Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (6): 1106-1115.doi: 10.3864/j.issn.0578-1752.2012.06.008

• PLANT PROTECTION • Previous Articles     Next Articles

Construction of SSH-cDNA Libraries and EST Analysis in Roots of Xiaoli Black Bean in Response to Heterodera glycines Parasitization

 WANG  Fang, DUAN  Yu-Xi, CHEN  Li-Jie, WANG  Yuan-Yuan, ZHU  Xiao-Feng, WANG  Dong   

  1. 1.沈阳农业大学植物保护学院,沈阳 110866
    2.黑龙江省农科院齐齐哈尔分院,黑龙江齐齐哈尔 161006
  • Received:2011-06-13 Online:2012-03-15 Published:2011-10-27

Abstract: 【Objective】The objective of this study is to research into the early stage root gene expression profile of G. max induced by H. glycines and to explore the resistant mechanism to the pathogen at molecular level. 【Method】SSH-cDNA libraries enriched with differentially expressed ESTs were constructed from SCN-challenged root tissues at pre-penetration and early infection stages from Xiaoli black bean (G. max) by suppression subtractive hybridization and reverse Northern blot. 【Result】 One hundred and sixty-six unique ESTs were identified and analyzed with Blastx and Blastn by comparing sequences in the GenBank. One hundred and ninteen unigenes accounted for 83% of all the unigenes showed high homology with the function known genes or proteins. The function-known ESTs were annotated into functional categories including signal recognition and transduction, energy and material metabolism, stress responses, transcriptional regulation, protein synthesis and/or modification, transport functions, cellular architecture.【Conclusion】Discreet gene tag clusters primarily including catalase, ubiquitin, chitinase, lipoxygenase, aquaporin, ripening related protein, metallothionein, plasma membrane intrinsic protein, cytochrome P450, glyceraldehyde-3-phosphate dehydrogenase were abundant in the SCN-infected roots. It is speculated that those genes played an important function in the incompatible interaction between Xiaoli black bean and H. glycines.

Key words: Heterodera glycines, Glycine max, suppression subtractive hybridization, EST

[1]Abad P, Gouzy J, Aury J M, Castagnone-Sereno P, Danchin E G J, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V C, Caillaud M C, Coutinho P M, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone J V, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier T R, Markov G V, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum T J, Blaxter M, Bleve-Zacheo T, Davis E L, Ewbank J J, Favery B, Grenier E, Henrissat B, Jones J T, Laudet V, Maule A G, Quesneville H, Rosso M N, Schiex T, Smant G, Weissenbach J, Wincker P. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. National Biotechnology, 2008, 26(8): 909-915.

[2]Klink V P, Hosseini P, Matsye P, Alkharouf N W, Matthews B F. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Molecular Biology, 2009, 71: 525-567.

[3]Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. 'Forrest' resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theoretical and Applied Genetics, 2001, 103: 710-717.

[4]Meksem K, Jamai A, Ruben E, Ishihara H, Bensmail I, Zobrist K, Lightfoot D A. QTLs for resistance to soybean cyst nematode: an Xa21 like gene family that requires possible dimerization for signal transduction//Plant & Animal Genomes X III Conference, San Diego, CA, 2005: W310.

[5]Ruben E, Jamai A, Afzal J, Njiti V N, Triwitayakorn K, Iqbal M J, Yaegashi S, Bashir R, Kazi S, Arelli P, Town C D, Ishihara H, Meksem K, Lightfoot D A. Genomic analys is of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics, 2006, 276: 503-516.

[6]Hauge B M, Wang M L, Parsons J D, Parnell L D. Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. US20030005491.

[7]Yuan C P, Zhou G A, Li Y H, Wang K J, Wang Z, Li X H, Chang R Z, Qiu L J. Cloning and sequence diversity analysis of GmHslPro-1 in Chinese domesticated and wild soybeans. Molecular Breeding, 2008, 22: 593-602.

