Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3514-3526.doi: 10.3864/j.issn.0578-1752.2021.16.013

• HORTICULTURE • Previous Articles     Next Articles

Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits

LI JiaWei(),SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong(),CHEN SuMei,CHEN FaDi   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs/College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-09-17 Accepted:2021-02-09 Online:2021-08-16 Published:2021-08-24
  • Contact: ZhiYong GUAN E-mail:2018104101@njau.edu.cn;guanzhy@njau.edu.cn

Abstract:

【Objective】Exploring the optimal sampling method of constructing the core collection of traditional chrysanthemum varieties and the resulted core collection would help to facilitate the collection and preservation of traditional chrysanthemum germplasm resources.【Method】A collection of 2 249 traditional chrysanthemum germplasm resources, recorded in the monograph “Chinese Chrysanthemum”, were divided into eight groups according to ligulate floret color. Sixteen alternative core collections, resulted from stepwise clustering method of four overall sampling scale (5%, 10%, 15%, and 20%) and four group sampling ratio (simple ratio, logarithmic ratio, square root ratio, and diversity ratio), were compared to find the best sampling strategy for constructing core collection of traditional chrysanthemum. Consequently, the construction effects of two intra-group sampling methods (cluster and random) were further studied. The representativeness of the core collection established under the optimal method was comprehensively tested by both multiple characteristic values (minimum, maximum, mean, standard deviation, coefficient of variation, and diversity index) and evaluation parameters (percentage of mean difference, percentage of variance difference, range coincidence rate, variable rate of coefficient of variation, and phenotypic retention ratio). 【Result】According to flower color, each group showed a normal distribution, ensuring the uniformity of sampling; Both logarithmic ratio method and diversity ratio method could make the sampling number of each group more balanced, and had a corrective effect. The parameter values of the core collection constructed under the logarithmic ratio method reached the maximum, showing the optimal sampling ratio method. With the increase of the overall sampling size, the genetic diversity index showed a trend of increasing first and then decreasing, the variation rate of coefficient of variation continued decreasing, and the range of coincidence rate and phenotypic retention ratio continued increasing. When the sampling size was greater than 10%, the genetic diversity index and the variation rate of coefficient of variation decreased, while the range coincidence rate and phenotypic retention ratio increased slightly, it was concluded that the most suitable overall sampling size was 10%. The parameter values of the alternative core collection constructed by cluster sampling were larger than those by random sampling, indicating the better richness and uniformity of core collection by the cluster sampling method. The eigenvalues of the core collection were consistent with those of the original collection, and the several evaluation parameters showed the expected uniformity and abundance of the core collection, reflecting the phenotypic diversity. By supplementing the “chasing hug” trait lost by clustering and improving the two traits of inflorescence height and outer petal length, the core collection of 228 traditional chrysanthemum varieties was finally constructed, accounting for 10.14% of the original materials.【Conclusion】Based on 15 phenotypic traits of 2 249 traditional chrysanthemum varieties, the best core collection construction method was determined after systematic comparison of alternative core collections constructed by various overall sampling size, sampling ratio method and sampling method in the group, and the representativeness of the core collection was analyzed and verified. The eigenvalues and evaluation parameters showed that the core collection constructed in this study was effective and capable of representing the genetic diversity of the original traditional chrysanthemum collection.

Key words: traditional chrysanthemum, phenotypic traits, core collection, sampling strategy, evaluation parameter

Table 1

Classification and coden designation for 5 qualitative traits in Chrysanthemum morifolium"

性状Trait 赋值Assigning value
瓣型Petal type 平瓣=1,管瓣=2,匙瓣=3,桂瓣=4,畸瓣=5
Flat petal=1, Tube petal=2, Spoon petal=3, Fragrans petal=4, Deformed petal=5
舌状花色Color of ligulate floret 黄=1,白=2,粉=3,红=4,紫=5,橙=6,绿=7,双色=8
Yellow=1, White=2, Pink=3, Red=4, Purple=5, Orange=6, Green=7, Two colors=8
花抱Flower arrangement 圆抱=1,追抱=2,反抱=3,乱抱=4,露心抱=5,飞舞抱=6,自然抱=7
Round hug=1, Chase hug =2, Reverse hug=3, Random hug=4, Exposed heart hug=5, Flying hug=6, Natural hug=7
叶型Leaf type 正叶=1,深刻正叶=2,长叶=3,深刻长叶=4,圆叶=5,蓬叶=6,葵叶=7,反转叶=8,柄附叶=9
Positive leaf=1, Deep positive leaf=2, Long leaf=3, Deep long leaf=4, Round leaf=5, Fluffy leaf=6, Sunflower leaf=7, Reverse leaf=8, Stem attached leaf=9
花期Florescence 10月20日前花瓣显色=1,10月20日到11月10日花瓣显色=2,11月10日后花瓣显色=3
Petal color development before October 20=1, Petal color development from October 20 to November 10 =2, Petal color development after November 10 =3

Table 2

The group sampling plan in different sample size"

