Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (6): 1116-1126.doi: 10.3864/j.issn.0578-1752.2012.06.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Declining Process of Soil Phosphorus Availability and Comparison Between Agronomic and Environmental Indexes in Red Soil

 WEI  Hong-An, LI  Yu-Yuan, YANG  Rui, GAO  Ru, SHI  Hui, ZHANG  Man-Yi, WU  Jin-Shui   

  1. 1.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室,长沙 410125
    2.西安建筑科技大学环境与市政工程学院,西安 710055
  • Received:2010-12-20 Online:2012-03-15 Published:2011-04-19

Abstract: 【Objective】This study is to probe the key declining process of soil available phosphorus (SAP) and its relationship with  P fertilizer application rate in red soil, and to verify the mathematical relationships among soil available P indexes in agronomy and environment. 【Method】 An laboratory incubation experiment was conducted with artificial fertilization and stable temperature of 25℃ using the material of red soil collected from subtropical area. The dynamic process of SAP was studied through testing SAP and phosphorus sorption index (PSI) in fresh soil samples in 1 h, 3 h, 12 h, 24 h, 3 d, 6 d, 9 d, 15 d, 30 d, and 60 d after fertilizer application into soil. Two types of test methods including Olsen- (OP), Bray 1-(BP), and Mehlich 3- (MP) extraction methods (agronomic type) and distilled water (HP) and 0.01M CaCl2 (CP) extraction methods (environmental type) were used. 【Result】 There was an obvious critical time (tc) during the declining process of SAP in red soil, ranging from 0.1 h to 18.7 h. The declining rate of SAP was rapid before tc but turned to be markedly slow since then. The impact of fertilizer application rate on tc was significant. The values of tc for OP, BP, and MP linealy delayed with the increment of fertilizer amount. However, the values of tc for HP and CP tended to delay in a power function pattern. Environmental index was nonlineally related to agronomic ones and there was a “change point” between them. Depending on this relationship, the threshold of soil P for environmental risk could be estimated. The thresholds of OP, BP, and MP based on CP were 49.97 mg•kg-1, 91.07 mg•kg-1, and 30.54 mg•kg-1, respectively, but these values based on HP were 60.78 mg•kg-1, 82.74 mg•kg-1, and 39.65 mg•kg-1, respectively. PSI ranged from 17.92 to 26.29 with the increasing fertilizer application rate and the value of PSI versus the threshold of OP for environmental risk was 23.46. 【Conclusion】There was an obvious critical time during the declining process of SAP in red soil. The value of critical time delays with increasing fertilizer application amount and subsequently the risk of soil P moving to the environment is more serious. There is a non-linear relationship between agronomic and environmental index. The critical value of SAP for environmental risk could be calculated according to this. The Olsen-P threshold of the tested red soil is 50 - 60 mg•kg-1and the relevant PSI is 23.46.

Key words: soil available phosphorus, fertilizer application amount, P threshold for environmental risk, phosphorus sorption index (PSI), red soil

[1]Schindler D W. Evolution of phosphorus limitation in lakes. Science, 1977, 195: 260-262.

[2]Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. Nutrient imbalances in agricultural development. Science, 2009, 324: 1519-1520.

[3]Gilbert N. The disappearing nutrient. Nature, 2009, 461: 716-718.

[4]鲁如坤, 时正元, 钱承梁. 磷在土壤中有效性的衰减. 土壤学报, 2000, 37(3): 323-329.

Lu R K, Shi Z Y, Qian C L. Decline of phosphorus availability with time in soils. Acta Pedologica Sinica, 2000, 37(3): 323-329. (in Chinese)

[5]姜 波, 林咸永, 章永松. 杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究. 浙江大学学报: 农业与生命科学版, 2008, 34(2): 207-213.