[8]Cai D G, Kleine M, Kifle S, Harloff H J, Sandal N N, Marcker K A, Klein-Lankhorst R M, Salentijn E M J, Lange W, Stiekema W J, Wyss U, Grundler F M W, Jung C. Positional cloning of a gene for nematode resistancein sugar beet. Science, 1997, 275(5301): 832-834.

[9]Klink V P, Hosseini P, MacDonald M H, Alkharouf N W, Matthews B F. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics, 2009, 10: 111.

[10]Riggs R D, Kim K S, Gipson I. Ultrastructural changes in Pecking soybeans infected with Heterodera glycines. Phytopathology, 1972, 63: 76-84.

[11]Mahalingam R, Skorupska H T. Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean. Genome, 1996, 39: 986-998.

[12]Van der Eycken W, de Almeida Engler J, Inze D, Van Montagu M, Gheysen G. A molecular study of root-knot nematode-induced feeding sites. The Plant Journal, 1996, 9(1): 45-54.

[13]Niebel A, Heungens K, Barthels N, Inze D, Van Montagu M, Gheysen G. Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacterial infection. Molecular Plant Microbe Interactions, 1995, 8(3): 371-378.

[14]Niebel A, de Almeida Engler J, Hemerly A, Ferreira P, Inzé D, Van Montagu M, Gheysen G. Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation. The Plant Journal, 1996, 10(6): 1037-1043.

[15]Vaghchhipawala Z, Bassuner R, Clayton K, Lewers K, Shoemaker R, Mackenzie S. Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. Molecular Plant Microbe Interactions, 2001, 14: 42-54.

[16]Hermsmeier D, Mazarei M, Baum T J. Differential display analysis of the early compatible interaction between soybean and the soybean cyst nematode. Molecular Plant Microbe Interactions, 1998, 11(12): 1258-1263.

[17]Mazarei M, Elling A A, Maier T R, Puthoff D P, Baum T J. GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis. Molecular Plant Microbe Interactions, 2007, 20(2): 107-119.

[18]Mazarei M, Puthoff D P, Hart J K, Rodermel S R, Baum T J. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Molecular Plant Microbe Interactions, 2002, 15(6): 577-586.

[19]刘  晔, 刘维志, 孙铁军. 东北大豆品种资源对大豆胞囊线虫病抗性的鉴定. 沈阳农业大学学报, 1987, 18(4): 41-44.

Liu Y, Liu W Z, Sun T J. Tests of resistance of local soybean varieties from northeastern China to race 1 and 3 of soybean cyst nematode. Journal of Shenyang Agricultural University, 1987, 18(4): 41-44. (in Chinese)

[20]刘维志, 洪全春, 刘  晔, 段玉玺. 生物间遗传学原理在小黑豆类型品种抗胞囊线虫基因归类中的应用. 大豆科学, 1994, 13(1): 1-4.

Liu W Z, Hong Q C, Liu Y, Duan Y X. Application of interorganismal genetics concept in grouping soybean genes resistant to soybean cyst nematode. Soybean Science, 1994, 13(1): 1-4. (in Chinese)

[21]王  雪. 大豆抗胞囊线虫机制及与抗性相关的差异蛋白质组学研究[D]. 沈阳: 沈阳农业大学, 2009: 72-93.

Wang X. The resistant mechanism and different proteomics of soybean against Heterodera glycines[D]. Shenyang: Shenyang Agricultural University, 2009: 72-93. (in Chinese)

[22]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones J D, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H W, Klosterman S, Schueller C, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391(6666): 485-488.

[23]McCarter J P, Mitreva M D, Martin J, Dante M, Wylie T, Rao U, Pape D, Bowers Y, Theising B, Murphy C V, Kloek A P, Chiapelli B J, Clifton S W, Bird D M, Waterston R H. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biology, 2003, 4(4): R26.

[24]李  星, 于秀梅, 李亚宁, 张立荣, 刘大群, 杨文香, 张  汀. 叶锈菌诱导的小麦叶片抑制差减杂交文库构建及其分析. 中国农业科学, 2008, 41(12): 4069-4076.

