Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4201-4214.doi: 10.3864/j.issn.0578-1752.2019.23.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources

BAI YiXiong1,2,ZHENG XueQing1,YAO YouHua1,YAO XiaoHua1,WU KunLun1()   

  1. 1 Academy of Agriculture and Forestry of Qinghai University/Qinghai Academy of Agriculture and Forestry Sciences/Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding/Qinghai Hulless Barley Sub-center of National Triticeae Improvement Center, Xining 810016
    2 College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2019-05-28 Accepted:2019-07-24 Online:2019-12-01 Published:2019-12-01
  • Contact: KunLun WU E-mail:wklqaaf@163.com

Abstract:

【Objective】The genetic diversity in the hulless barley (Hordeum vulgare L. var. nudum Hook. f.) germplasm resources can be screened to improve phenotypic appearance traits. 【Method】Shannon-Wiener diversity index was used to analyze the genetic diversity of 15 phenotypic traits in 205 hulless barley accessions. The distribution frequency of all phenotypic traits in test germplasm resources were analyzed, which contained the data of Xining and Haibei experiment point. Correlation analysis was used to identify the relationship among all traits; cluster analysis was carried out to clarify its classification of the tested germplasm. Principal component analysis was used to construct a comprehensive evaluation system of hulless barley germplasm resources, and the system was verified by linear regression analysis. Screening excellent hulless barley germplasm resources based on the results of comprehensive evaluation and high yield and stability analysis. Correlation analysis, principal component analysis, cluster analysis and high yield and stability analysis were used to evaluate the germplasms. 【Result】The genetic variation level of lodging rate was the richest, the genetic variation level of the center of gravity is the most deficient, the genetic variation of the Haibei test plot showed higher than that of Xining point. The genetic diversity of panicle weight was the most abundant, the genetic uniformity of lodging rate was the highest. Except for the lodging rate, the additional traits showed normal or skewed distribution, and the distribution frequency showed the trend of higher middle and lower sides. The spike length and spike weight showed normally distributed in each genotype. Spike length and panicle weight have normal distributions among the hulless barley accessions. The phenotypic traits showed highly significant differences related to environmental, genotypes, and years factors. Genotype and environment (G×E) factors, genotype and year (G×Y) factors and genotype × environment× year (G×E×Y) interactions produced highly significant differences in the phenotypic traits. There was a significant correlation between the indicators among the roots, stems and panicles of the hulless barley, and there was also a significant correlation between the agronomic traits among the tissues. Well-developed root system, greater stem bending resistance, and stronger mechanical retention, reduced the lodging. Susceptibility to lodging of hulless barley limits the growth and development of spikes and reduce spike length, grain number per ear, grain size, and ear weight. This greatly reduces hulless barley yield. The clustering results demonstrated that the germplasm could be divided into three categories. Category one had a high center of gravity and was susceptible to lodging, but the remaining traits were intermediate. Category two contained germplasm with good agronomic qualities such as dwarf, stalk with a low center of gravity and other useful traits. Category three contained germplasm with high plant height, underdeveloped roots, easily to folded stems, and poor panicle performance. The F value results and yield stability analysis identified five types of barley hull germplasms with excellent overall traits, high yield and stability. 【Conclusion】 High genetic diversity exists in the barley germplasm resources. The spike length and spike weight were normally distributed within each genotype. With the exception of the lodging rate, 12 other traits had skewed distributed within the genotypes. Eight traits including root dry weight, center of gravity, stem wall thickness, main stem diameter, stem strength, spike length, kernels per spike and yield are useful indicators for evaluating barley germplasms.

Key words: hulless barley, phenotypic traits, genetic diversity, cluster analysis, comprehensive evaluation

Table 1

Phenotypic traits of hulless barley germplasm resources"

