Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 719-732.doi: 10.3864/j.issn.0578-1752.2025.04.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers

SHI Fan1(), LI WenGuang1, YI ShuSheng1, YANG Na1, CHEN YuMeng1, ZHENG Wei1,2, ZHANG XueChen1,2, LI ZiYan1,2, ZHAI BingNian1,2()   

  1. 1 College of Natural and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    2 Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2024-04-16 Accepted:2024-05-28 Online:2025-02-16 Published:2025-02-24
  • Contact: ZHAI BingNian

Abstract:

【Objective】This experiment was conducted to study the content characteristics of soil organic carbon components under long-term organic and inorganic fertilizers and the contribution of each component to the yield of winter wheat in dryland, with a view to providing an important theoretical basis and practical value for the increase of wheat yield and soil fertilization in Northwest dryland. 【Method】This study was based on a nine-year long-term positioning experiment, using a fissure design, with two organic fertilizer levels (M0 and M1) for the main treatment, and five nitrogen levels (N0, N75, N150, N225, N300) for the side treatment. The variation characteristics of winter wheat grain yield and soil organic carbon and its components were analyzed, including dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC), and mineral organic carbon (MOC), as well as the differences in the mass fractions of the components, and the contribution of each component of organic carbon to wheat grain yield was quantified. 【Result】With the increase of nitrogen application rate, the wheat grain yield increased first and then decreased, while the grain yield of wheat increased by 4.80% under organic fertilizers than that under chemical fertilizers alone. The highest yield (8 143.2 kg·hm-2) was obtained under M1N150 treatment, which increased by 85.36% compared with M0N0 treatment, and this fertilizer application decreased by 75 kg·hm-2 compared with the local conventional nitrogen application. After 9 years of continuous fertilizer application, the SOC content under M1N150 treatment was significantly increased by 103.30% compared than the soil at the initial stage of the experiment (2014). That is, the nitrogen rate of 150 kg·hm-2 combined with 30 t·hm-2 organic fertilizer would not only significantly improve the soil fertilizer cultivation effect, but also increase the winter wheat yield on the basis of reducing nitrogen application. The study of soil organic carbon fractions under different fertilization treatments showed that, compared with chemical fertilizers alone, the organic and inorganic fertilizers combined treatments increased the content of POC, DOC and MBC fractions as well as the proportion of POC fractions in SOC. The sensitivity indices of SOC and the contents of each organic carbon component showed that the soil active organic carbon components (DOC, MBC and POC) responded significantly to the organic and inorganic fertilizer treatments, among which the POC and DOC components were the most sensitive to the response of farmland management measures. The correlation analysis between soil organic carbon components and wheat yield showed that POC, DOC and MBC components had positive effects on yield increase; the results of Random Forest Analysis (RFA) further proved that the POC and DOC components contributed more to wheat yield under the combined application of organic and inorganic fertilizers. Therefore, it could be inferred that the increase of crop productivity and soil fertility by organic and inorganic fertilization was mainly achieved by increasing the DOC and POC content of organic carbon in the soil. 【Conclusion】When 150 kg·hm-2 of nitrogen was applied with 30 t·hm-2 of organic fertilizer, it was more conducive to the enhancement of the content of soil organic carbon and reactive organic carbon fractions in wheat fields in the drylands of Northwest China, which in turn improved the yield of winter wheat in dryland, with the DOC and POC fractions contributing the most to the yield of wheat.

