Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1449-1457.doi: 10.3864/j.issn.0578-1752.2019.08.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Polymorphism of Rs319699771 Locus of Anti-Diarrhea MUC13 Gene in Suhuai Pig Population and Their Association with Economic Traits

LIU ChenXi1,2,WANG BinBin1,2,PU Guang1,2,ZHANG Qian1,2,CAO Yang1,2,WANG Huan1,2,GAO Chen1,2,NIU PeiPei2,3,LI PingHua1,2,3(),HUANG RuiHua1,2,3()   

  1. 1 Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095
    2 Huaian Academy of Nanjing Agricultural University, Huaian Jiangsu 223005
    3 Huaian New Rural Development Co. LTD of Nanjing Agricultural University, Huaian Jiangsu 223005
  • Received:2018-09-20 Accepted:2019-01-21 Online:2019-04-16 Published:2019-04-26
  • Contact: PingHua LI,RuiHua HUANG E-mail:lipinghua718@163.com;270583435@qq.com

Abstract:

【Background】 MUC13 gene is one of the main genes, which can regulate the infection of enterotoxigenic Escherichia coli F4ac, and cause diarrhea in piglets before weaning. The rs319699771 locus of the gene (G/A mutation) can accurately identify susceptible and resistant individuals, among which GG type is an anti-diarrhea genotype. The anti-diarrhea molecular breeding of Suhuai pig has been implemented by selecting GG genotype individuals, but whether the selection of GG genotype individuals will have adverse effects on other important economic traits, such as growth, carcass and meat quality, which is not yet clear. 【Objective】 The purpose of this study was to analyze the association between the locus and other economic traits to determine whether the molecular selection based on the rs319699771 locus of anti-diarrhea MUC13 gene would have adverse effects on other economic traits of Suhuai pig. 【Method】 In this experiment, 313 Suhuai fattening pigs weighting 87.61±0.54 kg were tested as experimental animals, and their carcass and meat quality traits were determined through slaughter. 261 Suhuai gilt pigs aging for 161.1±0.5 d were tested as experimental animals, and their growth and body size phenotype were also determined. At the same time, the corresponding ear tissue samples of Suhuai fattening pigs and gilt pigs were collected to extract tissue DNA. After Multiplex-PCR reactions, the polymorphism of the rs319699771 locus of MUC13 gene was detected in each pig. The association analysis between the polymorphism genotype of the rs319699771 locus of MUC13 gene and meat quality, carcass and growth traits were conducted by using the general linear model in SAS software. 【Result】 The results of polymorphism of rs319699771 locus of MUC13 gene showed that among the frequency of anti-diarrhea G allele of rs319699771 locus of MUC13 gene, the male and female pigs of the fattening pigs reached 0.695 and 0.634, respectively, and the anti-diarrhea GG genotype frequency was 0.467 and 0.373, respectively, in the male and female fattening pigs. While the locus G allele among the male and female pigs of the gilt reached 0.690 and 0.705, respectively, and the anti-diarrhea GG genotype frequency was 0.508 and 0.480, respectively, in the male and female gilt pigs. This indicated that the frequency of anti-diarrhea gene in Suhuai pig belonged to a higher level, and it could be feasible for the further improvement of anti-diarrhea GG frequency in the Suhuai pig through molecular breeding. The association analysis between polymorphism of rs319699771 locus of MUC13 gene and economic traits of Suhuai pig showed that there was no significant association between the locus’s polymorphism and carcass, meat quality traits in the fattening pigs (P>0.05), and it could be seen that increasing the breeding of the rs319699771 locus of MUC13 gene in Suhuai fattening pigs would not affect the carcass and meat quality traits. The locus’s polymorphism in the gilt extremely associated with the ham circumference index (P<0.01), and on average, the ham circumference of GG type individuals at this locus was about 1.46 cm longer than that of AG type individuals, and about 3 cm longer than that of AA type individuals. Also, the locus tended to associate with daily gain and terminal measurement weight (P<0.10), GG type individuals showed an upward trend compared with AA and AG type individuals. All of the three traits, GG genotype was a favorable genotype. The results showed that the breeding of the anti-diarrhea GG genotype of this locus could improve the growth traits of Suhuai gilt pigs. 【Conclusion】 Based on these results, the anti-diarrhea allele frequency of the rs319699771 locus of MUC13 gene in Suhuai pig was high, and the anti-diarrhea breeding was feasible, and the anti-diarrhea ability of Suhuai pig could be improved by selecting and remaining resistant homozygous GG genotype of rs319699771 locus of MUC13 gene and raising the frequency of the resistant homozygous genotype. At the same time, it could also realize the improvements of ham circumference and daily gain of Suhuai pig.

