Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 385-398.doi: 10.3864/j.issn.0578-1752.2019.03.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genome-Wide Association Analysis for Rice Submergence Seedling Rate

SUN Kai,LI DongXiu,YANG Jing,DONG JiChi,YAN XianCheng,LUO LiXin,LIU YongZhu,XIAO WuMing,WANG Hui,CHEN ZhiQiang,GUO Tao   

  1. National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642
  • Received:2018-09-18 Accepted:2018-11-12 Online:2019-02-01 Published:2019-02-14

Abstract:

【Background】 The low seedling rate of direct seeding rice is an important factor limiting its yield. Mining rice materials with high seed viability and low oxygen germination ability is the key to improving the seedling rate and solving the problem of seedlings in direct seeding rice. 【Objective】 The key phenotypic traits affecting the rate of emergence and tolerance of seedlings were analyzed, and the relevant genetic loci and candidate genes were mined to provide a theoretical and material basis for the study of direct seeding rice cultivars and the mechanism of resistance to flooding. 【Method】 Using 200 rice germplasms from a wide range of sources. The germination test was carried out in an aerobic environment, and the seed viability phenotype was measured including germination rate, germination index and viability index; The coleoptile length and coleoptile diameter were measured under hypoxic conditions. The flood-tolerant seedling experiment was carried out, the water depth was 10cm, and the flood-tolerant seedling rate was measured after 20d. The correlation between various traits was analyzed, and the key traits affecting the rate of tolerance to flooding were explored. Genome-wide association analysis was performed on the above six phenotypes by simplified genome sequencing, and SNP sites significantly associated with traits were identified and within the correlation interval. Screening candidate genes related to the research purpose; transcriptome detection under the conditions of aerobic, anaerobic and oxygen content conversion of 02428 and YZX two materials, combined with genome-wide association analysis results, analysis of differences in expression patterns of candidate genes. 【Result】 Seed viability, coleoptile phenotype and seedling rate showed extensive genetic variation among 200 materials. Among them, the variation of coleoptile length and viability index was the most abundant, and the coefficient of variation was the largest. At the same time, the results of correlation analysis showed that there was a significant positive correlation between the coleoptile length, viability index and the seedling rate. Through genome-wide association analysis, 8 sites significantly associated with the viability index and 15 sites significantly associated with the coleoptile length were identified. Based on the correlation of seed growth and development and stress resistance, six candidate genes related to viability index and seven candidate genes related to the coleoptile length were screened in the relevant interval. Further comparison of 13 genes in aerobic and anaerobic the expression patterns and expression changes under oxygen conversion conditions showed that the three genes Os02g0657000, Os03g0592500 and Os08g0380100 showed different expression patterns when the oxygen content changed, and the expression amount changed significantly, showing sensitivity to oxygen treatment. 【Conclusion】 Seed viability and coleoptile length were closely related to the rate of flooding and seedling emergence, which could be used as an important trait for screening flood-tolerant rice materials. Combining genome-wide association analysis, transcriptome analysis and gene expression pattern can improve the screening efficiency of candidate genes for hypoxia tolerance germination of rice seeds; flooding tolerance of rice seedlings may be regulated by genes related to stress and photosynthesis..

Key words: rice, seed vitality, hypoxia-resistant germination, genome-wide association analysis, transcriptome analysis

Table 1

Phenotype of rice strains"

性状
Trait
极小值
Min
极大值
Max
均值
Average
标准误
Standard error
标准差
Standard deviation
变异系数
Coefficient of variation
发芽率 Germination rate (%) 64.9515 100.0000 95.8427 0.3259 4.9420 5.1564
发芽指数 Germination index 32.6747 90.3761 59.6827 0.6815 10.3348 17.3162
活力指数 Vitality index 0.1376 0.9656 0.3345 0.0071 0.1079 32.2571
胚芽鞘长 Coleoptile length (cm) 0.9640 3.4622 2.3019 0.0302 0.4577 19.8836
胚芽鞘直径 Coleoptile diameter (mm) 0.4544 0.6576 0.5287 0.0026 0.0387 7.3198
成苗率 Seedling rate (%) 11.1111 97.7788 61.5295 1.3074 19.8212 32.2141