表型性状Phenotypic traits 平均值Mean±SD 变幅Range 变异系数CV (%) 多样性指数H′
根数NOR 30.13±9.70 9.33—75.33 32.18 1.99
根干重RDW (g) 0.65±0.33 0.04—2.41 51.52 1.94
株高PH (cm) 93.19±15.12 41.75—135.34 16.23 2.07
分蘖数NOT 5.22±2.22 1.00—19.75 42.44 2.03
重心位置COG (cm) 37.27±5.47 22.38—67.06 14.68 2.06
茎秆壁厚WT (mm) 0.61±0.27 0.10—2.03 45.19 1.99
茎粗DMS (mm) 3.86±1.10 1.19—7.53 28.57 2.03
茎秆强度SS (N) 4.94±2.50 0.97—15.81 50.58 1.95
穗长SL (cm) 7.17±1.66 2.50—14.25 23.14 2.07
穗重PW (g) 2.70±1.04 0.45—6.04 38.34 2.08
小穗数SN 19.91±4.38 5.00—42.50 21.85 2.07
穗粒数KPS 46.77±16.15 8.25—98.00 34.54 2.07
千粒重TGW (g) 39.95±7.09 21.51—72.45 17.74 2.04
产量Y (kg·hm-2) 4396.80±2249.39 361.42—15409.74 51.16 2.01
倒伏率LR (%) 32.18±39.10 0.00—100.00 121.49 1.41

Fig. 1

Distribution of phenotypic traits in hulless barley germplasms"

Table 2

Genetic variation of phenotypic traits under different environments"

表型性状
Phenotypic traits
西宁Xining 海北Haibei
平均值Mean±SD 变幅Range 变异系数CV (%) 平均值Mean±SD 变幅Range 变异系数CV (%)
根数NOR 33.89±10.57 9.33—75.33 31.19 26.38±6.96 12.50—52.67 26.40
根干重RDW (g) 0.79±0.35 0.17—2.41 44.06 0.50±0.24 0.04—1.64 48.23
株高PH (cm) 97.84±15.36 47.25—135.34 15.70 88.53±13.36 41.75—122.50 15.09
分蘖数NOT 6.35±2.17 2.75—19.75 34.23 4.10±1.60 1.00—10.50 39.18
重心位置COG (cm) 38.64±5.56 22.38—67.06 14.38 35.90±5.03 22.50—50.00 14.01
茎秆壁厚WT (mm) 0.64±0.24 0.18—2.03 37.89 0.57±0.30 0.10—1.61 52.15
茎粗DMS (mm) 4.58±0.67 2.63—7.53 14.59 3.13±0.96 1.19—6.00 30.75
茎秆强度SS (N) 5.58±2.98 0.97—15.81 53.39 4.30±1.68 1.50—11.59 39.03
穗长SL (cm) 7.35±1.63 3.10—14.13 22.17 7.00±1.67 2.50—14.25 23.92
穗重PW (g) 2.77±0.99 0.58—5.47 35.59 2.63±1.08 0.45—6.04 41.02
小穗数SN 20.32±4.11 5.00—32.00 20.25 19.55±4.56 6.25—42.50 23.31
穗粒数KPS 50.11±15.16 9.75—89.25 30.25 43.43±16.44 8.25—98.00 37.86
千粒重TGW (g) 38.54±7.60 21.51—72.45 19.73 41.36±6.23 26.59—57.60 15.06
产量Y (kg·hm-2) 5533.06±2269.52 1223.29—15409.74 41.02 3260.54±1546.84 361.42—8073.53 47.44
倒伏率LR (%) 41.69±42.48 0.00—100.00 101.89 22.67±32.79 0.00—100.00 144.62

Table 3

Normality test in 205 hulless barley accessions"

环境
Environment
西宁
Xining
海北
Haibei
西宁和海北
Xining and Haibei
根数NOR 0.00 0.00 0.00
根干重RDW (g) 0.00 0.00 0.00
株高PH (cm) 0.05 0.05+ 0.02
分蘖数NOT 0.00 0.00 0.00
重心位置COG (cm) 0.00 0.00 0.00
茎秆壁厚WT (mm) 0.01 0.00 0.00
茎粗DMS (mm) 0.01 0.00 0.00
茎秆强度SS (N) 0.00 0.00 0.00
穗长SL (cm) 0.08+ 0.20+ 0.20+
穗重PW (g) 0.20+ 0.09+ 0.20+
小穗数SN 0.00 0.00 0.00
穗粒数KPS 0.00 0.14+ 0.00
千粒重TGW (g) 0.00 0.20+ 0.00
产量Y (kg·hm-2) 0.02 0.00 0.00
倒伏率LR (%) 0.00 0.00 0.00

Table 4

Analysis of the interaction between genotype and environment of phenotypic traits"

