学学报, 2002, 24(5/6): 71-75.

Zhou C L, Dai S L. AFLP analysis of some Dendranthema spp. Journal of Beijing Forestry University, 2002, 24(5/6): 71-75. (in Chinese)

[12]韩  洁, 胡   楠, 李玉阁, 尚富德. 菊花品种资源遗传多样性的AFLP分析. 园艺学报, 2007, 34(4): 1041-1046.

Han J, Hu N, Li Y G, Shang F D. Genetic diversity of chrysanthemum cultivars revealed by AFLP analysis. Acta Horticulturae Sinica, 2007, 34(4): 1041-1046. (in Chinese)

[13]Salvi S, Tuberosa R. To clone or not to clone plants QTLs: present and future challenges. Trends in Plant Science, 2005,10(6):297-304.

[14]赵婧媛, 陈发棣, 腾年军, 陈素梅. 地被菊匍匐性的遗传分析与RAPD标记研究. 中国农业科学, 2009, 42(2): 734-741.

Zhao J Y, Chen F D, Teng N J, Chen S M. Genetic analysis and RAPD marker of creeping habits in ground-cover chrysanthemum. Scientia Agriculture Sinica, 2009, 42(2): 734-741. (in Chinese)

[15]Zhang F, Chen S M, Chen F D, Fang W M, Deng Y M, Chang Q S, Liu P S. Genetic analysis and associated SRAP markers for flowering time and duration in chrysanthemum (Chrysanthemum morifolium). Euphytica, 2011, 177(1): 15-24.       

[16]Zhang F, Chen S M, Chen F D, Fang W M, Li F T. A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Scientia Horticulturae, 2010, 125(3): 422-428.

[17]Zhang F, Chen S M, Chen F D, Fang W M, Chen Y, Li F T. SRAP-based mapping and QTLs detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Molecular Breeding, 2011, 27(1): 11-23.

[18]March R E. Gene mapping by linkage and association analysis. Molecular Biotechnology, 1999, 13: 113-122.

[19]Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12: 57-63.

[20]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 2005, 57(4): 461-485. 

[21]Yu J, Edward S B. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17: 155-160.

[22]王荣焕, 王天宇, 黎  裕. 关联分析在作物种质资源分子评价中的应用.植物遗传资源学报, 2007, 8(3): 366-372.

Wang R H, Wang T Y, Li Y. Application of association analysis in molecular. Evaluation of Crop Germplasm Resources, 2007, 8(3): 366-372. (in Chinese)

[23]雒新艳, 戴思兰. 大菊品种表型性状的分类学价值. 北京林业大学学报, 2010, 32(3): 135-140.

Luo X Y, Dai S L. Chrysanthemum varieties of taxonomic phenotypic value. Journal of Beijing Forestry University, 2010, 32(3): 135-140. (in Chinese)

[24]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.

[25]张  飞, 陈发棣, 房伟民, 李风童, 刘浦生. 菊花SRAP-PCR反应体系的优化与确立. 植物资源与环境学报, 2009, 18(3): 40-49.

Zhang F, Chen F D, Fang W M, Li F T, Liu P S. Optimization and establishment of SRAP-PCR reaction system of Dendranthema× grandiflorum. Journal of Plant Resources and Environment, 2009, 18(3): 40-49. (in Chinese)

[26]Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36(1):181-186.

[27]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.

[28]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramadoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics Application Note, 2007, 23(19): 2633-2635.

[29]张树林. 菊花品种分类的研究. 园艺学报, 1965, 4(1):30-36.

Zhang S L. Studies on the classification of garden varieties of florists’ chrysanthemum. Acta Horticulturae Sinica, 1965, 4(1): 30-36. (in Chinese)

[30]Hansen M, Kraft T, Ganestam S, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genetics Research, 2001, 77(1): 61-66.

[31]Karrakman A T, Nikes R E, Berg P M, Stam P, Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168:435-446.

[32]何  静, 王文泉, 郑永清, 李开绵. 木薯栽培品种农艺性状与分子标记的关联分析. 热带作物学报, 2010, 31(5): 693-700.

He J, Wang W Q, Zheng Y Q, Li K M. Association analysis between agronomic traits and Molecular markers in cassava. Chinese Journal of Tropical Crops, 2010, 31(5): 693-700. (in Chinese)

[33]Flint-Garcia S A, Thuillet A, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative traits locus dissection. The Plant Journal, 2005, 44(6):1054-1064.

[34]Li G, Quiros C R. Sequence-related amplified polymorphism (SRAP) a neap marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied  Genetics, 2001, 103: 455-461.  

[35]任  羽, 王得元, 张银东. 相关序列扩增多态性(SRAP)一种新的分子标记技术. 中国农学通报, 2004, 20(6):11-13.

Ren Y, Wang D Y, Zhang Y D. Sequence-related amplified polymorphism (SRAP): a novel technique for molecular marker. Chinese Agricultural Science Bulletin, 2004, 20(6):11-13. (in Chinese)

[36]Parisseaux B, Berbardo R. In silico mapping of quantitative trait loci in maize. Theoretical and Applied Genetics, 2004, 109(3): 508-514.  

[37]文自翔, 赵团结, 郑永站, 刘顺湖, 王春娥, 王  芳, 盖钧镒. 中国栽培野生大豆农艺品质性状与SSR标记的关联分析Ⅰ. 群体结构及关联标记. 作物学报, 2008, 34(7):1169-1178.

Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: Ⅰ. Population structure and association markers. Acta Agronomica Sinica, 2008, 34(7): 1169-1178. (in Chinese)

[38]张  军, 赵团结, 盖钧镒. 大豆育成品种农艺性状QTL与SSR标记的关联分析. 作物学报, 2008, 34(12): 2059-2069.

Zhang J, Zhao T J, Gai J Y. Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agronomica Sinica, 2008, 34(12): 2059-2069. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[4] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[5] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[6] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[7] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[8] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[9] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[10] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[11] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[12] Lin CHEN,RuiMing LIN,FengTao WANG,YunXing PANG,Xue LI,AiPing ZHAO,YanXia ZHANG,JinLing ZHANG,WenXing LI,SuQin HE,Jing FENG,Yun LI,CaiYi WEN,ShiChang XU. Genetic Diversity of Dactylobotrys graminicola and Its Pathogenicity to Hordeum vulgare var. nudum Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 213-224.
[13] LIU ChenXi,WANG BinBin,PU Guang,ZHANG Qian,CAO Yang,WANG Huan,GAO Chen,NIU PeiPei,LI PingHua,HUANG RuiHua. Polymorphism of Rs319699771 Locus of Anti-Diarrhea MUC13 Gene in Suhuai Pig Population and Their Association with Economic Traits [J]. Scientia Agricultura Sinica, 2019, 52(8): 1449-1457.
[14] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
[15] BAI YiXiong, ZHENG XueQing, YAO YouHua, YAO XiaoHua, WU KunLun. Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources [J]. Scientia Agricultura Sinica, 2019, 52(23): 4201-4214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!