Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2499-2509.doi: 10.3864/j.issn.0578-1752.2021.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources

YANG Tao(),HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei()   

  1. College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi 830052
  • Received:2020-11-12 Accepted:2021-01-08 Online:2021-06-16 Published:2021-06-24
  • Contact: WenWei GAO E-mail:yngtao25@163.com;280594606@qq.com

Abstract:

【Objective】The study is an attempt to the genetic diversity relationship of phenotypic traits of Sea-island cotton germplasm and screen Sea-island cotton germplasm with excellent traits, which provides a theoretical basis for in depth research on quality traits of Sea-island cotton.【Method】Genetic diversity analysis and comprehensive evaluation were carried out with 12 phenotypic traits of 175 Sea-island cotton. Principal component analysis, weights and the use of membership function to generate comprehensive evaluation value D for comprehensive evaluation of Sea-island cotton germplasm resources.【Result】The results (showed that) Sea-island cotton have rich types and consistent with the range of phenotypic traits was 6.40%-28.10%,which the resource genetic diversity index is 1.97 to 2.05, the diversity analysis significant differences in genetic diversity of Sea-island cotton resources between Xinjiang and outside Xinjiang (P<0.05); 3 comprehensive factors were converted from principal component analysis 12 traits, which the contribution rates are: 49.34%, 18.03% and 10.63%, with a total contribution rate of 78%; The larger load of the first principal component is the number of envoys, the height of envoys, the number of effective branches, the number of bolls, the number of effective bolls, the weight of seed cotton per plant and the weight of lint per plant, representing growth and effective yield factors; The larger load of the second component is lint, single boll seed cotton weight and single boll lint weight, which represents the single boll yield factor; The third component load is the plant height and the number of boll shedding, representing plant height and boll shedding factor; The statistical analysis of Sea-island cotton resources evident that the difference was not significant in extreme germplasm at domestic , and there are more materials with medium-performing Sea-island cotton resources in China. In China, the proportion of extreme germplasm outside Xinjiang is relatively high, and the difference was not significant between Xinjiang and foreign intermediate germplasm; Cluster analysis 175 Sea-island cotton resources then divided into 4 groups. Group I has discrepancy germplasm with short stalk of gravity, low yield; Group II has high lint percent and extensive yield of lint yield per plant, and has higher potential yielding germplasm; Group III has perferable comprehensive traits and excellent germplasm; group IV is short-stalked, high-lint, and extremely particular germplasm; comprehensive evaluation screens out 2 excellent comprehensive traits varieties XH30 and 270; By stepwise regression screening Sea-island cotton germplasm screening phenotype of five key indicators (plant height first node height, number of fruit branches, lint weight per boll and cotton weight per seed). 【Conclusion】The genetic diversity of the tested Sea-island cotton germplasm resources is relatively high, but the genetic diversity is low. The plant height, fruit branch number and lint yield per plant are normally distributed among the genotypes, those left traits are skewed. The tested germplasm divided into 4 categories; Plant height, height of the first node, fruit branch number, yield of single boll Lint yield, seed cotton yield per plant, the research provides a theoretical reference to selection of excellent germplasm for sea-island cotton germplasm resources that 5 indicators can be used as comprehensive indicators for the evaluation of core germplasm.

Key words: Gossypium barbadense, germplasm resources, phenotypic traits, genetic diversity, comprehensive evaluation

Table 1

Descriptive indicators of main agronomic traits"