Key words: Suhuai pig, MUC13 gene, anti-diarrhea, economic traits, association analysis

Table 1

MUC13 gene primer sequence"

MUC13基因 MUC13 gene 引物序列 Primer sequence
PCR引物序列
PCR primer sequence
上游 Upstream TCCTCACACCTCCTGCCTTTTC
下游 Downstream TCAAAACAGAGCGATTTCTGGGTAA
多重PCR连接引物序列
Multiplex-PCR binding primer sequence
MUC13_A_GFP TGAATTTTGGCTATAGRCCTGTGGTTTTTTTTTTTTTTTTTTTTT
MUC13_A_GFG TTCCGCGTTCGGACTGATATTCCATGTACATTTCAGAGTCTGAGGGTTG
MUC13_A_GFA TACGGTTATTCGGGCTCCTGTTCCATGTACATTTCAGAGTCTGAGGGCTA

Table 2

The polymorphism analysis of rs319699771 locus of MUC13 gene in fattening and gilt pigs"

群体
Group
性别
Gender (n)
基因型频率Genotype frequency 基因频率Gene frequency
AA (n) AG (n) GG (n) A G
育肥群
Fattening pigs
母猪Sow (67) 0.104 (7) 0.522 (35) 0.373 (25) 0.366 0.634
阉公猪Barrow (246) 0.077 (19) 0.455 (112) 0.467 (115) 0.305 0.695
合计Total (313) 0.083 (26) 0.470 (147) 0.447 (140) 0.318 0.682
后备群
Gilt
母猪Sow (198) 0.071 (14) 0.449 (89) 0.480 (95) 0.295 0.705
公猪Boar (63) 0.127 (8) 0.365 (23) 0.508 (32) 0.310 0.690
合计Total (261) 0.084 (22) 0.429 (112) 0.487 (127) 0.299 0.701

Table 3

Association analysis between polymorphism of rs319699771 locus of MUC13 gene and carcass performances of fattening pigs"

基因型
Genotype
个体数
Number
胴体性状Carcass performances
胴体重
Weight of carcass
(kg)
肋骨数
Number of ribs
胴体直长
Straight length
of carcass
(cm)
胴体斜长
Oblique length
of carcass
(cm)
6-7肋膘厚
Backfat thickness at 6-7 ribs
(mm)
肩部最厚处膘厚
Backfat thickness at the thickest part of the shoulder (mm)
最后肋骨膘厚
Backfat thickness
at the last
rib (mm)
腰荐结合膘厚
Backfat thickness at the lumbosacral junction (mm)
三点平均背膘厚
Average backfat thickness
(mm)
AA 26 55.89±1.45 30.33±0.75 88.14±0.75 73.97±0.69 29.17±1.26 34.11±1.28 20.06±1.08 22.48±1.40 25.56±1.11
AG 147 57.51±0.70 29.66±0.36 88.69±0.36 74.00±0.33 28.46±0.61 34.15±0.62 21.12±0.52 23.74±0.67 26.37±0.54
GG 140 57.35±0.71 29.82±0.37 88.60±0.37 73.96±0.34 28.87±0.61 34.45±0.63 21.93±0.53 23.59±0.68 26.67±0.54
P-value 0.5470 0.6778 0.7754 0.9955 0.7797 0.9064 0.1684 0.6795 0.6106

Table 4

Association analysis between polymorphism of rs319699771 locus of MUC13 gene and meat quality performances of fattening pigs"