变异来源
Variance sources
df 根数NOR 根干重RDW 株高PH 分蘖数NOT 重心位置COG 茎秆壁厚WT 茎粗DMS 茎秆强度SS
F P F P F P F P F P F P F P F P
基因型Genotype(G) 204 3.45 0.00 6.00 0.00 32.37 0.00 5.17 0.00 13.26 0.00 19.29 0.00 7.79 0.00 7.36 0.00
年份Year(Y) 1 598.80 0.00 1070.65 0.00 1323.06 0.001 1012.97 0.00 329.45 0.00 10457.98 0.00 16269.04 0.00 379.88 0.00
环境Environment(E) 1 808.24 0.00 938.84 0.00 11.64 0.00 75.26 0.00 162.51 0.00 16954.86 0.00 3809.00 0.00 1395.45 0.00
基因型×环境G×E 204 2.83 0.00 4.03 0.00 7.66 0.00 2.46 0.00 3.44 0.00 16.18 0.00 3.36 0.00 2.81 0.00
基因型×年份G×Y 204 3.01 0.00 3.82 0.00 6.03 0.00 2.36 0.00 2.81 0.00 17.36 0.00 2.85 0.00 3.55 0.00
基因型×环境×年份G×E×Y 204 3.39 0.00 3.96 0.00 15.69 0.00 3.85 0.00 3.83 0.00 70.20 0.00 31.43 0.00 5.92 0.00
变异来源
Variance sources
df 穗长SL 穗重PW 小穗数SN 穗粒数KSP 千粒重TGW 产量Y 倒伏率LR
F P F P F P F P F P F P F P
基因型Genotype(G) 204 10.74 0.00 19.45 0.00 10.33 0.00 25.94 0.00 73.94 0.00 3.83 0.00 1814.24 0.00
年份Year(Y) 1 54.62 0.00 33.26 0.00 41.02 0.00 397.65 0.00 1529.21 0.00 961.55 0.00 60624.73 0.00
环境Environment(E) 1 766.82 0.00 451.23 0.00 251.61 0.00 1018.16 0.00 828.19 0.00 15.51 0.00 49011.26 0.00
基因型×环境G×E 204 2.55 0.00 4.04 0.00 4.42 0.00 4.22 0.00 33.03 0.00 2.03 0.00 690.30 0.00
基因型×年份G×Y 204 3.36 0.00 4.88 0.00 3.66 0.00 4.50 0.00 30.53 0.00 2.29 0.00 510.09 0.00
基因型×环境×年份G×E×Y 204 3.34 0.00 6.60 0.00 5.90 0.00 4.01 0.00 39.47 0.00 5.48 0.00 1450.58 0.00

Table 5

Correlation coefficients of 15 phenotypic traits"

性状
Trait
根数
NOR
根干重
RDW
株高
PH
分蘖数NOT 重心位置COG 茎秆壁厚厚
WT
茎粗
DMS
茎秆强度
SS
穗长
SL
穗重
PW
小穗数
SN
穗粒数
KPS
千粒重
TGW
产量
Y
倒伏率
LR
根数NOR 1
根干重RDW 0.712** 1
株高PH -0.011 0.079* 1
分蘖数NOT 0.304** 0.312** 0.055 1
重心位置COG 0.131** 0.154** 0.669** 0.043 1
茎秆壁厚WT 0.313** 0.336** 0.071* -0.042 0.146** 1
茎粗DMS 0.312** 0.395** 0.262** 0.305** 0.279** 0.505** 1
茎秆强度SS 0.428** 0.533** 0.042 0.076* 0.261** 0.494** 0.423** 1
穗长SL 0.236** 0.248** 0.001 0.026 0.154** 0.293** 0.134** 0.407** 1
穗重PW 0.231** 0.264** -0.097** -0.168** 0.082* 0.330** 0.278** 0.493** 0.528** 1
小穗数SN 0.200** 0.235** -0.111** 0.009 0.104** 0.277** 0.241** 0.401** 0.680** 0.664** 1
穗粒数KPS 0.290** 0.327** 0.014 -0.200** 0.145** 0.363** 0.343** 0.452** 0.437** 0.836** 0.569** 1
千粒重TGW -0.108** -0.088* -0.058 0.028 -0.036 -0.096** -0.051 -0.022 0.055 0.104** 0.032 -0.165** 1
产量Y 0.436** 0.464** 0.05 0.631** 0.155** 0.200** 0.532** 0.386** 0.300** 0.483** 0.388** 0.493** 0.219** 1
倒伏率LR -0.130** -0.152** 0.507** 0.100** 0.333** -0.161** 0.064 -0.266** -0.181** -0.305** -0.278** -0.181** -0.130** -0.071* 1