Jiang B, Lin X Y, Zhang Y S. Phosphorus status and index for predicting environmental risk of phosphorus leaching in typical vegetable soils of Hangzhou. Journal of Zhejiang University: Agricu1ture and Life Science Edition, 2008, 34(2): 207-213. (in Chinese)

[6]秦红灵, 全 智, 刘新亮, 李明德, 宗 勇, 吴金水, 魏文学. 长沙市郊不同种植年限菜地土壤磷状况及淋失风险分析. 中国农业科学, 2010, 43(9): 1843-1851.

Qin H L, Quan Z, Liu X L, Li M D, Zong Y, Wu J S, Wei W X. Phosphorus status and risk of phosphate leaching loss from vegetable soil of different planting years in suburbs of Changsha. Scientia Agricultura Sinica, 2010, 43(9): 1843-1851. (in Chinese)

[7]Sharpley A N, Richard W. M, Kleinman P J A. Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil, 2001, 237: 287-307.

[8]庄卫民, 蔡婷婷, T. W. Olsen. 土壤磷提取方法评价. 土壤学进展, 1995, 23(4): 48-53.

Zhuang W M, Cai T T, Olsen T W. The impact of phosphorus extracted method in soil. Progress in Soil Science, 1995, 23(4): 48-53. (in Chinese)

[9]Hesketh N, Brookes P C. Development of an indicator for risk of phosphorus leaching. Journal of Environmental Quality, 2000, 29(1): 105-l10.

[10]Carter M R, Gregorich E G. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, 2004.

[11]孙宏飞, 吕家珑, 刘利花, 张翠荣. 土壤磷素淋溶预测指标研究. 水土保持通报, 2006, 26(3): 55-58.

Sun H F, Lü J L, Liu L H, Zhang C R. Research on predicting index of phosphorus leaching from soil. Bulletin of Soil and Water Conservation, 2006, 26(3): 55-58. (in Chinese)

[12]周慧平, 高 超, 王登峰, 赵和苍, 张桃林. 巢湖流域农田土壤磷吸持指数及吸持饱和度特征. 农业环境科学学报, 2007, 26(增刊): 386-389.

Zhou H P, Gao C, Wang D F, Zhao H C, Zhang T L. Phosphorus sorption and saturation in topsoil of Chaohu Lake watershed. Journal of Agro-Environment Science, 2007, 26(Suppl.): 386-389. (in Chinese)

[13]李裕元. 坡地磷素迁移研究进展. 水土保持研究, 2006, 13(5): 1-4.

Li Y Y. Review of study on phosphorus transport on slope land. Research of Soil and Water Conservation, 2006, 13(5): 1-4. (in Chinese)

[14]吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量——测定方法及其应用. 北京: 气象出版社, 2004.

Wu J S, Lin Q M, Huang Q Y, Xiao H A. Soil Microbial Biomass—Methods and Application. Beijing: China Meteorological Press, 2004. (in Chinese)

[15]刘苏峡, 莫兴国, 夏 军, 刘昌明, 林忠辉, 门宝辉, 吉利娜. 用斜率和曲率湿周法推求河道最小生态需水量的比较. 地理学报, 2006, 61(3): 273-281.

Liu S X, Mo X G, Xia J, Liu C M, Lin Z H, Men B H, Ji L N. Uncertainty analysis in estimating the minimum ecological instream flow requirements via wetted perimeter method: curvature technique or slope technique. Acta Geographica Sinica, 2006, 61(3): 273-281. (in Chinese)

[16]McDowell R W, Sharpley A N, Condron L M, Haygarth P M, Brookes P C. Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutrient Cycling in Agroecosystems, 2001, 59: 269-284.

[17]Fortune S, Lu J, Addiscott T M, Brookes P C. Assessment of phosphorus leaching losses from arable land. Plant and Soil, 2005, 269: 99-108.

[18]于天仁, 王振全. 土壤分析化学. 北京: 科学出版社, 1988.

Yu T R, Wang Z Q. Soil Analytical Chemistry. Beijing: Science Press, 1988. (in Chinese)

[19]Maguire R O, Sims J T. Soil testing to predict phosphorus leaching. Journal of Environmental Quality, 2002, 31(5): 1601-1609.