基因型
Genotype
个体数
Number
肉质性状Meat quality performances
2h亮度值
L2h lightness
2h红度值
a2h redness
2h黄度值
b2h yellowness
24h亮度值
L24h lightness
24h红度值
a24h redness
24h黄度值
b24h yellowness
pH45min pH24h 滴水损失
Drip loss (%)
系水力
Water holding capacity (%)
肌内脂肪含量
IMF (%)
AA 26 39.71±0.69 5.10±0.30 11.50±1.67 44.31±0.77 5.76±0.30 12.36±0.26 6.43±0.06 5.65±0.04 2.41±0.24 24.83±1.09 2.07±0.15
AG 147 41.18±0.33 4.66±0.15 11.51±0.81 46.00±0.37 5.51±0.14 12.35±0.13 6.37±0.03 5.67±0.02 2.27±0.12 25.47±0.53 1.98±0.07
GG 140 41.16±0.34 4.44±0.15 12.46±0.81 46.03±0.37 5.48±0.14 12.51±0.13 6.43±0.03 5.70±0.02 2.54±0.12 24.84±0.53 1.99±0.07
P-value 0.1034 0.0843 0.5849 0.0800 0.6711 0.5332 0.2726 0.4739 0.1345 0.5645 0.8144

Table 5

Association analysis between polymorphism of rs319699771 locus of MUC13 gene and growth performances of gilt"