Table 6

Principal component analysis of phenotypic traits of hulless barley germplasm resources"

性状Trait PV1a1i PV2a2i PV3a3i PV4a4i PV5a5i PV6a6i PV7a7i
根数NOR 0.604 0.205 -0.393 -0.318 -0.100 0.314 -0.205
根干重RDW (g) 0.664 0.242 -0.352 -0.297 -0.015 0.280 -0.196
株高PH (cm) 0.062 0.749 0.478 0.113 0.066 0.110 -0.059
分蘖数NOT 0.208 0.472 -0.683 0.286 -0.211 -0.065 0.269
重心位置COG (cm) 0.275 0.623 0.487 0.123 0.089 0.275 -0.046
茎秆壁厚WT (mm) 0.583 0.041 0.134 -0.389 0.428 -0.216 0.321
茎粗DMS (mm) 0.607 0.416 -0.049 -0.045 0.217 -0.481 0.125
茎秆强度SS (N) 0.750 0.012 0.022 -0.200 0.260 0.162 0.027
穗长SL (cm) 0.626 -0.238 0.219 0.229 -0.173 0.351 0.416
穗重PW (g) 0.758 -0.39 0.268 0.184 -0.063 -0.138 -0.248
小穗数SN 0.691 -0.345 0.197 0.252 -0.215 0.075 0.272
穗粒数KPS 0.753 -0.234 0.332 -0.026 -0.231 -0.247 -0.323
千粒重TGW (g) -0.008 -0.141 -0.172 0.691 0.603 0.165 -0.178
产量Y (kg·hm-2) 0.710 0.210 -0.371 0.421 -0.111 -0.225 -0.129
倒伏率LR (%) -0.267 0.666 0.296 0.140 -0.268 -0.119 -0.011
特征值E 4.786 2.337 1.754 1.318 0.945 0.874 0.739
贡献率CR (%) 31.909 15.580 11.692 8.785 6.301 5.827 4.927
累计贡献率CCR (%) 31.909 47.489 59.181 67.966 74.268 80.095 85.022

Table 7

Correlation between 12 phenotypic traits and comprehensive scores (F-value)"

性状
Trait
F
F-value
性状
Trait
F
F-value
根干重RDW (g) 0.621** 穗长SL (cm) 0.589**
重心位置COG (cm) 0.482** 穗粒数KPS 0.706**
茎秆壁厚WT (mm) 0.575** 产量Y (kg·hm-2) 0.697**
茎粗DMS (mm) 0.678** 茎秆强度SS (N) 0.727**

Fig. 2

205 clusters of hulless barley germplasm cluster analysis"

Fig. 3

AMMI double plot of 205 copies of hulless barley germplasms"

Fig. 4

The meteorological data of Xining and Haibei in 2017-2018"