组内取样比例
Group sampling ratio
分组
Group
备选核心种质的组内比例Ratio of candidate core collections in group (%) 总体取样规模 Overall sampling size (%) 原始种质 Original germplasm
5 10 15 20 组内份数
Number of parts in group
组内比例
Ratio in group (%)
简单比例
Simple ratio
19.96 22 45 68 90 453 20.14
18.69 21 42 63 84 420 18.68
9.79 11 22 33 44 218 9.69
19.58 22 44 66 88 438 19.48
20.77 23 47 70 94 470 20.90
5.99 7 13 20 27 133 5.91
1.78 2 4 6 8 41 1.82
3.43 4 8 11 15 76 3.38
对数比例
Logarithmic ratio
14.24 16 32 48 64 453 20.14
14.24 16 32 48 64 420 18.68
12.59 14 28 43 57 218 9.69
14.24 16 32 48 64 438 19.48
14.30 16 32 48 65 470 20.90
11.52 13 26 39 51 133 5.91
8.77 10 20 29 39 41 1.82
10.09 11 23 34 46 76 3.38
平方根比例
Square root ratio
17.82 19 40 61 83 453 20.14
16.93 18 38 58 79 420 18.68
11.22 13 25 38 49 218 9.69
17.53 19 39 60 81 438 19.48
18.25 19 41 63 86 470 20.90
8.24 10 19 27 34 133 5.91
4.06 6 9 12 15 41 1.82
5.95 8 14 18 23 76 3.38
多样性比例
Diversity ratio
13.48 15 30 46 61 453 20.14
13.11 15 29 44 59 420 18.68
14.19 16 32 48 63 218 9.69
13.35 15 30 45 60 438 19.48
13.35 15 30 45 60 470 20.90
14.54 16 33 49 66 133 5.91
8.77 10 20 29 39 41 1.82
9.20 10 21 31 42 76 3.38

Table 3

The evaluation parameters of alternative core collection"

组内取样比例
Group sampling ratio
总体取样规模
Overall sampling size (%)
VR (%) CR (%) RPR (%) I
简单比例Simple ratio 5 103.578 74.924 89.344 1.271
10 101.945 84.530 95.902 1.314
15 99.331 87.961 98.361 1.291
20 98.539 89.006 99.180 1.280
对数比例Logarithmic ratio 5 107.394 80.553 93.443 1.293
10 106.406 88.110 99.180 1.318
15 104.695 89.804 99.180 1.295
20 100.796 91.469 100.000 1.280
平方根比例Square root ratio 5 105.258 69.599 91.803 1.278
10 102.956 79.792 95.902 1.289
15 99.111 83.227 96.721 1.308
20 100.422 86.230 99.180 1.283
多样性比例Diversity ratio 5 110.247 78.737 89.344 1.306
10 105.825 85.433 97.541 1.341
15 103.392 88.381 97.541 1.291
20 99.622 90.179 98.361 1.297

Table 4

The comparison of different sampling methods in group"

总体取样规模
Overall sampling size (%)
取样方式
Sampling method
VR (%) CR (%) RPR (%) I
10 随机 Random 104.327 80.537 94.262 1.281
聚类 Cluster 106.406 88.110 99.180 1.318
15 随机 Random 99.917 84.089 95.082 1.278
聚类 Cluster 104.695 89.804 99.180 1.295

Table 5

Comparison of agronomic characters between entire and primary core germplasm collection samples of traditional C. morifolium"

性状
Trait
原始种质Original collection 核心种质 Core germplasm
最小值Min 最大值Max 均值
Mean
标准差 SD 变异系数CV 多样性指数 I 最小值Min 最大值Max 均值
Mean
标准差SD 变异系数CV 多样性指数 I
植株高度 Plant height (cm) 15.5 104 42.68 11.96 28.0 1.423 18 80.5 42.81 12.08 28.2 1.434
花序直径 Inflorescence diameter (cm) 3.5 62.5 15.84 4.05 25.6 1.363 3.8 62.5 16.30 5.57 34.1 1.370
花序高度 Inflorescence height (cm) 1 34 8.63 3.38 39.1 1.420 1 27 8.76 3.72 42.5 1.456
舌状花瓣数 Number of ligulate florets 22 1339 331.44 155.59 46.9 1.269 22 1339 347.60 176.78 50.9 1.253
外层瓣长 Outer petal length (cm) 0.9 25 8.54 2.42 28.4 1.428 0.9 17.5 8.55 2.50 29.2 1.482
外层瓣宽 Outer petal width (cm) 0.1 6.8 0.68 0.52 76.2 0.894 0.1 6.3 0.64 0.57 87.9 0.880
花心直径 Flower core diameter (cm) 0 8.1 1.44 0.99 68.7 1.392 0 4.9 1.40 0.97 69.5 1.433
管状花瓣数 Number of tubular florets 0 830 125.02 119.21 95.4 1.289 0 565 132.08 129.68 98.2 1.349
叶长 Leaf length (cm) 0.8 25.5 10.59 2.92 27.6 1.356 0.8 25.5 10.67 3.41 32.0 1.338
叶宽 Leaf width (cm) 0.2 14.7 5.61 1.70 30.3 1.358 0.5 12.5 5.65 1.81 32.1 1.334
瓣型 Petal type 1 5 2.14 0.94 43.7 1.239 1 5 2.14 0.91 42.7 1.233
舌状花色 Color of ligulate floret 1 8 3.44 1.87 54.4 1.863 1 8 4.22 2.24 53.0 2.067
花抱 Flower arrangement 1 7 3.73 2.65 71.1 1.412 1 7 4.23 2.63 62.3 1.417
叶型 Leaf type 1 8 2.86 0.95 33.2 0.926 1 8 2.86 1.10 38.4 1.021
花期 Florescence 1 3 2.35 0.49 20.6 0.674 1 3 2.35 0.50 21.1 0.700