基因型
Genotype
个体数
Number
生长性状Growth performances
日增重
Daily
gain (g·d-1)
结测体重
Terminal measurement weight (kg)
体长
Body length (cm)
体高
Body height (cm)
胸围
Chest
circumference (cm)
腹围
Abdominal circumference (cm)
管围
Cannon bone circumference (cm)
腿臀围
Ham circumference (cm)
活体背膘
Live backfat
(mm)
活体眼肌面积
Live loin eye area (cm2)
AA 22 347.87±9.09 56.50±1.47 97.65±1.29 53.06±0.97 91.31±1.12 102.54±1.91 15.13±0.24 72.78±0.99b 11.79±0.66 17.18±4.76
AG 112 362.89±4.33 58.43±0.07 98.30±0.61 53.53±0.46 92.05±0.54 103.83±0.91 15.31±0.11 74.32±0.47ab 11.78±0.31 20.84±2.27
GG 127 370.48±4.12 59.62±0.67 99.20±0.58 54.44±0.44 91.14±0.52 102.33±0.87 15.22±0.11 75.78±0.45a 11.73±0.03 22.03±2.16
P-value 0.0514 0.0601 0.1784 0.1942 0.4347 0.4209 0.7086 0.0045 0.9917 0.6279
[1] 孙宏伟, 王泽岩, 任少敏, 高发辉, 高小鹏, 何斌 . 猪主要腹泻病的发病机制综述. 中国动物检疫, 2016, 33(03): 63-66+70.
SUN H W, WANG Z Z, REN S Y, GAO F H, GAO X P, HE B . Summary on the pathogenesis of porcine primary diarrhea diseases. China Animal Health Inspection, 2016, 33(03): 63-66+70. (in Chinese)
[2] 倪建强, 原霖, 王静, 杨林, 李文合, 辛盛鹏 . 2013—2015年我国部分原种猪场猪腹泻病的流行病学调查. 中国动物检疫, 2017,34(04):5-9.
NI J Q, YUAN L, WANG J, YANG L, LI W H, XIN S P . Epidemiological survey on porcine diarrhea in swine breeding farms in China during 2013 to 2015. China Animal Health Inspection, 2017, 34(04):5-9. (in Chinese)
[3] PENSAERT M B, BOUCK P D . A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 1978, 58(3):243-247.
[4] TAKAHASHI K, OKADA K, OHSHIMA K . An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science, 1983, 45(6):829-832.
[5] 许建民, 赵德明 . 仔猪肠毒素性大肠杆菌病的防治. 中国兽医杂志, 2005(02):48-50.
XU J M, ZHAO D M . Prevention and control of enterotoxigenicEscherichia coli in piglets. China Journal of Veterinary Medicine, 2005(02):48-50. (in Chinese)
[6] ZHANG B, REN J, YAN X, HUANG X, JI H, PENG Q . Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Animal Genetics, 2008, 39(3):258-266.
[7] REN J, TANG H, YAN X, HUANG X, ZHANG B, JI H . A pig-human comparative RH map comprising 20 genes on pig chromosome 13q41 that harbours the ETEC F4ac receptor locus. Journal of Animal Breeding & Genetics, 2015, 126(1):30-36.
[8] 陈一杰 . ETEC F4ac易感和抗性猪只小肠差异蛋白的鉴别[D]. 南昌:江西农业大学, 2011.
CHEN Y J . Identification of differential proteins in small intestinal between piglets susceptible and resistant to ETEC F4ac[D]. Nanchang: Jiangxi Agricultural University, 2011. ( in Chinese)
[9] REN J, YAN X, AI H, ZHANG Z, HUANG X, OUYANG J . Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One, 2012,7(9):e44573.
[10] 任军, 晏学明, 艾华水, 肖石军, 丁能水, 黄璐生 . 仔猪断奶前腹泻抗病基因育种技术的创建及应用. 猪业科学, 2012,29(01):44-48.
REN J, YAN X M, AI H S, XIAO S J, DING N S, HUANG L S . The establishment and application of the gene breeding technology of diarrhea resistance before weaning of piglets. Swine Industry Science, 2012,29(01):44-48. (in Chinese)
[11] HUANG L, REN J, YAN X . MUC13 molecular marker for identifying the F4ac adhesin-caused diarrhea resistance of the weanling pig and the use thereof. WO, 2010066118 A1[P]. 2010.
[12] 熊胜利, 龙清孟, 陈大芳, 甘霖, 谭晓山, 李俊 . 杜洛克种猪抗腹泻新品系选育研究. 养猪, 2017(04):49-52.
XIONG S L, LONG Q M, CHEN A F, GAN L, TAN X S, LI J . Breeding research on new anti-diarrhea strains of duroc sows.Swine Production, 2017(04):49-52. (in Chinese)
[13] RUAN G R, XING Y Y, FAN Y, QIAO R M, HE X F, YANG B . Genetic variation at RYR1, IGF2, FUT1, MUC13, and KPL2 mutations affecting production performances in Chinese commercial pig breeds. Czech Journal of Animal Science, 2013, 58(2):65-70.
[14] 李俊, 许钟峯, 张海航, 尚月丽, 孔祥峰, 石德顺 . 环江香猪黏附素13基因多态性及其与仔猪腹泻的相关性分析. 中国畜牧兽医, 2016,43(07):1818-1825.