[1] 矫晓丽, 迟晓峰, 董琦, 肖远灿, 胡风祖 . 青海地区不同品种青稞中B族维生素含量分布. 氨基酸和生物资源, 2011,33(2):13-16.
doi: 10.1016/j.jplph.2019.153093 pmid: 31841951
JIAO X L, CHI X F, DONG Q, XIAO Y C, HU F Z . HPLC determination of vitamin B in different highland barleys from Qinghai province. Amino Acids & Biotic Resources, 2011,33(2):13-16. (in Chinese)
doi: 10.1016/j.jplph.2019.153093 pmid: 31841951
[2] 夏腾飞, 王蕾, 徐金青, 王寒冬, 张怀刚, 刘登才, 沈裕虎, 昌西 . 267份青藏高原青稞种质材料的表型多样性分析. 西北农业学报, 2018,27(2):182-193.
XIA T F, WANG L, XU J Q, WANG H D, ZHANG H G, LIU D C, SHEN Y H, CHANG X . The genotypic diversity analysis of 267 six-rowed hulless barley accessions from the Qinghai-Tibetan plateau. Northwest Agricultural Journal, 2018,27(2):182-193. (in Chinese)
[3] 吕远平, 熊茉君, 贾利蓉 . 青稞特性及在食品中的应用. 食品科学, 2005,26(7):245-249.
LÜ Y P, XIONG M J, JIA L R . Characteristics of barley and application in food industry. Food Science, 2005,26(7):245-249. (in Chinese)
[4] 刘三才 . 我国青稞的质量与品质研究进展. 作物杂志, 2014(4):1-5.
LIU S C . Progress in quality of naked barley in China. Crop Science, 2014(4):1-5. (in Chinese)
[5] 刘小娇, 王姗姗, 白婷, 靳玉龙, 文华英, 张玉红 . 青稞营养及其制品研究进展. 粮食与食品工业, 2019(1):43-47.
LIU X J, WANG S S, BAI T, JIN Y L, WEN H Y, ZHANG Y H . Advance of hulless barley nutrition and its products. Food and Food Industry, 2019(1):43-47. (in Chinese)
[6] 李龙兴 . 西藏主要农作物秸秆与牧草混合青贮的研究[D]. 南京: 南京农业大学, 2013.
LI L X . Study on the mixed silage of main crops straw and forage in Tibet[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[7] ZANKLAN A S, BECKER H C, SORENSEN M, PAWELZIK E, GRÜNEBERG W J . Genetic diversity in cultivated yam bean ( Pachyrhizus spp.) evaluated through multivariate analysis of morphological and agronomic traits. Genetic Resources and Crop Evolution, 2018,65(3):811-843.
doi: 10.1007/s10722-017-0582-5
[8] YIN Y Q, MA D Q, DING Y . Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. Theoretical and Applied Genetics, 2003,107(5):837-842.
doi: 10.1007/s00122-003-1328-7
[9] WÜRSCHUM T, LANGER S M, LONGIN C F H, KORZUN V, AKHUNOV E, EBMEYER E, SCHACHSCHNEIDER R, SCHACHT J, KAZMAN E, REIF J C . Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013,126(6):1477-1486.
doi: 10.1007/s00122-013-2065-1
[10] SORKHEH K, MASAELI M, CHALESHTORI M H, ADUGNA A, ERCISLI S . AFLP-based analysis of genetic diversity, population structure, and relationships with agronomic traits in rice germplasm from north region of IRAN and world core germplasm set. Biochemical Genetics, 2016,54(2):177-193.
doi: 10.1007/s10528-016-9711-7 pmid: 26762294
[11] ZHOU R, WU Z, CAO X, JIANG F L . Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genetics Molecular Research, 2015,14(4):13868-13879.
doi: 10.4238/2015.October.29.7 pmid: 26535702
[12] 胥婷婷 . 青稞种质资源遗传多样性分析和核心种质的构建[D]. 杭州: 浙江师范大学, 2012.
XU T T . The genetic diversity analysis and establishment of core collection in hulless barley germplasm resources[D]. Hangzhou: Zhejiang Normal University, 2012. (in Chinese)
[13] 孟亚雄, 孟祎林, 汪军成 . 青稞遗传多样性及其农艺性状与SSR标记的关联分析. 作物学报, 2016,42(2):26-35.
MENG Y X, MENG Y L, WANG J C . Genetic diversity and association analysis of agronomic characteristics with SSR markers in hulless barley. Acta Agronomica Sinica, 2016,42(2):26-35. (in Chinese)
[14] 吴昆仑 . 青稞种质资源的SSR标记遗传多样性分析. 麦类作物学报, 2011,31(6):1030-1034.
doi: 10.7606/j.issn.1009-1041.2011.06.006
WU K L . Genetic diversity analysis of hulless barley germplasm by SSR marker. Journal of Triticeae Crops, 2011,31(6):1030-1034. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2011.06.006
[15] SHAKHATREH Y, BAUM M, HADDAD N, ALRAABAH M, CECCARELLI S . Assessment of genetic diversity among Jordanian wild barley ( Hordeum spontaneum) genotypes revealed by SSR markers. Genetic Resources and Crop Evolution, 2016,63(5):813-822.
doi: 10.1007/s10722-015-0285-8