Fig. 1

Histogram of trait frequency distribution a: Germination rate; b: Germination index; c: Vitality index; d: Coleoptile length; e: Coleoptile diameter; f: Seedling rate"

Table 2

Correlation analysis of phenotype"

性状
Trait
成苗率
Seedling rate
发芽率
Germination rate
发芽指数
Germination index
活力指数
Vitality index
胚芽鞘长
Coleoptile length
胚芽鞘直径
Coleoptile diameter
成苗率 Seedling rate 1
发芽率 Germination rate 0.254** 1
发芽指数 Germination index 0.229** 0.422** 1
活力指数Vitality index 0.224** 0.129 0.518** 1
胚芽鞘长 Coleoptile length 0.271** 0.129* 0.287** 0.305** 1
胚芽鞘直径 Coleoptile diameter -0.078 -0.382** -0.226** 0.022 0.137* 1

Fig. 2

Phylogenetic tree and PCA analysis"

Fig. 3

Manhattan map and Q-Q map of vitality index"

Table 3

Associate loci of vitality index"

染色体 Chr. SNP位置 Position (bp) 等位基因 Allele 峰值 Peak value 已报道的位点 Known loci
1 13783629 C/T 6.322302731
2 26540479 A/G 6.142571185 [18-19]
5 3878312 A/G 6.384993065
6 5542656 C/T 8.912458149 [20]
10 13589547 C/T 6.960402683 [20-21]
11 4608768 A/G 7.710957603
11 26538371 G/T 6.863393569
12 23449435 T/C 6.103889317 [22-23]

Table 4

Candidate genes located in associate loci of vitality index"

SNP位置
SNP position
基因编号
Gene ID
基因注释
Gene annotation
Chr.01_13783629 Os01g0347500 木瓜蛋白酶样半胱氨酸蛋白酶 Papain-like cysteine proteinase
Chr.02_26540479 Os02g0657000 含AP2结构域的蛋白质 AP2 domain-containing protein
Chr.02_26540479 Os02g0658200 锌指,含有PHD型结构域的蛋白质 Zinc finger, PHD-type domain containing protein
Chr.02_26540479 Os02g0658400 Remorin,含有C末端结构域的蛋白质 Remorin, C-terminal domain containing protein
Chr.11_26538371 Os11g0660300 热激蛋白DnaJ,含有N-末端结构域的蛋白质 Heat shock protein DnaJ, N-terminal domain containing protein
Chr.11_26538371 Os11g0661200 糖苷水解酶 Glycoside hydrolasen

Fig. 4

Manhattan map and Q-Q map of coleoptile length"

Table 5

Associate loci of coleoptile length"

染色体 Chr. SNP位置 Position (bp) 等位基因 Allele 峰值 Peak value 已报道的位点 Known loci
3 22007803 C/T 5.023909483
4 6615471 A/G 4.342639196
4 23562335 T/C 4.028691488
5 15450007 G/A 4.777759954 [24]
6 757734 A/G 4.284055624
6 9693092 A/G 4.340712509
6 21932341 T/C 4.165186256 [25-26]
6 29822164 T/A 4.48136579 [27-28]
8 5689664 C/T 4.675971197 [29]
8 18019426 T/C 4.364278864
10 3160014 G/A 4.652868342
10 7504391 T/C 4.286580613
10 17384859 G/C 4.84143398
11 10896433 T/C 4.076205999
11 18620615 C/A 4.169961251

Table 6

Candidate genes located in associate loci of coleoptile length"