性状Trait 变幅Range 均值±标准差Mean±SD 偏度Skewness 峰度Kurtosis 变异系数CV (%)
PH 50.18—110.57 75.33±12.97 0.501 -0.317 17.22
FNB 7.38—14.59 9.92±1.04 0.629 1.776 10.47
FBN 8.27—19.39 12.13±2.06 0.854 0.727 16.95
EFBN 2.96—13.77 6.85±1.80 0.846 1.511 26.31
BN 5.54—21.50 10.89±2.62 0.693 1.077 24.02
EBN 3.16—14.17 7.46±1.77 0.606 1.45 23.77
NOBD 5.97—16.56 9.42±1.56 1.073 3.235 16.52
YOSBSC 2.11—3.99 3.00±0.26 0.118 1.274 8.63
YOSBLY 0.64—1.32 0.97±0.11 0.168 0.844 11.27
LP 0.27—0.38 0.32±0.02 0.032 0.254 6.40
SCYPP 9.22—45.10 22.59±5.97 0.654 1.252 26.42
LYPP 2.91—14.78 7.27±2.04 0.617 0.903 28.10

Fig. 1

Genetic diversity of Sea-island cotton A: Genetic diversity index of 12 quantitative traits in Sea-island cotton; B: Genetic diversity index of quantitative traits in Sea-island cotton in China and abroad. PH: Plant height; FNB: First node of fruit branch; FBN: Fruit branch number; EFBN: Effective fruit branch number; BN: Boll number; EBN: Effective boll number; NOBD: Number of boll drop; YOSBSC: Yield of Single boll seed cotton; YOSBLY: Yield of single boll lint yield; LP: Lint percent; SCYPP: Seed cotton yield per plant; LYPP: Lint yield per plant. The same as below"

Table 2

The eigenvalues and eigenvectors of the first 4 principal components"

特征向量
Eigenvectors
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
PH 0.63 -0.07 0.55
FNB 0.59 -0.18 0.47
FBN 0.79 -0.34 0.03
EFBN 0.90 -0.26 -0.13
BN 0.86 -0.28 -0.15
EBN 0.93 -0.15 -0.15
NOBD -0.14 0.19 0.66
YOSBSC 0.38 0.71 0.29
YOSBLY 0.39 0.90 0.00
LP 0.20 0.65 -0.38
SCYPP 0.95 0.09 -0.05
LYPP 0.93 0.24 -0.16
特征根 Eigenvalues 5.92 2.16 1.28
贡献率 Contribution rate (%) 49.34 18.03 10.63
累积贡献率
Cumulative contribution rate (%)
49.34 67.37 78.00

Fig. 2

Correlation of 12 quantitative traits"

Fig. 3

Cluster analysis of 175 Sea-island cotton"

Table 3

Phenotypic characteristics of 4 group in Sea-island cotton resources"

类群 Group PH FNB FBN EFBN BN EBN NOBD YOSBSC YOSBLY LP SCYPP LYPP
63.40d 9.41b 11.18b 6.08c 9.66b 6.63b 9.18a 2.92b 0.94b 0.32a 19.51b 6.31b
86.30b 10.37a 13.17a 7.71b 12.35a 8.68a 9.87a 3.14a 1.03a 0.33a 27.38a 8.83a
99.56a 11.02a 14.37a 9.12a 14.16a 9.26a 9.11a 3.06ab 0.96a 0.31a 28.49a 8.81a
75.15c 9.89a 11.90b 6.47c 10.35b 7.08b 9.55a 2.99b 0.98a 0.33a 21.33b 6.94b

Table 4

Evaluation results of Sea-island cotton germplasm resources in different regions"

地域
Region
劣Bad 中等Middle 优Good
个数
Number
占比
Proportion (%)
个数
Number
占比
Proportion (%)
个数
Number
占比
Proportion (%)
国外Foreign 30 17.14 38 21.71 4 2.29
中国China 35 20.00 61 34.86 7 4.00
中国新疆Xinjiang, China 10 9.71 33 32.04 4 3.88
中国疆外Outside Xinjiang, China 25 24.27 28 27.18 3 2.91

Table 5

Correlation between phenotypic traits and D-value"