Table 6

The evaluation parameters, t-test and F-test of traits of core collection and original collection"

性状 Trait CR (%) VR (%) RPR (%) Pt PF
植株高度Plant height (cm) 70.621 100.665 100 0.757 0.867
花序直径Inflorescence diameter (cm) 99.492 133.403 100 0.227 0.036*
花序高度Inflorescence height (cm) 78.788 108.631 100 0.580 0.170
舌状花瓣数Number of ligulate florets 100.000 108.337 100 0.261 0.552
外层瓣长 Outer petal length (cm) 68.880 102.986 100 0.949 0.723
外层瓣宽 Outer petal width (cm) 92.537 115.378 100 0.252 0.619
花心直径 Flower core diameter (cm) 60.494 101.133 100 0.567 0.988
管状花瓣数 Number of tubular florets 68.072 102.965 100 0.434 0.046*
叶长 Leaf length (cm) 100.000 116.065 100 0.508 0.009*
叶宽 Leaf width (cm) 82.759 105.701 100 0.760 0.589
瓣型 Petal type 100.000 97.647 100 0.968 0.177
舌状花色 Color of ligulate floret 100.000 97.558 100 0.000* 0.000*
花抱 Flower arrangement 100.000 87.548 85.71 0.007* 0.181
叶型 Leaf type 100.000 115.595 100 0.932 0.119
花期 Florescence 100.000 102.474 100 0.972 0.517

Table 7

The core collection of traditional C. morifolium varieties based on phenotypic traits"