SNP位置 SNP Position 基因编号 Gene ID 基因注释 Gene annotation
Chr.03_22007803 Os03g0595600 谷胱甘肽转移酶 Glutathione transferase
Chr.03_22007803 Os03g0592500 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein
Chr.06_29822164 Os06g0704300 锌指CCCH结构域的蛋白质 Zinc finger CCCH domain-containing protein
Chr.08_15689664 Os08g0198200 天冬氨酸蛋白酶CDR1 Aspartic proteinase CDR1
Chr.08_18019270 Os08g0380100 含有BURP结构域的蛋白质 BURP domain-containing protein
Chr.10_17384859 Os10g0466500 锌指蛋白CONSTANS-LIKE 4 Zinc finger protein CONSTANS-LIKE 4
Chr.11_10896433 Os11g0293900 植物含UBX结构域的蛋白质 Plant UBX domain-containing protein

Fig. 5

Expression heatmap of candidate genes"

Fig. 6

Expression profile of candidate genes"

[1] 刘贵富, 陈明江, 李明, 吕慧颖, 葛毅强, 魏珣, 杨维才 . 水稻育种行业创新进展. 植物遗传资源学报, 2018,19(3):416-429.
LIU G F, CHEN M J, LI M, LU H Y, GE Y Q, WEI X, YANG W C . Innovation progress in rice breeding industry. Journal of Plant Genetic Resources, 2018,19(3):416-429. (in Chinese)
[2] 章孟臣 . 水稻耐淹发芽相关性状的全基因组关联分析[D]. 北京: 中国农业科学院, 2016.
ZHANG M C . Genome-wide association analysis of traits related to flooding and germination in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[3] YAMAUCHI M, AGUILAR A M, VAUGHAN D A, SESHU D V . Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 1993,67(3):177-184.
[4] YAMAUCHI M, BISWAS J K . Rice cultivar difference in seedling establishment in flooded soil. Plant & Soil, 1997,189(1):145-153.
doi: 10.1023/A:1004250901931
[5] 陈孙禄, 王俊敏, 潘佑找, 马健阳, 张建辉, 张红生, 滕胜 . 水稻萌发耐淹性的遗传分析. 植物学报, 2012,47(1):28-35.
CHEN S L, WANG J M, PAN Y Z, MA J Y, ZHANG J H, ZHANG H S, TENG S . Genetic analysis of rice germination tolerance to flooding. Acta Botanica Sinica, 2012,47(1):28-35. (in Chinese)
[6] SEPTININGSIH E M ,SENDON P M D,SANCHEZ D L,ISMAIL A M,MACKILL D J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics, 2013,126(5):1357-1366.
doi: 10.1007/s00122-013-2057-1 pmid: 23417074
[7] LEE H S, SASAKI K, KANG J W, SATO T, SONG W Y, AHN S N . Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice. Rice, 2017,10(1):32.
doi: 10.1186/s12284-017-0173-2 pmid: 28710696
[8] MACKAY I, POWELL W . Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007,12(2):57-63.
doi: 10.1016/j.tplants.2006.12.001 pmid: 17224302
[9] MACKAY T F C, STONE E A, AYROLES J F . The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 2009,10(8):565-577.
doi: 10.1038/nrg2612 pmid: 19584810
[10] BAI X, ZHAO H, HUANG Y, XIE W B, HAN Z M, ZHANG B, GUO Z L, YANG L, DONG H J, XUE W Y, LI G W, HU G, HU Y, XING Y Z . Genome-wide association analysis reveals different genetic control in panicle architecture between and rice. Plant Genome, 2016,9(2).
doi: 10.3835/plantgenome2015.11.0115
[11] HAN Z, ZHANG B, ZHAO H, AYAAD M, XING Y Z . Genome-wide association studies reveal that diverse heading date genes respond to short and long day lengths between indica and japonica rice. Frontiers in Plant Science, 2016,7:1270.
doi: 10.3389/fpls.2016.01270 pmid: 5002401