性状
Trait
D
D-value
性状
Trait
D
D-value
PH 0.68*** YOSBLY 0.63***
FNB 0.59*** SCYPP 0.91***
FBN 0.65***
[1] 喻胡容. 新疆自育海岛棉品种纤维品质和产量性状的遗传多样性与全基因组关联分析[D]. 杭州: 浙江大学, 2019.
YU H R. Genetic diversity and genome-wide association study on fiber quality and yield traits of derived Sea-island cotton cultivars in Xinjiang[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[2] SU X, ZHU G, SONG X, XU H, GUO W. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits in Sea-island cotton (Gossypium barbadense). BMC Plant Biology, 2020,20(1):289-300.
doi: 10.1186/s12870-020-02502-4
[3] SHI Y, LI W, LI A, GE R, ZHANG B, LI J, LIU G, LI J, LIU A, SHANG H. Constructing a high-density linkage map for Gossypium hirsutum×Gossypium barbadense and identifying QTLs for lint percentage. Journal of Integrative Plant Biology, 2015,57(5):450-467.
doi: 10.1111/jipb.12288
[4] 孔庆平. 我国海岛棉生产概况及比较优势分析. 中国棉花, 2002,29(12):19-23.
KONG Q P. General situation of sea-island cotton production in my country and analysis of comparative advantage. China Cotton, 2002,29(12):19-23. (in Chinese)
[5] 陈振, 陈平, 张巨松, 阿不都卡地尔·库尔班, 林涛, 郭仁松. 短期高温胁迫对海岛棉不同部位果枝产量形成的影响. 中国生态农业学报, 2019,27(9):1375-1384.
CHEN Z, CHEN P, ZHANG J S, ABUDUKADIER K, LIN T, GUO R S. Effects of short-term heat stress on Sea-island cotton yield formation of different fruiting branches. Chinese Journal of Eco-Agriculture, 2019,27(9):1375-1384. (in Chinese)
[6] 田立文, 崔建平, 郭仁松, 徐海江, 林涛, 刘志清, 宁新民. 新疆长绒棉生产历史回顾与现状分析. 安阳: 中国农学会棉花分会, 2016: 37-43.
TIAN L W, CUI J P, GUO R S, XU H J, LIN T, LIU Z Q, NING X M. Research on history review and actuality analysis of ELS cotton production in Xinjiang. Anyang: Cotton Branch of China Asssociation of Agricultual Science Societies, 2016: 37-43. (in Chinese)
[7] 兴旺, 崔平, 潘荣, 苏宝忠. 不同国家甜菜种质资源遗传多样性研究. 植物遗传资源学报, 2018,19(1):76-86.
XING W, CUI P, PAN R, SU B Z. Genetic diversity of sugar beet from different countries. Journal of Plant Genetic Resources, 2018,19(1):76-86. (in Chinese)
[8] 徐濉喜, 王旭文, 田琴, 孔宪辉, 刘丽, 司爱君, 王娟, 余渝. 新疆早熟陆地棉种质资源遗传多样性及纤维品质性状SSR关联分析. 棉花学报, 2020,32(3):233-246.
XU S X, WANG X W, TIAN Q, KONG X H, LIU L, SI A J, WANG J, YU Y. Genetic diversity and association analysis of fiber quality traits with SSR markers in germplasm resources of early maturity upland cotton in Xinjiang. Cotton Science, 2020,32(3):233-246. (in Chinese)
[9] 何陈述, 郭小平. 长江流域棉花综合群体株系的遗传多样性分析. 植物遗传资源学报, 2015,16(2):385-394.
HE C S, GUO X P. Genetic diversity analysis of the lines derived from cotton comprehensive population in Yangtze River Basin. Journal of Plant Genetic Resources, 2015,16(2):385-394. (in Chinese)
[10] 曾艳华, 谢和霞, 江禹奉, 周锦国, 谢小东, 周海宇, 谭贤杰, 覃兰秋, 程伟东. 基于SNP标记的爆裂玉米农家品种遗传多样性. 作物杂志, 2020,198(5):65-70.