Key words: dryland, winter wheat, application of organic and inorganic fertilizers, yield, soil organic carbon fraction

Table 1

Nutrient status of plough layer soil"

土层
Soil layer
(cm)
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
速效氮
Available N
(mg·kg-1)
有效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
pH
0-20 13.88 0.83 9.00 9.17 155.66 8.14
20-40 12.91 0.64 7.82 9.11 133.85 8.21

Table 2

The test design scheme"

处理Treatment 氮肥
N (kg·hm-2)
有机肥
Organic fertilizer (kg·hm-2)
磷肥
P2O5 (kg·hm-2)
钾肥
K2O (kg·hm-2)
主处理 Main treatment 副处理 Side treatment
M0 N0 0 0 90 60
N75 75 0 90 60
N150 150 0 90 60
N225 225 0 90 60
N300 300 0 90 60
M1 N0 0 30000 90 60
N75 75 30000 90 60
N150 150 30000 90 60
N225 225 30000 90 60
N300 300 30000 90 60

Fig. 1

Effects of different fertilization treatments on SOC content of soil organic carbon The lowercase letters indicated that the significant difference between different organic fertilizer levels under the same nitrogen level (P<0.05); the uppercase letters indicated the significant difference between different nitrogen levels under the same organic fertilizer level (P<0.05). *: P<0.05;**: P<0.01;***: P<0.001. The same applies Fig.3, Fig.4"

Table 3

Effects of different fertilization treatments on yield and yield components of winter wheat"

处理
Treatment
有效穗数
Spike number (×104·hm-2)
千粒重
1000-grain weight (g)
穗粒数
Grain number
产量
Yield (kg·hm-2)
M0 N0 391Cb 48.04Aa 23Bb 4898.10Cb
N75 436Ba 45.56Ba 36Aa 6927.25Ba
N150 495Ab 41.47Ca 40Aa 7549.65ABa
N225 510Aa 41.67Ca 40Aa 7982.43Aa
N300 499Aa 40.55Ca 38Aa 7327.83ABa
M1 N0 448Ca 45.96Ab 31Ba 5944.27Ca
N75 491BCa 45.10Aa 31Ba 7272.70Ba
N150 550Aa 42.21Ba 36Aa 8143.20Aa
N225 526ABa 42.46Ba 37Aa 7692.36ABa
N300 515ABa 41.50Ba 35Aa 7298.49Ba
N ** *** ** ***
M * ns ns **
N×M ns * ns *

Fig. 2

Correlation analysis between soil organic carbon content and winter wheat grain yield at maturity stage during the experimental period from 2015 to 2023(n=32)"

Fig. 3

Effects of different fertilization treatments on soil organic carbon fractions"

Fig. 4

The proportion of soil organic carbon components to SOC under different treatments"

Fig. 5

The SI values of SOC and its components under different fertilization treatments"

Fig. 6

Correlation analysis of soil organic carbon components and wheat yield Yield: Wheat yield; DOC: Soil dissolved organic carbon; MBC: Soil microbial biomass carbon; POC: Soil particulate organic carbon; MOC: Soil mineral-bound organic carbon. The same as below"

Fig. 7

Random forest analysis of soil organic carbon components on wheat yield"