[12] MAGWA R A, ZHAO H, XING Y . Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.). BMC Genetics, 2016,17(1):28.
doi: 10.1186/s12863-016-0340-2 pmid: 4727300
[13] MAGWA R A, ZHAO H, YAO W, XIE W, YANG L, BAI X . Genomewide association analysis for awn length linked to the seed shattering gene qSH1 in rice . Journal of Genetics, 2016,95(3):1-8.
doi: 10.1007/s12041-016-0679-1 pmid: 27659335
[14] ZHOU P B, XIE W B, HUSSIAN S, LI Y, XIA D, ZHAO H, SUN S, CHEN J, YE H, HOU J, ZHAO D, GAO G, ZHANG Q, WANG G, LIAN X, XIAO J, YU S, LI X, HE Y . Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Molecular Plant, 2017,10(4):634-644.
doi: 10.1016/j.molp.2017.01.001 pmid: 28110091
[15] 王洋 . 适于直播的水稻种质资源筛选及种子活力和幼苗耐缺氧能力优异等位变异的发掘[D]. 南京: 南京农业大学, 2009.
WANG Y . Screening of rice germplasm resources suitable for direct seeding and excavation of seed vigor and excellent allergic variation of seedling tolerance to hypoxia[D]. Nanjing: Nanjing Agricultural University, 2009. ( in Chinese)
[16] HSU S K, TUNG C W . Genetic mapping of anaerobic germination- associated QTLs controlling coleoptile elongation in rice. Rice, 2015,8(1):1-12.
doi: 10.1186/s12284-015-0072-3 pmid: 4689725
[17] LEE K W, CHEN P W, LU C A, CHEN S, HO Y H, YU S M . Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Science Signaling, 2009, 2(91): ra61.
doi: 10.1126/scisignal.2000333 pmid: 19809091
[18] BI F C, ZHANG Q F, LIU Z, FANG C, LI J, SU J B, GREENBERG J T, WANG H B, YAO N . A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLoS ONE, 2011,6(3):e18079.
[19] SUGIYAMA K, HAYAKAWA T, KUDO T, ITO T, YAMAYA T . Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant & Cell Physiology, 2004,45(12):1768-1778.
doi: 10.1093/pcp/pch199 pmid: 15653795
[20] MOEDER W, YOSHIOKA K . CNGCs break through-A rice cyclic nucleotide-gated channel paves the way for pollen tube growth. PLoS Genetics, 2017,13(11):e1007066.
doi: 10.1371/journal.pgen.1007066 pmid: 5708612
[21] MORI Y, YAMAMOTO T, SAKAGUCHI N, ISHIBASHI T, FURUKAWA T, KADOTA Y, KUCHITSU K, HASHIMOTO J, KIMURA S, SAKAGUCHI K . Characterization of the origin recognition complex (ORC) from a higher plant, rice (Oryza sativa L.). Gene, 2005,353(1):23-30.
doi: 10.1016/j.gene.2005.03.047 pmid: 15939553
[22] MIYOSHI K, AHN B O, KAWAKATSU T, ITO Y, ITOH J, NAGATO Y, KURATA N . PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(3):875-880.
doi: 10.1073/pnas.2636936100 pmid: 321774
[23] ZENG L R, QU S, BORDEOS A, YANG C, BARAOIDAN M, YAN H, XIE Q, NAHM B H, LEUNG H, WANG G L . Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/ armadillo repeat protein endowed with E3 ubiquitin ligase activity. The Plant Cell, 2004,16(10):2795-2808.
doi: 10.1105/tpc.104.025171 pmid: 15377756
[24] LIANG Y, ZHAO X, JONES A M, GAO Y . G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis. Plant Science, 2018,274:129-136.
doi: 10.1016/j.plantsci.2018.05.019