ZENG Y H, XIE H X, JIANG Y F, ZHOU J G, XIE X D, ZHOU H Y, TAN X J, QIN L Q, CHENG W D. Genetic diversity of popcorn landraces based on SNP markers. Crops, 2020,198(5):65-70. (in Chinese)
[11] 赵孟良, 王丽慧, 任延靖, 张敦宇, 付坚, 程在全. 中国南方地区水稻资源SSR指纹数据库的构建及遗传多样性分析. 分子植物育种, 2020,19(1):6502-6517.
ZHAO M L, WANG L H, REN Y J, ZHANG D Y, FU J, CHENG Z Q. Analysis of rice resources in Southern China. Molecular Plant Breeding, 2020,19(1):6502-6517. (in Chinese)
[12] 吴儒刚, 裴艳婷, 张超, 范业泉, 靳义荣, 刘鹏, 贾德新, 戴忠民. 基于盐胁迫的小麦农艺性状多样性分析及评价. 麦类作物学报, 2019,39(9):1029-1037.
WU R G, PEI Y T, ZHANG C, FAN Y Q, JIN Y R, LIU P, JIA D X, DAI Z M. Analysis and evaluation of agronomic character diversity of wheat based on salt stress. Journal of Triticeae Crops, 2019,39(9):1029-1037. (in Chinese)
[13] 刘海忠, 宋炜, 王宝强, 王江浩, 张全国, 张动敏. 李兴华, 魏剑锋, 李荣改. 120份欧美玉米自交系的遗传多样性分析. 植物遗传资源学报, 2018,19(4):676-684.
LIU H Z, SONG W, WANG B Q, WANG J H, ZHANG Q G, ZHANG D M, LI X H, WEI J F, LI R G. Genetic diversity analysis of 120 European and American maize inbred lines. Journal of Plant Genetic Resources, 2018,19(4):676-684. (in Chinese)
[14] 陈红霖, 胡亮亮, 杨勇. 郝曦煜, 李姝彤, 王素华, 王丽侠, 程须珍. 481份国内外绿豆种质农艺性状及豆象抗性鉴定评价及遗传多样性分析. 植物遗传资源学报, 2014,40(4):739-744.
CHEN H L, HU L L, YANG Y, HAO X Y, LI S T, WANG S H, WANG L X, CHENG X Z. Evaluation and genetic diversity analysis of agronomic traits and bruchid resistance using 481 worldwide Mungbean germplasms. Journal of Plant Genetic Resources, 2014,40(4):739-744. (in Chinese)
[15] 王丽侠, 程须珍, 王素华, 朱旭, 刘振兴. 中国绿豆核心种质资源在不同环境下的表型变异及生态适应性评价. 作物学报, 2014,40(4):739-744.
WANG L X, CHENG X Z, WANG S H, ZHU X, LIU Z X. Adaptability and phenotypic variation of agronomic traits in mungbean core collection under different environments in China. Acta Agronomica Sinica, 2014,40(4):739-744. (in Chinese)
[16] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
DU X M, ZHOU Z L. Cotton germplasm resource description specification and data standard. Beijing: China Agricultural Press, 2005. (in Chinese)
[17] 陈光, 杜雄明. 我国陆地棉基础种质表型性状的遗传多样性分析. 西北植物学报, 2006,26(8):135-142.
CHEN G, DU X M. Genetic diversity of basal germplasm phenotypes in upland cotton in China. Acta Botanica Boreali-Occidentalia Sinica, 2006,26(8):135-142. (in Chinese)
[18] 李海明, 刘绍东, 张思平, 李阳, 陈静, 马慧娟, 沈倩, 赵新华, 李存东, 庞朝友. 陆地棉种质资源花铃期抗旱性鉴定及抗旱指标筛选. 植物遗传资源学报, 2019,20(3):102-116.
LI H M, LIU S D, ZHANG S P, LI Y, CHEN J, MA H J, SHEN Q, ZHAO X H, LI C D, PANG C Y. Identification and indices screening of drought tolerance at flowering and boll setting stage in upland cotton germplasm resources. Journal of Plant Genetic Resources, 2019,20(3):102-116. (in Chinese)
[19] 赵璐, 杨治伟, 部丽群, 田玲, 苏梅, 田蕾, 张银霞, 杨淑琴, 李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价. 作物杂志, 2018,182(1):25-34.