序号
Number
品种名称
Variety denomination
序号
Number
品种名称
Variety denomination
序号
Number
品种名称
Variety denomination
1 胭脂牡丹 Yanzhimudan 39 白凤 Baifeng 77 黄莺蝶 Huangyingdie
2 碧玉丝 Biyusi 40 金牡丹 Jinmudan 78 紫云英 Ziyunying
3 金峰铃 Jinfengling 41 黄昏灯照 Huanghundengzhao 79 粉刺松针 Fencisongzhen
4 回旋激浪 Huixuanjilang 42 送金波 Songjinbo 80 琼楼玉宇 Qionglouyuxu
5 日本红星 Ribenhongxing 43 天边柳色 Tianbianliuse 81 孔雀开屏 Kongquekaiping
6 粉牡丹 Fengmudan 44 油田之夜 Youtianzhiye 82 南江玉笛 Nanjiangyudi
7 紫玉玲珑 Ziyulinglong 45 天宫袍 Tiangongpao 83 绿衣使者 Lvyishizhe
8 白玉环 Baiyuhuan 46 红凤更毛 Hongfenggengmao 84 春艳 Chunyan
9 绝代佳人 Juedaijiaren 47 金重玉楼 Jinchongyulou 85 玉色狮子 Yuseshizi
10 娇凤 Jiaofeng 48 朝阳 Zhaoyang 86 玉翎管 Yulingguan
11 红灯明 Hongdengming 49 雪青针 Xueqingzhen 87 久米の遨 Jiuminoao
12 百合 Baihe 50 连环佩 Lianhuanpei 88 皓月 Haoyue
13 白鸥 Baiou 51 绿扬春 Lvyangchun 89 紫霞装 Zixiazhuang
14 粉霞 Fengxia 52 竹露 Zhulu 90 粉线玉珠 Fenxianyuzhu
15 梅光照眼 Meiguangzhaoyan 53 赤龙怒鬣 Chilongnulie 91 金黄袈裟 Jinhuangjiasha
16 曙光 Shuguang 54 金狮 Jinshi 92 金雅冠 Jinyaguan
17 玉环宝盖 Yuhuanbaogai 55 五彩凤 Wucaifeng 93 粉荷莲Fenhelian
18 峨嵋晴雪 Emeiqingxue 56 醉玉环 Zuiyuhuan 94 玉波 Yubo
19 乳鹅黄 Ruehuang 57 梅花点雪 Meihuadianxue 95 月姬报晓 Yuejibaoxiao
20 苍龙卧 Canglongwo 58 金狮舞环 Jinshiwuhuan 96 金龙爪 Jinlongzhao
21 嫩江春色 Nenjiangchunse 59 彩练舞空 Cailianwukong 97 金龙吐珠 Jinlongtuzhu
22 翡翠盘 Feicuipan 60 紫凤仙衣 Zifengxianyi 98 锦鸡红翎 Jinjihongling
23 小金背红 Xiaojinbeihong 61 金珠双辉 Jinzhushuanghui 99 粉针钩环 Fenzhengouhuan
24 夕阳霞辉 Xiyangxiahui 62 超绿云 Chaolvyun 100 炼金 Lianjin
25 白雪公主 Baixuegongzhu 63 玉桃荷 Yutaohe 101 珍珠连环 Zhenzhulianhuan
26 深粉荷花 Shenfenhehua 64 白凤尾 Baifengwei 102 金鹏展翅 Jinpengzhanchi
27 金丝蟠桃 Jinsipantao 65 雪原英俊 Xueyuanyingjun 103 钟山风雨 Zhongshanfengyu
28 渔娘蓑衣 Yuniangsuoyi 66 红日 Hongri 104 玉管银台 Yuguanyintai
29 念奴娇 Niannujiao 67 艳紫袍 Yanzipao 105 红雀舌 Hongqueshe
30 骏马红棕 Junmahongzong 68 春水绿波 Chunshuilvbo 106 杨妃舞带 Yangfeiwudai
31 醉芙蓉 Zuifurong 69 牛郎 Niulang 107 柳林新绿 Liulinxinlv
32 赤龙须 Chilongux 70 紫旋玉 Zixuanyu 108 绿毛刺 Lvmaoci
33 玉兰春晓 Yulanchunxiao 71 万顷金波 Wangqingjinbo 109 绿潮云 Lvchaoyun
34 桂殿兰宫 Guidianlangong 72 贵妃舒袖 Guifeishuxiu 110 一波三折 Yibosanzhe
35 佳木异珍 Jiamuyizhen 73 云霞出海 Xunxiachuhai 111 醒狮图 Xingshitu
36 银世界 Yinshijie 74 妙舞春风 Miaowuchunfeng 112 玉色蝴蝶 Yusehudie
37 红托桂小菊 Hongtuoguixiaoju 75 桃红管 Taohongguan 113 紫金钩 Zijingou
38 粉线球 Fenxianqiu 76 彩云间 Caiyunjian 114 白蜂窝 Baifengwo
序号
Number
品种名称
Variety denomination
序号
Number
品种名称
Variety denomination
序号
Number
品种名称
Variety denomination
115 紫墨球 Zimoqiu 153 杏林春暖 Xinglinchunnuan 191 松紫霜雪 Songzixiangyue
116 珊瑚宝氅 Shanhubaochang 154 黄雀翠柳 Huangquecuiliu 192 大粉楼 Dafenlou
117 大漠飞鹰 Damofeiying 155 金凤舞 Jinfengwu 193 天女散花 Tiannusanhua
118 织女 Zhinu 156 绿环 Lvhuan 194 花田试马 Huatianshima
119 梨花白 Lihuabai 157 玉扭丝 Yuniusi 195 晴光 Qingguang
120 翡翠帘 Feicuilian 158 白莲美 Bailianmei 196 江南春色 Chunnanjiangse
121 春露花新 Chunluhuaxin 159 墨云峰 Moyunfeng 197 尽朝晖 Jinzhaohui
122 七月黄 Qiyuehuang 160 银莲花 Yinlianhua 198 罗浮春梦 Luofuchunmeng
123 天红地白 Tianhongdibai 161 紫金牡丹 Zijinmudan 199 玉翎 Yuling
124 荔枝垂 Lizhichui 162 红墨丹桂 Hongmodangui 200 绿竹掩映 Lvzhuyanying
125 浅黄荷 Qianhuanghe 163 金毛刺 Jinmaoci 201 粉钩玉刺 Fengouyuci
126 雀舌粉妆 Queshefenzhuang 164 玉蝶 Yudie 202 百鸟朝凤 Bainiaochaofeng
127 墨葵 Mokui 165 园丁之歌 Yuandingzhige 203 丰收 Fengshou
128 映山红 Yingshanhong 166 绿衣仙女 Lvyixiannu 204 虞姬 Yuji
129 玉楼金门 Yuloujinmen 167 彩云飞 Caiyunfei 205 宜春 Yichun
130 小橙托桂 Xiaochengtuogui 168 紫墨荷 Zimohe 206 山色晴岚 Shanseqinglan
131 胜利凯歌 Shenglikaige 169 霞光春色 Xiaguangchunse 207 虎舌 Hushe
132 万龙舞 Wanglongwu 170 羽衣舞 Yuyiwu 208 雪夜红墙 Xueyehongqiang
133 红粉绣球 Hongfenxiuqiu 171 玉殿琼楼 Yudianqionglou 209 淡香疏影 Danxiangshuying