Li X, Yu X M, Li Y N, Zhang L R, Liu D Q, Yang W X, Zhang T. Construction and analysis of a wheat leaf suppression subtractive hybridization library induced by Puccinia triticina. Scientia Agricultura Sinica, 2008, 41(12): 4069-4076. (in Chinese)

[25]骆  蒙, 孔秀英, 刘  越, 周荣华, 贾继增. 小麦抗病基因表达谱中的文库构建与筛选方法研究. 遗传学报, 2002, 29(9): 814-819.

Luo M, Kong X Y, Liu Y, Zhou R H, Jia J Z. cDNA libraries construction and screening in gene expression profiling of disease resistance in wheat. Acta Genetica Sinica, 2002, 29(9): 814-819.(in Chinese)

[26]茆振川, 谢丙炎, 杨宇红, 冯东昕, 冯兰香, 杨之为. 辣椒N基因介导抗根结线虫作用早期表达基因的抑制性消减杂交SSH分析. 园艺学报, 2007, 34(3): 629-636.

Mao Z C, Xie B Y, Yang Y H, Feng D X, Feng L X, Yang Z W. Analysis of early expression genes resistance to root knot nematode in N gene pepper by SSH. Acta Horticulturae Sinica, 2007, 34(3): 629-636. (in Chinese)

[27]Simonetti E, Alba E, Montes M J, Delibes Á, Lopez-Brana I. Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Report, 2010, 29: 1169-1178.

[28]Caldwell C R, Turano F J, McMahon M B. Identifcation of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. Coli. Planta, 1998, 204: 120-126.

[29]Maleck K, Dietrich R A. Defense on multiple fronts: how do plants cope with diverse enemies. Trends in Plant Science, 1999, 4(6): 215-219.

[30]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Current Opinion in Plant Biology, 2001, 4: 301-308.

[31]Williamson V M, Kumar A. Nematode resistance in plants: the battle underground. TRENDS in Genetics, 2006, 22(7): 396-403.

[32]Gheysen G, Fenoll C. Gene expression in nematode feeding sites. Annual Review of Phytopathology, 2002, 40: 191-219.

[33]Abad P, Favery B, Rosso M N, Castagnone-Sereno P. Root knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 2003, 4(4): 217-224.

[34]Veronico P, Giannino D, Mellillo M T, Leone A, Reyes A, Kennedy M W, Bleve-Zacheo T. A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiology, 2006, 141: 1045-1055.

[35]Klink V P, Overall C C, Alkharouf N, MacDonald M H, Matthews B F. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by soybean cyst nematode (Heterodera glycines). Planta, 2007, 226(6): 1389-1409.

[36]Thies J A, Fery R L. Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperature. Journal of the American Society for Horticultural Science, 1998, 123(6): 1012-1015.

[37]Laxalt A M, Cassia R O, Sanllorenti P M, Madrid E A, Andreu A B, Daleo G R, Conde R D, Lamattina L. Accumulation of cytosolic glyceraldehydes-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. Plant Molecular Biology, 1996, 30: 961-972.

[38]Lange B M, Wildung M R, McCaskill D, Croteau R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate- independent pathway. Proceedings of the National Academy of Science of the United States of America, 1998, 95: 2100-2104.

[39]Klink V P, Alkharout N, MacDonald M, Matthews B. Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Molecular Biology, 2005, 59: 965-979.

[40]常团结, 朱  桢. 植物金属硫蛋白研究进展(二)植物MT基因的表达特征及其功能. 生物技术通报, 2002(5): 1-9.

Chang T J, Zhu Z. Study advances of plant metallothionein expression characteristics and functions of plant MT gene. Biotechnology Bulletin, 2002(5): 1-9. (in Chinese)

[41]Potenza C, Thomas S H, Sengupta-Gopalan C. Genes induced during early response to Meloidogyne incognita in roots of resistant and susceptible alfalfa cultivars. Plant Science, 2001, 161: 289-299.

[42]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 2003, 51: 21-37.

[43]Bar-Or C, Kapulnik Y, Koltai H. A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. European Journal Plant Pathology, 2005, 111: 181-192.
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[3] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[6] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[7] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[8] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[9] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!