ZHAO L, YANG Z W, BU L Q, TIAN L, SU M, TIAN L, ZHANG Y X, YANG S Q, LI P F. Phenotypic genetic diversity and comprehensive evaluation of rice germplasm resources in Ningxia and Xinjiang. Crops, 2018,182(1):25-34. (in Chinese)
[20] 王瑞雄. 菊芋种质资源耐盐性筛选及遗传多样性分析[D]. 兰州: 兰州大学, 2015.
WANG R X. Salt tolerance screening and genetic diversity analysis of Helianthus tuberosus[D]. Lanzhou: Lanzhou University, 2015. (in Chinese)
[21] MANCUSO F, HORAN W P, KERN R S. Social cognition in psychosis: multidimensional structure, clinical correlates, and relationship with functional outcome. Schizophrenia Research, 2011,125(2):143-151.
doi: 10.1016/j.schres.2010.11.007
[22] YUAN Y C, XING H X, ZENG W G. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L. at the germination stage. BMC Plant Biology, 2019,19(1):394-405.
doi: 10.1186/s12870-019-1989-2
[23] 吕伟, 刘文萍, 任果香, 文飞, 韩俊梅, 王若鹏. 不同浓度生根粉对芝麻生长及产量的影响. 作物杂志, 2017,180(5):100-105.
LÜ W, LIU W P, REN G X, WEN F, HAN J M, WANG R P. Phenotypic diversity analysis of sesame germplasm resources. Crops, 2017,180(5):100-105. (in Chinese)
[24] 马麒, 宁新柱, 李吉莲, 陈红, 余渝, 林海. 基于表型和SSR标记筛选海岛棉优异种质资源. 棉花学报, 2020,32(2):91-101.
MA Q, NING X Z, LI J L, CHEN H, YU Y, LIN H. Mining elite sea-island cotton germplasm based on phenotyping and SSR markers. Cotton Science, 2020,32(2):91-101. (in Chinese)
[25] 艾先涛, 李雪源, 王俊铎, 郑巨云, 沙红, 吐尔逊江, 多力坤, 莫明. 北疆陆地棉育成品种表型性状遗传多样性分析. 分子植物育种, 2011,9(1):120-129.
AI X T, LI X Y, WANG J D, ZHENG J Y, SHA H, TUERXUN JIANG, DUO L K, MO M. Genetic diversity on agronomic phenotypes in upland cotton varieties of north Xinjiang area. Molecular Plant Breeding, 2011,9(1):120-129. (in Chinese)
[26] 谢元元, 曲延英, 陈全家, 郑炜佳, 柴颜军, 孔杰. 新疆海岛棉育成品种表型性状的遗传多样性分析. 新疆农业科学, 2013,50(12):2165-2171.
XIE Y Y, QU Y Y, CHEN Q J, ZHENG W J, CHAI Y J, KONG J. Genetic diversity analysis of phenotypic traits of the self-cultivated sea island cotton in Xinjiang. Xinjiang Agricultural Sciences, 2013,50(12):2165-2171. (in Chinese)
[27] 李金荣, 王小国, 朱永军, 张西英 . 张薇. 利用SSR标记对14个海岛棉品种的聚类分析. 新疆农业科学, 2009,46(2):237-241.
LI J R, WANG X G, ZHU Y J, ZHANG X Y, ZHANG W. Cluster analysis on 14 Sea -Island Cotton by SSRs. Xinjiang Agricultural Sciences, 2009,46(2):237-241. (in Chinese)
[28] 潘兆娥, 何守朴, 贾银华, Larisa P. Podolnaya, 孙君灵, 王立如, 杜雄明. 引进海岛棉种质的SSR遗传多样性分析. 植物遗传资源学报, 2014,15(2):399-404.
PAN Z E, HE S P, JIA Y H, LARISA P P, SUN J L, WANG L R, DU X M. Genetic diversity analysis of the sea island cotton introduced using SSR markers. Journal of Plant Genetic Resources, 2014,15(2):399-404. (in Chinese)
[29] 杨继. 植物种内形态变异的机制及其研究方法. 武汉植物学研究, 1991,9(2):185-195.
YANG J. Infraspecific variation in plant and the exploring methods. Journal of Wuhan Botany Research, 1991,9(2):185-195. (in Chinese)