[20]钟晓英, 赵小蓉, 鲍华军, 李浩浩, 李贵桐, 林启美. 我国23个土壤磷素淋失风险评估I.淋失临界值. 生态学报, 2004, 24(10): 2275-2280.

Zhong X Y, Zhao X R, Bao H J, Li H H, Li G T, Lin Q M. The evaluation of phosphorus leaching risk of 23 Chinese soils I.Leaching criterion. Acta Ecologica Sinica, 2004, 24(10): 2275-2280. (in Chinese)

[21]Zhao X R, Zhong X Y, Bao H J, Li H H, Li G T, Tuo D B, Lin Q M, Brookes P C. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils. Geoderma, 2007, 142: 237-244.

[22]梁 圆, 王兴祥, 张桃林. 基于水环境风险的红壤性水稻土Olsen-P突变点研究. 土壤, 2008, 40(5): 770-776.

Liang Y, Wang X X, Zhang T L. Study on Olsen-P change-point in paddy soil derived from red soil based on risk of water environment. Soils, 2008, 40(5): 770-776. (in Chinese)

[23]Bache B W, Williams E G. A phosphate sorption index for soils. Journal of Soil Science, 1971, 22(3): 289-301.

[24]高  超, 张桃林. 面向环境的土壤磷素测定与表征方法研究进展. 农业环境保护, 2000, 19 (5): 282-285.

Gao C, Zhang T L. Review on environment oriented soil phosphorus testing procedures and interpreting methods. Agro-environmental Protection, 2000, 19(5): 282-285. (in Chinese)

[25]Indiati R, Sharpley A N. Soil phosphorus sorption and simulated runoff parameters as affected by fertilizer addition and soil properties. Communications in Soil Science and Plant Analysis, 1995, 26(15/16): 2319-2321.

[26]高  超, 张桃林, 吴蔚东. 农田土壤中的磷向水体释放的风险评 价. 环境科学学报, 2001, 21(3): 344-348.

Gao C, Zhang T L, Wu W D. Risk evaluation of agricultural soft phosphorus release to the water bodies. Acta Scientiae Circumstantiae, 2001, 21(3): 344-348. (in Chinese)

[27]党廷辉, 郝明德, 郭胜利. 石灰性土壤磷素的化学活化途径探讨. 水土保持学报, 2005, 19(2): 100-101, 146.

Dang T H, Hao M D, Guo S L. Study on releasing soil phosphorus with chemistry method on calcareous soil. Journal of Soil and Water Conservation, 2005, 19(2): 100-101, 146. (in Chinese)

[28]娄运生, 李忠佩, 张桃林. 不同水分状况及施磷量对水稻土中速效磷含量的影响. 土壤, 2005, 37(6): 640-644.

Lou Y S, Li Z P, Zhang T L. Change in available P content in paddy soils affected by phosphorus fertilization and soil moisture regime. Soils, 2005, 37(6): 640-644. (in Chinese)

[29]李祖荫, 吕家珑. 碳酸钙与物理黏粒固磷特性的研究. 土壤, 1995, 27(6): 304-310.

Li Z Y, Lü J L. Research on characteristics of phosphate immobilization of calcium carbonate and physical viscous grain. Soils, 1995, 27(6): 304-310. (in Chinese)

[30]McDowell R W, Sharpley A N. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma,2003,112(1/2): 143-154.

[31]Guo S L, Dang T, Hao M D. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere, 2008, 18(2): 248-256.

[32]刘光菘. 土壤理化分析与剖面描述. 北京:中国标准出版社, 1996.

Liu G S. Physical and Chemical Analysis and Profile Description of Soil. Beijing: China Standard Press, 1996. (in Chinese)

[33]封  克, 汪晓丽, 陆海明, 赵海涛. 风干对土壤主要无机磷组分的影响. 中国农业科学, 2004, 37(6): 865-870.