[1]
刘哲文, 郭丹丹, 常旭虹, 王德梅, 王艳杰, 杨玉双, 王玉娇, 柏军兵, 石书兵, 赵广才. 小麦产量和品质对不同类型土壤和施氮处理的响应. 麦类作物学报, 2022, 42(5): 623-630.
LIU Z W, GUO D D, CHANG X H, WANG D M, WANG Y J, YANG Y S, WANG Y J, BAI J B, SHI S B, ZHAO G C. Responses of yield and quality of wheat to different soil types and nitrogen treatments. Journal of Triticeae Crops, 2022, 42(5): 623-630. (in Chinese)
[2]
王楚涵, 刘菲, 高健永, 张慧芳, 谢英荷, 曹寒冰, 谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征. 中国农业科学, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn.0578-1752.2022.19.008.
WANG C H, LIU F, GAO J Y, ZHANG H F, XIE Y H, CAO H B, XIE J Y. The variation characteristics of soil organic carbon component content under nitrogen reduction and film mulching. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn.0578-1752.2022.19.008. (in Chinese)
[3]
YANG Y R, HE Y C, LI Z L. Social capital and the use of organic fertilizer: an empirical analysis of Hubei Province in China. Environmental Science and Pollution Research, 2020, 27(13): 15211-15222.
[4]
LV F L, SONG J S, GILTRAP D, FENG Y T, YANG X Y, ZHANG S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. The Science of the Total Environment, 2020, 732: 139321. (in Chinese)
[5]
霍琳, 王成宝, 逄焕成, 杨思存, 李玉义, 姜万礼. 有机无机肥配施对新垦盐碱荒地土壤理化性状和作物产量的影响. 干旱地区农业研究, 2015, 33(4): 105-111.
HUO L, WANG C B, PANG H C, YANG S C, LI Y Y, JIANG W L. Effects of combined application of organic and inorganic fertilizers on physical and chemical properties and crop yields in alkali-saline soil. Agricultural Research in the Arid Areas, 2015, 33(4): 105-111. (in Chinese)
[6]
张然. 有机无机肥配施对旱地冬小麦产量品质和土壤理化性质的影响[D]. 杨凌: 西北农林科技大学, 2020.
ZHANG R. Effects of combined application of organic and inorganic fertilizers on yield and quality of winter wheat and soil physicochemical properties in dryland[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[7]
SEMENOV M V, KRASNOV G S, SEMENOV V M, KSENOFONTOVA N, ZINYAKOVA N B, VAN BRUGGEN A H C. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? Journal of Environmental Management, 2021, 294: 113018.
[8]
HE Y T, ZHANG W J, XU M G, TONG X G, SUN F X, WANG J Z, HUANG S M, ZHU P, HE X H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. The Science of the Total Environment, 2015, 532: 635-644.

doi: 10.1016/j.scitotenv.2015.06.011 pmid: 26119378
[9]
DUMALE W A Jr, MIYAZAKI T, NISHIMURA T, SEKI K. CO2 evolution and short-term carbon turnover in stable soil organic carbon from soils applied with fresh organic matter. Geophysical Research Letters, 2009, 36(1): 143-153.
[10]
郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013.
ZHENG F J, WANG X, LI S P, LIU X T, LIU Z P, LU J J, WU X P, XI J L, ZHANG J C, LI Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Scientia Agricultura Sinica, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013. (in Chinese)
[11]
梁爱珍, 张晓平, 杨学明, 申艳, 时秀焕, 范如芹, 方华军. 黑土颗粒态有机碳与矿物结合态有机碳的变化研究. 土壤学报, 2010, 47(1): 153-158.
LIANG A Z, ZHANG X P, YANG X M, SHEN Y, SHI X H, FAN R Q, FANG H J. Dynamics of soil particulate organic carbon and mineral-incorporated organic carbon in black soils in Northeast China. Acta Pedologica Sinica, 2010, 47(1): 153-158. (in Chinese)
[12]
张迪, 韩晓增. 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响. 中国农业科学, 2010, 43(13): 2715-2723. doi: 10.3864/j.issn.0578-1752.2010.13.011.
ZHANG D, HAN X Z. Changes of black soil labile organic carbon pool under different vegetation and fertilization managements. Scientia Agricultura Sinica, 2010, 43(13): 2715-2723. doi: 10.3864/j.issn.0578-1752.2010.13.011. (in Chinese)
[13]
刘骅, 佟小刚, 马兴旺, 王西和, 张文菊, 许咏梅, 徐明岗. 长期施肥下灰漠土矿物颗粒结合有机碳的含量及其演变特征. 应用生态学报, 2010, 21(1): 84-90.
LIU H, TONG X G, MA X W, WANG X H, ZHANG W J, XU Y M, XU M G. Content and evolution characteristics of organic carbon associated with particle-size fractions of grey desert soil under long-term fertilization. Chinese Journal of Applied Ecology, 2010, 21(1): 84-90. (in Chinese)
[14]
王玲莉, 韩晓日, 杨劲峰, 王晔青, 马玲玲, 娄翼来. 长期施肥对棕壤有机碳组分的影响. 植物营养与肥料学报, 2008, 14(1): 79-83.
WANG L L, HAN X R, YANG J F, WANG Y Q, MA L L, LOU Y L. Effect of long-term fertilization on organic carbon fractions in a brown soil. Plant Nutrition and Fertilizer Science, 2008, 14(1): 79-83. (in Chinese)
[15]
王雪芬, 胡锋, 彭新华, 周虎, 余喜初. 长期施肥对红壤不同有机碳库及其周转速率的影响. 土壤学报, 2012, 49(5): 954-961.
WANG X F, HU F, PENG X H, ZHOU H, YU X C. Effects of long-term fertilization on soil organic carbon pools and their turnovers in a red soil. Acta Pedologica Sinica, 2012, 49(5): 954-961. (in Chinese)
[16]
MANNA M, SWARUP A, WANJARI R, RAVANKAR H, MISHRA B, SAHA M, SINGH Y, SAHI D, SARAP P. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Research, 2004, 93(2): 264-280.
[17]
徐阳春, 沈其荣. 长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响. 中国农业科学, 2000, 33(5): 65-71.