[16] MUÑOZ-AMATRIAÍN M, CUESTA-MARCOS A, ENDELMAN J B, ALRABABAH M, CECCARELLI S . The USDA barley core collection: Genetic diversity, population structure and potential for genome-wide association studies. PLoS ONE, 2014,9(4):e94688.
doi: 10.1371/journal.pone.0094688 pmid: 24732668
[17] AMEZROU R, GYAWALI S, BELQADI L, CHAO S M, ARBAOUI M, MAMIDI S, REHMAN S, SREEDASYAM A, VERMA P S . Molecular and phenotypic diversity of ICARDA spring barley ( Hordeum vulgare L.) collection. Genetic Resources and Crop Evolution, 2018,65(1):255-269.
doi: 10.1007/s10722-017-0527-z
[18] 胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤 . 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012,38(5):829-839.
doi: 10.3724/SP.J.1006.2012.00829
HU B L, WAN Y, LI X, LEI J G, LUO X D, YAN W G, XIE J K . Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 2012,38(5):829-839. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00829
[19] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民 . 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016,42(1):19-30.
doi: 10.3724/SP.J.1006.2016.00019
WANG H G, JIA G Q, ZHI H, WEN Q F, DONG J L, CHEN L, WANG J J, CAO X N, LIU S C, WANG L, QIAO Z J, DIAO X M . Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016,42(1):19-30. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00019
[20] 代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧 . 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016,49(19):3694-3708.
doi: 10.3864/j.issn.0578-1752.2016.19.003
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M . Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton. Scientia Agricultura Sinica, 2016,49(19):3694-3708. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.19.003
[21] 王艳青, 李春花, 卢文洁, 孙道旺, 尹桂芳, 陆平, 王莉花 . 135份国外藜麦种质主要农艺性状的遗传多样性分析. 植物遗传资源学报, 2018,19(5):1-12.
WANG Y Q, LI C H, LU W J, SUN D W, YIN G F, LU P, WANG L H . Genetic diversity analysis of major agronomic traits in 135 foreign Quinoa germplasm accessions. Journal of Plant Genetic Resources, 2018,19(5):1-12. (in Chinese)
[22] 孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王幸, 王晓军, 王伟 . 花生种质资源表型性状的综合评价及指标筛选. 植物遗传资源学报, 2018,19(5):865-874.
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X, WANG X J, WANG W . Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. Journal of Plant Genetic Resources, 2018,19(5):865-874. (in Chinese)
[23] 白羿雄, 姚晓华, 姚有华, 吴昆仑 . 青稞抗倒伏性状的基因型差异. 中国农业科学, 2019,52(2):228-238.
doi: 10.3864/j.issn.0578-1752.2019.02.004
BAI Y X, YAO X H, YAO Y H, WU K L . Difference of traits relating to lodging resistance in hulless barley genotypes. Scientia Agricultura Sinica, 2019,52(2):228-238. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.02.004
[24] 王志龙, 程加省, 杨金华, 乔祥梅, 王志伟, 程耿, 于亚雄 . 环境与基因型及其互作对云南早秋大麦产量的影响. 农业开发与装备, 2019(2):92-93.
doi: 10.1097/HP.0000000000001158 pmid: 31842137
WANG Z L, CHENG J S, YANG J H, QIAO X M, WANG Z W, CHENG G, YU Y X . Effects of environment, genotypes and their interaction on the yield of early autumn barley in Yunnan province. Agricultural Development & Equipment, 2019(2):92-93. (in Chinese)
doi: 10.1097/HP.0000000000001158 pmid: 31842137
[25] 吴显, 马俊, 梁黔云, 先新, 孙开利, 李世吉, 李喆, 王习秀 . AMMI双坐标分析在玉米品种比较试验中的应用. 现代农业科技, 2018(20): 24, 27.
WU X, MA J, LIANG Q Y, XIAN X, SUN K L, LI S J, LI J, WANG X X . Application of AMMI double coordinate analysis in maize varieties comparison test. Modern Agricultural Technology, 2018(20): 24, 27. (in Chinese)
[26] STRONG W L . Biased richness and evenness relationships within Shannon-Wiener index values. Ecological Indicators, 2016,67:703-713.
doi: 10.1016/j.ecolind.2016.03.043
[27] 余斌, 杨宏羽, 王丽 . 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018,44(1):63-74.
doi: 10.3724/SP.J.1006.2018.00063