134 万里千山 Wangliqianshan 172 紫霞 Zixia 210 火中炼金 Huozhonglianjin
135 金黄桂 Jinhuanggui 173 紫莺 Ziying 211 金毛虎球 Jinmaohuqiu
136 玉楼金戈 Yuloujinge 174 独立寒秋 Dulihanqiu 212 月宫殿 Yuegongdian
137 绿云 Lvyun 175 雪落蓑衣 Xueluosuoyi 213 铁壳 Tieke
138 月影 Yueying 176 草原春色 Caoyuanchunse 214 雪管桃花 Xueguantaohua
139 雪狮子 Xueshizi 177 银盂 Yinyu 215 老陶然 Laotaoran
140 露华倒影 Luhuadaoying 178 冬花 Donghua 216 赤道战鼓 Chidaozhangu
141 芳溪秋雨 Fangxiqiuyu 179 蝶翅 Diechi 217 欲醉 Yuzui
142 芙蓉舞蝶 Furongwudie 180 宇宙锋 Yuzhoufeng 218 绿虾爪 Lvxiazhao
143 粉龙爪 Fenlongzhao 181 银鼠 Yinshu 219 雪青荷花 Xueqinghehua
144 皇冠 Huangguan 182 月照红楼 Yuezhaohonglou 220 紫罡银星 Zigangyinxing
145 玉粉莲 Yufenlian 183 红绸舞 Hongchouwu 221 桃李无言 Taoliwuyan
146 菜黄芍药 Caihuangshaoyao 184 梁红玉 Lianghongyu 222 黄浦涛声 Huangputaosheng
147 满天彩霞 Mantiancaixia 185 宝光 Baoguang 223 流水瀑布 Liushuipubu
148 粉荷飘香 Fenhepiaoxiang 186 落霞孤鹜 Luoxiaguwu 224 赤金球 Chijinqiu
149 大白莲 Dabailian 187 粉紫荷 Fenzihe 225 雄狮飞舞 Xiongshifeiwu
150 碧玉含翠 Biyuhancui 188 楚烟湘月 Chuyanxiangyue 226 一品黄 Yipinhuang
151 千手观音 Qianshouguanyin 189 碧波太湖 Bibotaihu 227 紫莲 Zilian
152 翠蝶金卷 Cuidiejinjuan 190 一尘不染 Yichengburan 228 礼花 Lihua
[1] 李鸿渐. 中国菊花. 南京: 江苏科学技术出版社, 1993.
LI H J. Chrysanthemums in China. Nanjing: Phoenix Science Press, 1993. (in Chinese)
[2] FRANKEL O H. Genetic Perspectives of Germplasm Conservation. Cambridge: Cambridge University Press, 1984: 161-170.
[3] 李自超, 张洪亮, 曹永生, 裘宗恩, 魏兴华, 汤圣祥, 余萍, 王象坤. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29(1):20-24.
LI Z C, ZHANG H L, CAO Y S, QIU Z E, WEI X H, TANG S X, YU P, WANG X K. Studies on the sampling strategy for primary core collection of Chinese ingenious rice. Acta Agronomica Sinica, 2003, 29(1):20-24. (in Chinese)
[4] 赵丽娜, 任晓娣, 胡亚亚, 张涛, 张娜, 杨文香, 刘大群. 23份中国小麦微核心种质抗叶锈性评价. 中国农业科学, 2013, 46(3):441-450.
ZHAO L N, REN X D, HU Y Y, ZHANG T, ZHANG N, YANG W X, LIU D Q. Evaluation of wheat leaf rust resistance of 23 Chinese wheat mini-core collections. Scientia Agricultura Sinica, 2013, 46(3):441-450. (in Chinese)
[5] 徐益, 张列梅, 郭艳春, 祁建民, 张力岚, 方平平, 张立武. 黄麻核心种质的遴选. 作物学报, 2019, 45(11):1672-1681.
XU Y, ZHANG L M, GUO Y C, QI J M, ZHANG L L, FANG P P, ZHANG L W. Core collection screening of a germplasm population in jute(Corchorus spp.). Acta Agronomica Sinica, 2019, 45(11):1672-1681. (in Chinese)
[6] 胡兴雨, 王纶, 张宗文, 陆平, 张红生. 中国黍稷核心种质的构建. 中国农业科学, 2008, 41(11):3489-3502.
HU X Y, WANG L, ZHANG Z W, LU P, ZHANG H S. Establishment of broomcorn millet core collection in China. Scientia Agricultura Sinica, 2008, 41(11):3489-3502. (in Chinese)
[7] 刘遵春, 张春雨, 张艳敏, 张小燕, 吴传金, 王海波, 石俊, 陈学森. 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010, 43(2):358-370.
LIU Z C, ZHANG C Y, ZHANG Y M, ZHANG X Y, WU C J, WANG H B, SHI J, CHEN X S. Study on method of constructing core collection of Malus sieversii based on quantitative traits. Scientia Agricultura Sinica, 2010, 43(2):358-370. (in Chinese)
[8] 胡建斌, 马双武, 王吉明, 苏艳, 李琼. 基于表型性状的甜瓜核心种质构建. 果树学报, 2013, 30(3):404-411.
HU J B, MA S W, WANG J M, SU Y, LI Q. Establishment of a melon (Cucumis melo) core collection based on phenotypic characters. Journal of Fruit Science, 2013, 30(3):404-411. (in Chinese)
[9] 李国强, 李锡香, 沈镝, 王海平, 宋江萍, 邱杨. 基于形态数据的大白菜核心种质构建方法的研究. 园艺学报, 2008, 35(12):1759-1766.
LI G Q, LI X X, SHEN D, WANG H P, SONG J P, QIU Y. Studies on the methods of constructing Chinese cabbage core germplasm based on the morphological data. Acta Horticulturae Sinica, 2008, 35(12):1759-1766. (in Chinese)
[10] 明军, 张启翔, 兰彦平. 梅花品种资源核心种质构建. 北京林业大学学报, 2005, 27(2):65-69.