doi: 10.3864/j.issn.0578-1752.2000-33-5-67-73
XU Y C, SHEN Q R. Influence of long term application of manure on the contents and distribution of organic C, Total N and P in soil particle sizes. Scientia Agricultura Sinica, 2000, 33(5): 65-71. (in Chinese)
[18]
GOVI M, FRANCIOSO O, CIAVATTA C, SEQUI P. Influence of long-term residue and fertilizer applications on soil humic substances. Soil Science, 1992, 154(1): 8-13.
[19]
JENKINSON D S, FOX R H, RAYNER J H. Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’ effect. Journal of Soil Science, 1985, 36(3): 425-444.
[20]
王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响. 草业学报, 2020, 29(10): 58-69.

doi: 10.11686/cyxb2020187
WANG X J, QI P, CAI L Q, CHEN X L, XIE J H, GAN H J, ZHANG R Z. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau. Acta Prataculturae Sinica, 2020, 29(10): 58-69. (in Chinese)
[21]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[22]
李利利, 王朝辉, 王西娜, 张文伟, 李小涵, 李生秀. 不同地表覆盖栽培对旱地土壤有机碳、无机碳和轻质有机碳的影响. 植物营养与肥料学报, 2009, 15(2): 478-483.
LI L L, WANG Z H, WANG X N, ZHANG W W, LI X H, LI S X. Effects of soil-surface mulching on organic carbon, inorganic carbon and light fraction organic carbon in dryland soil. Plant Nutrition and Fertilizer Science, 2009, 15(2): 478-483. (in Chinese)
[23]
LAN J C. Responses of soil organic carbon components and their sensitivity to Karst rocky desertification control measures in Southwest China. Journal of Soils and Sediments, 2021, 21(2): 978-989.
[24]
LIU Z, ZHU K L, DONG S T, LIU P, ZHAO B, ZHANG J W. Effects of integrated agronomic practices management on root growth and development of summer maize. European Journal of Agronomy, 2017, 84: 140-151.
[25]
SILBER A, GOLDBERG T, SHAPIRA O, HOCHBERG U. Nitrogen uptake and macronutrients distribution in mango (Mangifera indica L. cv. Keitt) trees. Plant Physiology and Biochemistry, 2022, 181: 23-32.
[26]
LAI Z L, FAN J L, YANG R, XU X Y, LIU L J, LI S E, ZHANG F C, LI Z J. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in Northwest China. Agricultural Water Management, 2022, 263: 107453.
[27]
陈毓君, 陈黎岭, 同延安, 杨宪龙, 王少杰, 马海洋, 梁连友. 不同施肥水平对冬小麦群体动态和产量形成的影响. 西北农业学报, 2012, 21(4): 47-53.
CHEN Y J, CHEN L L, TONG Y A, YANG X L, WANG S J, MA H Y, LIANG L Y. Effect of different fertilizer levels on population dynamics and grain yield formation of winter wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(4): 47-53. (in Chinese)
[28]
蔡岸冬, 徐明岗, 张文菊, 王伯仁, 蔡泽江. 土壤有机碳储量与外源碳输入量关系的建立与验证. 植物营养与肥料学报, 2020, 26(5): 934-941.