LI J, XU Z F, ZHANG H H, SHANG L Y, KONG X F, SHI D S . Association analysis of MUC13 gene polymorphisms with diarrhea in Huanjiang miniature pigs. China Animal Husbandry and Veterinary Medicine, 2016, 43(07):1818-1825. (in Chinese)
[15] 唐建红, 邓政, 林峰, 任军, 肖石军, 王闯 . 抗仔猪断奶前腹泻猪专门化新品系的培育. 猪业科学, 2013(10):102-105.
TANG J H, DENG Z, LIN F, REN J, XIAO S J, WANG C . Breeding of new specialization-specific strains of anti-piglet diarrhea before weaning.Swine Industry Science, 2013(10):102-105. (in Chinese)
[16] 杨明 王青来, 刘敬顺, 刘珍云, 温淑贤, 吴珍芳 . MUC13、FUT1基因在2个种猪核心群中的分子标记辅助选择研究. 华南农业大学学报, 2015,36(06):1-8.
YANG M, WANG Q L, LIU J S, LIU Z Y, WEN S X, WU Z F . Molecular maker-assisted selections of MUC13 and FUT1 genes in the two swine nucleus populations. Journal of South China Agricultural University, 2015, 36(06):1-8. (in Chinese)
[17] 刘亚轩, 肖石军, 郭长明, 陈福珍, 林金玉, 陈晓燕 . 大白猪MUC13基因多态性与生长、肉质性状的相关性. 福建农林大学学报(自然科学版), 2014,43(03):295-298.
LIU Y X, XIAO S J, GUO C M, CHEN F Z, LIN J Y, CHEN X Y . The polymorphism of MUC13 gene of large white pig and its correlation with the traits of growth and meat quality. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014,43(03):295-298. (in Chinese)
[18] 方宇瑜, 吴艳, 高硕, 李强, 李会智, 付玲玲 . 苏淮猪群体抗腹泻基因MUC13FUT1多态性分析及其抗腹泻选育方案研究. 畜牧与兽医, 2015,47(12):12-17.
FANG Y Y, Wu Y, GAO S, LI Q, LI H Z, FU L L . Polymorphism analysis of anti-diarrhea genes MUC13 and FUT1 in Suhuai pigs and its selective breeding on anti-diarrhea traits. Animal Husbandry and Veterinary Medicine, 2015, 47(12):12-17. (in Chinese)
[19] 熊远 . 种猪测定原理及方法. 北京: 中国农业出版社, 1999: 32-33.
XIONG Y. Measurement Principles And Methods Of Breeding Pigs[. Beijing: China Agriculture Press, 1999: 32-33. (in Chinese)
[20] 阮国荣, 肖石军, 徐盼, 刘亚轩, 陈金雄, 江宵兵 . 福建省商业猪种MUC13、IGF2RYR1基因主效位点的遗传变异分析. 江西农业大学学报, 2012,34(5):997-1002.
RUAN G R, XIAO S J, XU P, LIU Y X, CHEN J X, JIANG X B . Genetic variation of MUC13, IGF2 and RYR1 causative mutations in commercial pig breeds in Fujian Province. Journal of Jiangxi Agricultural University, 2012, 34(5):997-1002. (in Chinese)
[21] SCHAEFFER L R . Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding & Genetics, 2006, 123(4):218-223.
[22] 阮国荣, 肖石军, 刘亚轩, 陈福珍, 林国忠, 孙耀华 . 杜洛克猪肠毒素大肠杆菌F4ac MUC13基因型与生长性能的关联性分析. 福建畜牧兽医, 2012,34(06):4-5.
RUAN G R, XIAO S J, LIU Y X, CHEN F Z, LIN G Z, SUN Y H . Association analysis of enterotoxigenic Escherichia coli F4ac MUC13 genotypes and their growth performances in duroc pig. Fujian Animal Husbandry and Veterinary Medicine, 2012, 34(06):4-5. (in Chinese)
[23] 阮国荣, 何晓芳, 黄晶, 肖石军, 陈金雄, 李军山 . MUC13腹泻抗性纯合杜洛克种群的选育研究. 江西农业大学学报, 2014,36(01):174-180.
RUAN G R, HE X F, HUANG J, XIAO S J, CHEN J X, LI J S . Selection of Duroc breeds homozygous for MUC13 diarrhea-resistant allele. Journal of Jiangxi Agricultural University, 2014, 36(01):174-180. (in Chinese)
[24] 阮国荣, 黄晶, 肖石军, 陈金雄, 李军山, 林国忠 . MUC13腹泻抗性纯合杜洛克选育与推广[ C]// 中国猪业科技大会暨中国畜牧兽医学会2015年学术年会论文集, 2015: 69.
RUAN G R, HUANG J, XIAO S J, CHEN J X, LI J S, LIN G Z . The breeding and promotion of MUC13 diarrhea resistance homozygous duroc[ C]// Proceedings of China Swine Industry Science and Technology Conference and 2015 Academic Annual Meeting of Chinese Association of Animal Science and Veterinary Medicine, 2015: 69. (in Chinese)
[25] 游永佳 . 猪大肠杆菌F4ab/ac抵抗力相关基因单核苷酸多态型对蓝瑞斯、约克夏及杜洛克猪生长性能与屠体性状之影响[D]. 台湾: 中兴大学, 2012.
YOU Y J . Effect of single nucleotide polymorphisms in E. coli F4ab/ac resistance related genes on the growth and carcass traits of Landrace, Yorkshire and Duroc pigs[D]. Taiwan: Zhongxing University, 2012. ( in Chinese)