MING J, ZHANG Q X, LAN Y P. Core collection of Prunus mume Sieb. et Zucc. Journal of Beijing Forestry University, 2005, 27(2):65-69. (in Chinese)
[11] 赵冰, 张启翔. 中国蜡梅种质资源核心种质的初步构建. 北京林业大学学报, 2007(S1):16-21.
ZHAO B, ZHANG Q X. Preliminary construction of the core germplasm of Chimonanthus praecox in China. Journal of Beijing Forestry University, 2007(S1):16-21. (in Chinese)
[12] 顾翠花. 中国紫薇属种质资源及紫薇、南紫薇核心种质构建[D]. 北京: 北京林业大学, 2008.
GU C H. Studies on Lagerstroemia germplasm and core collection establishment in L.indica and L.subcostata [D]. Beijing: Beijing Forestry University, 2008. (in Chinese)
[13] 陈焕杰. 山茶种质资源核心库构建[D]. 杭州: 浙江农林大学, 2013.
CHEN H J. Construction of core collection germplasm of camellia[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2013. (in Chinese)
[14] 李保印. 中原牡丹品种遗传多样性与核心种质构建研究[D]. 北京: 北京林业大学, 2007.
LI B Y. Studies on genetic diversity and construction of core collection of tree peony cultivars from Chinese Central Plains[D]. Beijing: Beijing Forestry University, 2007. (in Chinese)
[15] 王晓菡. 中国芍药品种遗传多样性SRAP分析和核心种质的初步构建[D]. 泰安: 山东农业大学, 2010.
WANG X H. Analysis of genetic diversity and construction of the core collection for Chinese herbaceous peony cultivars using SRAP marker[D]. Taian: Shandong Agricultural University, 2010. (in Chinese)
[16] 杨美, 付杰, 向巧彦, 刘艳玲. 利用AFLP分子标记技术构建花莲核心种质资源. 中国农业科学, 2011, 44(15):3193-3205.
YANG M, FU J, XIANG Q Y, LIU Y L. The core-collection construction of flower Lotus based on AFLP molecular markers. Scientia Agricultura Sinica, 2011, 44(15):3193-3205. (in Chinese)
[17] 艾叶, 陈璐, 兰思仁, 谢泰祥, 陈娟, 彭东辉. 基于形态学性状构建建兰品种核心种质. 分子植物育种, 2019, 17(23):7924-7934.
AI Y, CHEN L, LAN S R, XIE T X, CHEN J, PENG D H. Construction of core collection of Cymbidium ensifolium varieties based on morphological traits. Molecular Plant Breeding, 2019, 17(23):7924-7934. (in Chinese)
[18] 周凯, 郭维明, 王智芳. 菊花不同部位水浸液自毒作用的研究. 西北植物学报, 2008, 28(4):759-764.
ZHOU K, GUO W M, WANG Z F. Autotoxicity of aquatic extracts from different parts of Chrysanthemum. Acta Botanica Boreali- Occidentalia Sinica, 2008, 28(4):759-764. (in Chinese)
[19] 李宝琴. 大菊品种分类研究及核心种质构建初探[D]. 北京: 北京林业大学, 2009.
LI B Q. Classification and core construction of chrysanthemum varieties[D]. Beijing: Beijing Forestry University, 2009. (in Chinese)
[20] 张飞, 谢伟, 陈发棣, 房伟民, 陈素梅. 中国菊花品种初选核心种质的代表性检验. 南京农业大学学报, 2009, 32(2):47-50.
ZHANG F, XIE W, CHEN F D, FANG W M, CHEN S M. Representativeness test for candidate core collection of Chrysanthemum (Dendranthema × grandiflorum) in China. Journal of Nanjing Agricultural University, 2009, 32(2):47-50. (in Chinese)
[21] 中华人民共和国农业部. 植物新品种特异性、一致性和稳定性测试指南菊花 NY/T 2228—2012[S]. 北京: 中国农业出版社, 2013.
Ministry of Agriculture of the People's Republic of China. Guidelines for the conduct of tests for distinctness, uniformity and stability. Chrysanthemum. NY/T 2228—2012[S]. Beijing: Chinese Agriculture Press, 2013. (in Chinese)
[22] 高志红, 章镇, 韩振海, 房经贵. 中国果梅核心种质的构建与检测. 中国农业科学, 2005, 38(2):363-368.
GAO Z H, ZHANG Z, HAN Z H, FANG J G. Development and evaluation of core collection of Japanese apricot germplasms in China. Scientia Agricultura Sinica, 2005, 38(2):363-368.(in Chinese)
[23] 沈志军, 马瑞娟, 俞明亮, 蔡志翔, 许建兰. 国家果树种质南京桃资源圃初级核心种质构建. 园艺学报, 2013, 40(1):125-134.
SHEN Z J, MA R J, YU M L, CAI Z X, XU J L. Establishment of peach primary core collection based on accessions conserved in national fruit germplasm repository of Nanjing. Acta Horticulturae Sinica, 2013, 40(1):125-134. (in Chinese)