[25] SINGH G, SARKAR N K, GROVER A . Mapping of domains of heat stress transcription factor OsHsfA6a responsible for its transactivation activity. Plant Science, 2018,274:80-90.
[26] ZHU S, GAO F, CAO X, CHEN M, YE G, WEI C, LI Y . The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiology, 2005,139(4):1935-1945.
doi: 10.1104/pp.105.072306 pmid: 16299167
[27] YONG H C, KIM C Y, MIN C K, KIM C Y, KIM M C, KIM I H, PARK C Y, KIM J C, PARK B O, KOO S C, YOON H W, CHUNG W S, LIM C O, LEE S Y, CHO M J . BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis- related gene expression by activation of a transcription factor. Plant Physiology, 2003,132(4):1961-1972.
[28] ZHONG R, CUI D, PHILLIPS D R, YE Z H . A novel rice xylosyltransferase catalyzes the addition of 2-o-xylosyl side chains onto the xylan backbone. Plant & Cell Physiology, 2018,59(3):554.
doi: 10.1093/pcp/pcy003 pmid: 29325159
[29] CHEUNG M Y, XUE Y, ZHOU L, LI M W, SUN S S, LAM H M . An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. Journal of Biological Chemistry, 2010,285(48):37359-37369.
doi: 10.1074/jbc.M110.172080 pmid: 20876569
[30] 蒋彭炎 . 直播稻的生育特点和增产对策. 中国稻米, 1996(4):30-33.
JIANG P Y . Fertility characteristics and yield increase strategies of direct seeding rice.China Rice, 1996(4):30-33. (in Chinese)
[31] 侯名语, 江玲, 王春明, 万建民 . 水稻种子低氧发芽力的QTL定位和上位性分析. 中国水稻科学, 2004,18(6):483-488.
HOU M Y, JIANG L, WANG C M, WAN J M . QTL mapping and epistasis analysis of hypoxia germination of rice seeds. Chinese Journal of Rice Science, 2004,18(6):483-488. (in Chinese)
[32] ANGAJI S A, SEPTININGSIH E M, MACKILL D J, ISMAIL A M . QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 2010,172(2):159-168.
doi: 10.1007/s10681-009-0014-5
[33] 何龙生 . 水稻种子活力测定方法的初步研究[D]. 杭州: 浙江农林大学, 2018.
HE L S . Preliminary study on the determination method of rice seed vigor[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2018. ( in Chinese)
[34] 曹栋栋, 阮晓丽, 詹艳, 石瑛琪 . 杂交水稻种子不同活力测定方法与其田间成苗率的相关性. 浙江农业学报, 2014,26(5):1145-1150.
CAO D D, YAN X L, ZHAN Y, SHI Y Q . Correlation between different vigor determination methods of hybrid rice seeds and their seedling rate in field. Journal of Zhejiang Agricultural Sciences, 2014,26(5):1145-1150. (in Chinese)
[35] 张淼, 赵畅, 李法莲, 邵群 . 具有AP2结构域的转录因子家族的研究进展. 科技信息, 2007(21):342-345.
ZHANG M, ZHAO C, LI F L, SHAO Q . Research progress of transcription factor family with AP2 domain.Science and Technology Information, 2007(21):342-345. (in Chinese)
[36] 朱彬彬, 崔百明, 向本春 . 番茄叶绿素a/b结合蛋白基因cab-1a的克隆与定位. 江苏农业科学, 2017,45(14):20-23.
ZHU B B, CUI B M, XIANG B C . Cloning and localization of tomato chlorophyll a/b binding protein gene cab-1a. Jiangsu Agricultural Sciences, 2017,45(14):20-23. (in Chinese)
[37] 米子岚, 钟活权, 江年琼, 唐玉林 . BURP蛋白家族与植物对非生物胁迫的响应.中国细胞生物学学报, 2015(9):1302-1308.
MI Z L, ZHONG H Q, JIANG N Q, TANG Y L . Response of BURP protein family and plants to abiotic stress. Chinese Journal of Cell Biology, 2015(9):1302-1308. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!