[26] 魏清甜, 李平华, 汪涵, 石磊, 牛清, 林明新, 吴望军, 周波, 黄瑞华 . 粪肠球菌替代抗生素对保育仔猪生长性能、腹泻率、体液免疫指标和肠道微生物数量的影响. 南京农业大学学报, 2014,37(06):143-148.
WEI Q T, LI P H, WANG H, SHI L, NIU Q, LIN M X, WU W J, ZHOU B, HUANG R H . Effect of dietary Enterococcus faecalis replacing of antibiotic on growth performance, diarrhea rate, humoral immunity and intestinal microflora of nursery pigs. Journal of Nanjing Agricultural University, 2014, 37(06):143-148. (in Chinese)
[27] 张静洁, 温黎俊, 周玉岩 . 抗菌肽对仔猪生长性能及降低腹泻率的影响. 中国动物保健, 2014,16(10):7-9.
ZHANG J J, WEN L J, ZHOU Y Y . Effects of antimicrobial peptide on growth performance and reduce diarrhea rates of piglets. China Animal Health, 2014, 16(10):7-9. (in Chinese)
[28] 布登付, 郑中华 . 益生菌发酵湿料对肥育猪生长性能及腹泻率的影响. 养猪, 2014(06):47-48.
BU D F, ZHEN Z H . Effect of probiotic fermentation wet feed on growth performance and diarrhea rate of fattening pigs. Swine Production, 2014(06):47-48. (in Chinese)
[29] 晏家友, 张纯, 李书伟, 邝声耀 . 不同铜源对仔猪生长性能、腹泻率及血清免疫和抗氧化功能的影响. 中国畜牧杂志, 2018, 54(11): 93-95+100.
YAN J Y, ZHANG C, LI S W, KUANG S Y . Effects of different copper sources on growth performance,diarrhea rate,serum immunity and antioxidant function of piglets. Chinese Journal of Animal Science, 2018, 54(11): 93-95+100. (in Chinese)
[30] VÖGELI P, MEIJERINK E, FRIES R, NEUENSCHWANDER S VORLÄNDER N & STRANZINGER , G . A molecular test for the detection of E.coli F18 receptors: a breakthrough in the struggle against edema disease and post-weaning diarrhea in swine. Schweiz Arch Tierheilkd, 1997, 139(11):479-484.
[31] 王文文 . 仔猪产肠毒素大肠杆菌(ETEC)F4ac受体基因的鉴定及功能验证[D]. 北京: 中国农业大学, 2016.
WANG W W . Identification and functional verification for Enterotoxigenic Escherichia coli F4acR genes in piglets[D]. Beijing: China Agricultural University, 2016. ( in Chinese)
[32] MEUWISSEN T H, HAYES B J, GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4):1819-29.
[33] BERGLUND B . Genetic improvement of dairy cow reproductive performance. Reproduction in Domestic Animals, 2010, 43(s2):89-95.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[4] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[5] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[6] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[7] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[8] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[9] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[10] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
[11] WANG HaiGang,WEN QiFen,MU ZhiXin,QIAO ZhiJun. Population Structure and Association Analysis of Main Agronomic Traits of Shanxi Core Collection in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4088-4099.
[12] XU YuanYuan,HOU LingLing,JI JieFei,WANG HuanJie,LI SiLu,CHEN Wen,KANG XiangTao,HUANG YanQun. The Variation/Heteroplasmy of Chicken Mitochondrial ND1 Gene and Its Association with Traits [J]. Scientia Agricultura Sinica, 2019, 52(16): 2880-2890.
[13] REN YiYing, CUI Cui, WANG Qian, TANG ZhangLin, XU XinFu, LIN Na, YIN JiaMing, LI JiaNa, ZHOU QingYuan. Genome-Wide Association Analysis of Silique Density on Racemes and Its Component Traits in Brassica napus L. [J]. Scientia Agricultura Sinica, 2018, 51(6): 1020-1033.
[14] WeiJun ZHANG, Tian LI, Lin QIN, Jing ZHAO, JunJie ZHAO, Hong LIU, Jian HOU, ChenYang HAO, DongSheng CHEN, YiQin WEI, RuiLian JIN, XueYong ZHANG. TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding [J]. Scientia Agricultura Sinica, 2018, 51(10): 1815-1829.
[15] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!