[24] HUANG C Q, LONG T, BAI C J, WANG W Q, LIU G D. Establishment of a core collection of Cynodon based on morphological data. Tropical Grasslands-Forrajes Tropicales, 2020, 8(3):203-213.
doi: 10.17138/tgft(8)203-213
[25] 刘娟, 廖康, 赵世荣, 曹倩, 孙琪, 刘欢. 利用ISSR分子标记构建新疆野杏核心种质资源. 中国农业科学, 2015, 48(10):2017-2028.
LIU J, LIAO K, ZHAO S R, CAO Q, SUN Q, LIU H. The core collection construction of Xinjiang wild apricot based on ISSR molecular markers. Scientia Agricultura Sinica, 2015, 48(10):2017-2028. (in Chinese)
[26] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50(13):2433-2441.
LIU Y Y, MEI H X, DU Z W, WU K, ZHENG Y Z, CUI X H, ZHENG L. Construction of core collection of sesame based on phenotype and molecular markers. Scientia Agricultura Sinica, 2017, 50(13):2433-2441. (in Chinese)
[27] 张洪亮, 李自超, 曹永生, 裘宗恩, 余萍, 王象坤. 表型水平上检验水稻核心种质的参数比较. 作物学报, 2003, 29(2):252-257.
ZHANG H L, LI Z C, CAO Y S, QIU Z E, YU P, WANG X K. Comparison of parameters for testing the rice core collection in phenotype. Acta Agronomica Sinica, 2003, 29(2):252-257. (in Chinese)
[28] 李洪果, 杜庆鑫, 王淋, 杜红岩, 陈锡民. 利用表型数据构建杜仲雌株核心种质. 分子植物育种, 2017, 15(12):5197-5209.
LI H G, DU Q X, WANG L, DU H Y, CHEN X M. Establishment of female core collection of Eucommia ulmoides Oliv. Based on phenotypic characters. Molecular Plant Breeding, 2017, 15(12):5197-5209. (in Chinese)
[29] AN Y L, MI X Z, ZHAO S Q, GUO R, XIA X B, LIU S R, WEI C L. Revealing distinctions in genetic diversity and adaptive evolution between two varieties of Camellia sinensis by whole-genome resequencing. Frontiers in Plant Science, 2020, 11:603819.
doi: 10.3389/fpls.2020.603819
[30] 齐永文, 樊丽娜, 罗青文, 王勤南, 陈勇生, 黄忠兴, 刘睿, 刘少谋, 邓海华, 李奇伟. 甘蔗细茎野生种核心种质构建. 作物学报, 2013, 39(4):649-656.
QI Y W, FAN L N, LUO Q W, WANG Q N, CHEN Y S, HUANG Z X, LIU R, LIU S M, DENG H H, LI Q W. Establishment of Saccharum spontaneum L. core collections. Acta Agronomica Sinica, 2013, 39(4):649-656. (in Chinese)
[31] 代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016, 49(19):3694-3708.
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton. Scientia Agricultura Sinica, 2016, 49(19):3694-3708. (in Chinese)
[32] 雷刚, 周坤华, 方荣, 吴茵, 陈学军. 基于表型数据的辣椒核心种质构建研究. 西北植物学报, 2016, 36(4):804-810.
LEI G, ZHOU K H, FANG R, WU Y, CHEN X J. Studies on the constructing of pepper core collection based on phenotypic data. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(4):804-810. (in Chinese)
[33] 李自超, 张洪亮, 曾亚文, 杨忠义, 申时全, 孙传清, 王象坤. 云南地方稻种资源核心种质取样方案研究. 中国农业科学, 2000, 33(5):1-7.
LI Z C, ZHANG H L, ZENG Y W, YANG Z Y, SHEN S Q, SUN C Q, WANG X K. Study on sampling schemes of core collection of local varieties of rice in Yunnan, China. Scientia Agricultura Sinica, 2000, 33(5):1-7. (in Chinese)
[34] 刘长友, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁, 程须珍. 中国绿豆种质资源初选核心种质构建. 作物学报, 2008, 34(4):700-705.
LIU C Y, WANG S H, WANG L X, SUN L, MEI L, XU N, CHENG X Z. Establishment of candidate core collection in Chinese mungbean germplasm resources. Acta Agronomica Sinica, 2008, 34(4):700-705. (in Chinese)
[35] 李慧峰, 陈天渊, 黄咏梅, 吴翠荣, 李彦青, 卢森权, 陈雄庭. 基于形态性状的甘薯核心种质取样策略研究. 植物遗传资源学报, 2013, 14(1):87-93.
LI H F, CHEN T Y, HUANG Y M, WU C R, LI Y Q, LU S Q, CHEN X T. Sampling strategies of sweet potato core collection based on morphological traits. Journal of Plant Genetic Resources, 2013, 14(1):87-93. (in Chinese)
[36] 缪黎明, 王神云, 邹明华, 李建斌, 孔李俊, 余小林. 园艺作物核心种质构建的研究进展. 植物遗传资源学报, 2016, 17(5):791-800.
MIAO L M, WANG S Y, ZOU M H, LI J B, KONG L J, YU X L. Review of the studies on core collection for horticultural crops. Journal of Plant Genetic Resources, 2016, 17(5):791-800. (in Chinese)