[30] 赵檀, 金柳艳, 李远, 安浩军, 邢志华, 王睿辉, 刘桂茹, 温树敏. 基于全基因组的河北省小麦品种遗传多样性分析. 植物遗传资源学报, 2015,16(1):45-53.
ZHAO T, JIN L Y, LI Y, AN H J, XING Z H, WANG R H, LIU G R, WEN S M. Genetic diversity analysis for bread wheat (Triticum aestivum L.) cultivars in Hebei Province based on genome-wide SSR markers. Journal of Plant Genetic Resources, 2015,16(1):45-53. (in Chinese)
[31] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻. 主要胡麻品种抗旱相关指标分析及综合评价. 核农学报, 2014,28(11):2115-2125.
LUO J J, OU Q M, YE C L, WANG F, WANG Y Z. Drought resistance comprehensive evaluation and analysis of valuation indexes of main flax cultivars. Journal of Nuclear Agricultural Sciences, 2014,28(11):2115-2125. (in Chinese)
[32] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民. 绿豆种质资源成株期抗旱性鉴定. 作物学报, 2015,41(8):1287-1294.
WANG L F, WU J, JING R L, CHENG X Z, WANG S M. Identification of Mungbean germplasm resources resistant to drought at adult stage. Acta Agronomica Sinica, 2015,41(8):1287-1294. (in Chinese)
[33] 张志仙, 何道根, 朱长志, 檀国印, 高旭. 青花菜种质资源遗传多样性的SSR分析. 浙江农业学报, 2017,31(2):228-235.
ZHANG Z X, HE D G, ZHU C Z, TAN G Y, GAO X. SSR analysis of genetic diversity of broccoli germplasm resources. Acta Agriculturae Zhejiangensis, 2017,31(2):228-235. (in Chinese)
[34] 吕伟, 韩俊梅, 文飞, 任果香, 王若鹏, 刘文萍. 不同来源芝麻种质资源的表型多样性分析. 植物遗传资源学报, 2020,21(1):234-242.
LÜ W, HAN J M, WEN F, REN G X, WANG R P, LIU W P. Phenotypic diversity analysis of sesame germplasm resources. Journal of Plant Genetic Resources, 2020,21(1):234-242. (in Chinese)
[35] 胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012,38(5):829-839.
HU B L, WAN Y, LI X, LEI J G, LUO X D, YAN W G, XIE J K. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and it’s comprehensive assessment. Acta Agronomica Sinica, 2012,38(5):829-839. (in Chinese)
[36] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-644.
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 2018,51(4):626-644. (in Chinese)
[37] 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究现状与展望. 中国农业科学, 2015,48(17):3333-3353.
LI Y, LI Y H, YANG Q W, ZHANG J P, ZHANG J M, QIU L J, WANG T Y. Genomics-based crop germplasm research: advances and perspectives. Scientia Agricultura Sinica, 2015,48(17):3333-3353. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[6] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[9] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[10] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[11] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[12] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[13] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[14] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[15] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!