YU B, YANG H Y, WANG L . Genetic diversity analysis and comprehensive assessment of phenotypic traits introduced potato germplasm resources in arid and semi-arid area. Acta Agronomica Sinica, 2018,44(1):63-74. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00063
[28] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 余渝, 李保成 . 基于表型性状的陆地棉种质资源遗传多样性分析. 植物遗传资源学报, 2016,17(3):438-446.
DONG C G, WANG J, ZHOU X F, MA X M, LI S X, YU Y, LI B C . Evalution on genetic diversity of cotton germplasm resources (Gossypium hirsutum L.) on morphological characters. Journal of Plant Genetic Resources, 2016,17(3):438-446. (in Chinese)
[29] 黄文辉, 王会, 梅德圣 . 农作物抗倒性研究进展. 作物杂志, 2018(4):13-19.
HUANG W H, WANG H, MEI D S . Research progress on lodging resistance of crops. Crops, 2018(4):13-19. (in Chinese)
[30] 王贵学, 邱厥 . 从小麦数量性状的表型值分布看正态性检验的必要性——几种正态性检验方法的比较. 西南农业学报, 1990(2):33-38.
WANG G X, QIU J . On the necessity of normality test based on the distribution of phenotypic values for quantitative characters of wheat-A comparison of several kinds of normality test. Southwest Agricultural Journal, 1990(2):33-38. (in Chinese)
[31] 侯维海, 王建林, 旦巴, 胡单 . 不同生态因子条件下西藏青稞种子表型性状的相关分析. 核农学报, 2017,31(10):2063-2071.
HOU W H, WANG J L, DAN B, HU D . Phenotypic correlation analysis of hulless barley kernel traits from Tibetan Plateau region under the condition of different ecological environment. Journal of Nuclear Agricultural Sciences, 2017,31(10):2063-2071. (in Chinese)
[32] 陈新, 张宗文, 吴斌 . 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014,47(10):2038-2046.
doi: 10.3864/j.issn.0578-1752.2014.10.018
CHEN X, ZHANG Z W, WU B . Comprehensive evaluation of salt tolerance and screening of salt tolerant germplasm in naked oats during germination. Scientia Agricultura Sinica, 2014,47(10):2038-2046. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.10.018
[33] 张建华, 金黎平, 谢开云, 庞万福, 卞春松, 段绍光, 屈冬玉 . 不同基因型马铃薯块茎损伤性状的综合评价. 中国农业科学, 2009,42(1):198-203.
ZHANG J H, JIN L P, XIE K Y, PANG W F, BIAN C S, DUAN S G, QU D Y . Comprehensive evaluation of tuber damage traits in different genotypes of potato. Scientia Agricultura Sinica, 2009,42(1):198-203. (in Chinese)
[34] 陶爱芬, 祁建民, 林培青, 方平平, 吴建梅, 林荔辉 . 红麻优异种质产量和品质性状主成分聚类分析与综合评价. 中国农业科学, 2008(9):2859-2867.
TAO A F, Qi J M, LIN P Q, FANG P P, WU J M, LIN L H . Cluster analysis and evaluation of elite kanaf germplasm based on principal components. Scientia Agricultura Sinica, 2008(9):2859-2867. (in Chinese)
[35] LI C Q, SONG L, ZHU Y J, ZHAI Y J, WANG Q L . Genetic diversity assessment of upland cotton variety resources in China based on phenotype traits and molecular markers. Crop Science, 2017,57(1):290-301.
doi: 10.2135/cropsci2016.03.0200
[36] LI Y, COLLEONI C, ZHANG J, LIANG Q, HU Y, RUESS H, SCHMITT E . Genomic analyses yield markers for identifying agronomically important genes in potato. Molecular Plant, 2018,11(3):473-484.
doi: 10.1016/j.molp.2018.01.009 pmid: 29421339
[37] BOCZKOWSKA M, ZEBROWSKI J, NOWOSIELSKI J, KORDULASIŃSKA I, NOWOSIELSKA D, PODYMA W . Environmentally related genotypic, phenotypic and metabolic diversity of oat (Avena sativa L.) landraces based on 67 Polish accessions. Genetic Resources and Crop Evolution, 64(8):1829-1840.
doi: 10.1007/s10722-017-0555-8
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[8] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[9] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[10] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[11] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[12] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[13] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[14] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[15] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!