[37] BROWN A H D. Core collections: a practical approach to genetic resources management. Genome, 1989, 31(2):818-824.
doi: 10.1139/g89-144
[38] HU J, ZHU J, XU H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 2000, 101(1):264-268.
doi: 10.1007/s001220051478
[39] 郭大龙, 刘崇怀, 张君玉, 张国海. 葡萄核心种质的构建. 中国农业科学, 2012, 45(6):1135-1143.
GUO D L, LIU C H, ZHANG J Y, ZHANG G H. Construction of grape core collections. Scientia Agricultura Sinica, 2012, 45(6):1135-1143. (in Chinese)
[1] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[2] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[3] BAI YiXiong, ZHENG XueQing, YAO YouHua, YAO XiaoHua, WU KunLun. Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources [J]. Scientia Agricultura Sinica, 2019, 52(23): 4201-4214.
[4] LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG. Study on the Method for Identification Sesame Capsule Dehiscence Resistance and Evaluation of Capsule Dehiscence Resistance of the Core Collection [J]. Scientia Agricultura Sinica, 2019, 52(20): 3520-3532.
[5] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[6] DAI Pan-hong, SUN Jun-ling, HE Shou-pu, WANG Li-ru, JIA Yin-hua, PAN Zhao-e, PANG Bao-yin, DU Xiong-ming, WANG Mi. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton [J]. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708.
[7] LIU Juan, LIAO Kang, ZHAO Shi-rong, CAO Qian, SUN Qi, LIU Huan. The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers [J]. Scientia Agricultura Sinica, 2015, 48(10): 2017-2028.
[8] AN Meng-Meng-1, WANG Yan-Ting-1, SONG Yang-2, JI Xiao-Hao-1, LIU Chang-3, WANG Nan-1, WU Yu-Sen-1, LIU Wen-1, 4 , CAO Yu-Fen-2, FENG Shou-Qian-1, CHEN Xue-Sen-1. Genetic Diversity of Fruit Phenotypic Traits of Wild Pyrus ussuriensis Maxim [J]. Scientia Agricultura Sinica, 2014, 47(15): 3034-3043.
[9] ZHAO Li-Na, REN Xiao-Di, HU Ya-Ya, ZHANG Tao, ZHANG Na, YANG Wen-Xiang, LIU Da-Qun. Evaluation of Wheat Leaf Rust Resistance of 23 Chinese Wheat Mini-Core Collections [J]. Scientia Agricultura Sinica, 2013, 46(3): 441-450.
[10] WANG Hong-Xia-1, ZHAO Shu-Gang-2, GAO Yi-3, XUAN Li-Chun-4, ZHANG Zhi-Hua-1. A Construction of the Core-Collection of Juglans regia L. Based on AFLP Molecular Markers [J]. Scientia Agricultura Sinica, 2013, 46(23): 4985-4995.
[11] LI Ren-Wei, WANG Chen, DAI Si-Lan, LUO Xin-Yan, LI Bao-Qin, ZHU Jun, LU Jie, LIU Qian-Qian. The Association Analysis of Phenotypic Traits with SRAP Markers in Chrysanthemum [J]. Scientia Agricultura Sinica, 2012, 45(7): 1355-1364.
[12] GUO Da-Long, LIU Chong-Huai, ZHANG Jun-Yu, ZHANG Guo-Hai. Construction of Grape Core Collections [J]. Scientia Agricultura Sinica, 2012, 45(6): 1135-1143.
[13] YANG Mei, FU Jie, XIANG Qiao-Yan, LIU Yan-Ling. The Core-Collection Construction of Flower Lotus Based on AFLP Molecular Markers [J]. Scientia Agricultura Sinica, 2011, 44(15): 3193-3205.
[14] LIU Zhi-zhai,SONG Yan-chun,SHI Yun-su,CAI Yi-lin,CHENG Wei-dong,QIN Lan-qiu,LI Yu,WANG Tian-yu
. Racial Classification and Characterization of Maize Landraces in China
[J]. Scientia Agricultura Sinica, 2010, 43(5): 899-910 .
[15] LIU Zun-chun,ZHANG Chun-yu,ZHANG Yan-min,ZHANG Xiao-yan,WU Chuan-jin,WANG Hai-bo,SHI Jun,CHEN Xue-sen
. Study on Method of Constructing Core Collection of Malus sieversii Based on Quantitative Traits
[J]. Scientia Agricultura Sinica, 2010, 43(2): 358-370 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!