Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (24): 4980-4987.doi: 10.3864/j.issn.0578-1752.2011.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Fast Chlorophyll Fluorescence Parameters in Soybean

 YIN  Zhi-Tong, MENG  Fan-Fan, SONG  Hai-Na, CHAO  Mao-Ni, XU  Xiao-Ming, DENG  De-Xiang, YU  De-Yue   

  1. 1.南京农业大学国家大豆改良中心/作物遗传与种质创新国家重点实验室,南京 210095
    2.扬州大学农学院/作物遗传生理江苏省重点实验室/植物功能基因组学教育部重点实验室,江苏扬州 225009
    3.南京农业大学生命科学学院,南京210095
  • Received:2011-06-22 Online:2011-12-15 Published:2011-10-17

Abstract: 【Objective】 The present study is aimed to identify QTL associated with fast chlorophyll fluorescence parameters (JIP parameters), examine the genetic relationships among different parameters, and compare the genetic base underlying the parameters between the two growth stages of R2 and R6 in soybean. 【Method】 A pot experiment was carried out to evaluate five JIP parameters at R2 growth stage using 184 recombinant inbred lines (RILs) derived from a cross between two varieties of Kefeng 1 and Nannong 1138-2, and then the QTL of above parameters were detected and mapped. 【Result】 A total of 16 QTL, located on linkage groups (LGs) A1, C2, D2, I, M, N and O, respectively, were identified, and explained phenotypic variation ranging from 4.40% to 20.06% with the LOD score from 2.40 to 5.65. Three major genomic regions were detected to be associated with several parameters simultaneously, which were between markers Satt286 and Satt316 on LG C2, marker Sat_418 and Satt650 on LG I, and marker Sat_231 and sat_196 on LG O, respectively. 【Conclusion】 Different JIP parameters might be controlled by the same or different genes. Most of the QTL associated with JIP parameters were not detected consistently at R2 and R6 growth stage, indicating that the genetic mechanism underlying the JIP parameters is relatively complicated. The marker interval between Sat_231 and Sat_196 on LG O was detected at both R2 and R6 growth stage, and this genomic region may contain stably expressing genes underlying the intrinsic features of the photosynthetic apparatus and be useful in the breeding practice of soybean.

Key words: soybean, fast chlorophyll fluorescence parameters (JIP parameters), recombinant inbred line (RIL), QTL mapping

[1]Krause G, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Biology, 1991, 42: 313-349.

[2]Stirbet A, Govindjee Z. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B, 2011, 236-257.

[3]李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566.

Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566. (in Chinese)

[4]Bilger W, Schreiber U. Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynthesis Research, 1986, 10: 303-308.

[5]Genty B, Briantais J M, Baker N. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 1989, 900: 87-92.

[6]Strasser R J, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient//Papageorgiou G C, Govindjee. Chlorophyll fluorescence: a signature of photosynthesis (Advances in photosynthesis and respiration). The Netherlands: Springer, 2004: 321-362.

[7]梁慧珍, 王树峰, 余永亮, 练 云, 王庭峰, 位艳丽, 巩鹏涛, 刘学义, 方宣钧. 大豆异黄酮与脂肪、蛋白质含量基因定位分析. 中国农业科学, 2009, 42(8): 2652-2660.

Liang H Z, Wang S F, Yu Y L, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J. QTL mapping of isoflavone, oil and protein content in soybean. Scientia Agricultura Sinica, 2009, 42(8): 2652-2660. (in Chinese)

[8]丁安明, 崔 法, 李 君, 赵春华, 王秀芹, 王洪刚. 小麦单株产量与株高的QTL分析. 中国农业科学, 2011, 44(14): 2857-2867.

Ding A M, Cui F, Li J, Zhao C H, Wang X Q,Wang H G. QTL analysis on grain yield per plant and plant height in wheat. Scientia Agricultura Sinica, 2011, 44(14): 2857-2867. (in Chinese)

[9]Yin Z T, Meng F F, Song H N, Wang X L, Xu X M, Yu D Y. Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. Plant Physiology, 2010,152: 1625-1637.

[10]Jompuk C, Fracheboud Y, Stamp P, Leipner J. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. Journal of Experimental Botany, 2005, 56: 1153-1163.

[11]Guo P, Baum M, Varshney R K, Graner A, Grando S, Ceccarelli S. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 2008, 163:203-214.

[12]Yin Z T, Meng F F, Song H N, He X H, Xu X M, Yu D Y. Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (glycine max (L.) merr.). Planta, 2010, 231: 875-885.

[13]Yin Z T, Meng F F, Song H N, Wang X L, Chao M N, Zhang G Z, Xu X M, Deng D X, Yu D Y. The expression of the GmFtsH9 gene correlates with in vivo photosystem II function, probed by chlorophyll a transient and eQTL mapping in a soybean population of recombinant inbred lines. Planta, 2011,234: 815-827.

[14]Fu S X, Zhan Y, Zhi H J, Gai J Y, Yu D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 2006, 128: 63-69.

[15]Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Science, 1999, 39: 1464-1490.

[16]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer v2.5. Raleigh, NC: North Carolina State University, 2011.

[17]Churchill G A, Doerge R W. Empirical threshold values for quantitative triat mapping. Genetics, 1994, 138: 963-971.

[18]Lee S Y, Ahn J H, Cha Y S, Yun D W, Lee M C, Ko J C, Lee K S, Eun M Y. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breeding, 2007, 126: 43-46.

[19]Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biologia Plantarum, 2008, 52: 259-266.

[20]印志同, 宋海娜, 孟凡凡, 许晓明, 喻德跃. 大豆光合气体交换参数的QTL分析. 作物学报, 2010, 36(1): 92-100.

Yin Z T, Song H N, Meng F F, Xu X M, Yu D Y. QTL mapping for photosynthetic gas-exchange parameters in soybean. Acta Agronomica Sinica, 2010, 36(1): 92-100. (in Chinese)

[21]Fracheboud Y, Jompuk C, Ribaut J M, Stamp P, Leipner J. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Molecular Biology, 2004, 56: 241-253.

[22]Fracheboud Y, Ribaut J M, Vargas M, Messmer R, Stamp P. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). Journal of Experimental Botany, 2002, 53: 1967-1977.

[23]Cui S Y, He X H, Fu S X, Meng Q C, Gai J Y, Yu D Y. Genetic dissection of the relationship of apparent biological yield and apparent harvest index with seed yield and yield related traits in soybean. Australian Journal of Agricultural Research, 2008, 59: 86-93.

[24]Padraic J F, Jeremy H, Mark G M A. Natural genetic variation in plant photosynthesis. Trends in Plant Science, 2011, 16: 327-335.

[25]Sinclair T R, Purcell L C, Sneller C H. Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 2004, 9: 70-75.

[26]Lazar D. Modeling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal. Photosynthetica, 2009, 47: 483-498.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[10] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[11] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[12] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[14] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!