Feng K, Wang X L, Lu H M, Zhao H T. Effects of air-drying on the inorganic phosphorus forms in soils. Scientia Agricultura Sinica, 2004, 37(6): 865-870. (in Chinese)

[34]Schofield R K. Can precise meaning be given to “available” soil phosphorus? Soil and Fertilizers, 1955, 12(4): 373-375.

[35]雷明江, 杜昌文, 杨玉华, 周健民, 王火焰, 陈小琴. 用三种浸提方法研究长期定位试验中土壤磷素有效性. 水土保持学报, 2007, 21(2): 85-88, 146.

Lei M J, Du C W, Yang Y H, Zhou J M, Wang H Y, Chen X Q. Application of three extraction procedures to study phosphorus availability in long-term experiment. Journal of Soil and Water Conservation, 2007, 21(2): 85-88, 146. (in Chinese)

[36]章明奎. 砂质土壤中水溶性磷提取方法的比较. 环境化学, 2008, 27(2): 265-266.

Zhang M K. A comparison of water-soluble P extracted method on sandy soil. Environmental Chemistry, 2008, 27(2): 265-266. (in Chinese)

[37]吕家珑, Fortune S, Brookes P C. 土壤磷淋溶状况及其Olsen磷“突

变点”研究. 农业环境科学学报, 2003, 22(2): 142-146.

Lü J L, Fortune S, Brookes P C. Research on phosphorus leaching from soil and its Olsen-P “Threshold Volume”. Journal of Agro-Environment Science, 2003, 22(2): 142-146. (in Chinese)

[38]王彩绒, 胡正义, 杨林章, 高义民, 吕家珑. 太湖典型地区蔬菜地土壤淋失风险. 环境科学学报, 2005, 25(1): 76-80.

Wang C R, Hu Z Y, Yang L Z, Gao Y M, Lü J L. Risk of phosphate leaching loss from soil of vegetable plot in the typical region of  Taihu Lake. Acta Scientiae Circumstantiae, 2005, 25(1): 76-80. (in Chinese)

[39]王新民, 侯彦林, 杨信延, 李见云. 农学与环境学上磷素测定方法在石灰性潮土中的应用比较. 农业环境科学学报, 2004, 23(5): 1030-1033.

Wang X M, Hou Y L, Yang X Y, Li J Y. Comparison of phosphorus extracted and determined by agronomic and environmental methods in Fluvo-aquic soils. Journal of Agro-Environment Science, 2004, 23(5): 1030-1033. (in Chinese)
[1] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[2] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[3] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[4] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[5] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[6] ZHOU HaiYan,XU MingGang,CAI ZeJiang,WEN ShiLin,WU HongHui. Quantitative Analysis of Driving-Factors of Soil Acidification in Qiyang County, Hunan Province [J]. Scientia Agricultura Sinica, 2019, 52(8): 1400-1412.
[7] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[8] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
[9] LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil [J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315.
[10] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
[11] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[12] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[13] LI RuoNan, WU XuePing, ZHANG YanCai, WANG LiYing, ZHAI FengZhi, CHEN LiLi, SHI JianShuo, XU QiangSheng, HUANG ShaoWen. Effects of Reduced Phosphorus Fertilization on Soil Phosphorus Accumulation, Leaching and Utilization in Greenhouse Vegetable Production [J]. Scientia Agricultura Sinica, 2017, 50(20): 3944-3952.
[14] HUANG Jing, ZHANG Yang-zhu, XU Ming-gang, GAO Ju-sheng. Evolution Characteristics of Soil Available Phosphorus and Its Response to Soil Phosphorus Balance in Paddy Soil Derived from Red Earth Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141.
[15] YING Jie-guan, LIN Qing-yi, ZHANG Meng-yang, HUANG Yi, PENG Shu-ang, JIANG Cun-cang. Mitigative Effect of Biochar on Aluminum Toxicity of Acid Soil and the Potential Mechanism [J]. Scientia Agricultura Sinica, 2016, 49(23): 4576-4583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!