CAI A D, XU M G, ZHANG W J, WANG B R, CAI Z J. Establishment and verification of the relationship between soil organic carbon storage and exogenous carbon input. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 934-941. (in Chinese)
[29]
ZHANG Q, WANG S L, ZHANG Y H, LI H Y, LIU P Z, WANG R, WANG X L, LI J. Effects of subsoiling rotational patterns with residue return systems on soil properties, water use and maize yield on the semiarid Loess Plateau. Soil and Tillage Research, 2021, 214: 105186.
[30]
曾昭阳, 栾璐, 薛敬荣, 孙波, 蒋瑀霁. 有机肥施用对红壤原生生物与微生物互作的影响. 生态学报, 2023, 43(7): 2938-2948.
ZENG Z Y, LUAN L, XUE J R, SUN B, JIANG Y J. Impacts of manure application on interaction between protists community and microorganisms in red soil. Acta Ecologica Sinica, 2023, 43(7): 2938-2948. (in Chinese)
[31]
汪景宽, 李丛, 于树, 李双异. 不同肥力棕壤溶解性有机碳、氮生物降解特性. 生态学报, 2008, 28(12): 6165-6171.
WANG J K, LI C, YU S, LI S Y. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels. Acta Ecologica Sinica, 2008, 28(12): 6165-6171. (in Chinese)
[32]
梁远宇, 王小利, 徐明岗, 蔡岸冬, 孙楠, 吕艳超. 不同施肥处理下我国典型农田土壤对可溶性有机碳的吸附特征. 农业资源与环境学报, 2022, 39(1): 72-79.
LIANG Y Y, WANG X L, XU M G, SUN N, Y C. Adsorption characteristics of dissolved organic carbon under different fertilization treatments in typical farmland soils in China. Journal of Agricultural Resources and Environment, 2022, 39(1): 72-79. (in Chinese)
[33]
余高, 陈芬, 谢英荷, 谭杰斌. 有机肥替代化肥比例对黄壤土活性有机碳及酶活性的影响. 中国蔬菜, 2020(4): 48-55.
YU G, CHEN F, XIE Y H, TAN J B. Effects of chemical fertilizer replacing organic fertilizer ratio on active organic carbon and enzymatic activity in yellow loam soil. China Vegetables, 2020(4): 48-55. (in Chinese)
[34]
ANDERSON T H, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 1989, 21(4): 471-479.
[35]
张平究, 李恋卿, 潘根兴, 张俊伟. 长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化. 生态学报, 2004, 24(12): 2818-2824.
ZHANG P J, LI L Q, PAN G X, ZHANG J W. Influence of long-term fertilizer management on topsoil microbial biomass and genetic diversity of a paddy soil from the Tai Lake region, China. Acta Ecologica Sinica, 2004, 24(12): 2818-2824. (in Chinese)
[36]
EBHIN MASTO R, CHHONKAR P K, SINGH D, PATRA A K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biology and Biochemistry, 2006, 38(7): 1577-1582.
[37]
石思博. 菌渣化肥配施对稻田土壤有机碳组分及水稻产量的影响[D]. 杭州: 浙江农林大学, 2018.
SHI S B. Effects of combined application of mushroom residue and chemical fertilizer on soil organic carbon composition and rice yield in paddy field[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese)
[38]
CHEN Y, LIU X, HOU Y H, ZHOU S R, ZHU B. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2021, 458(1): 93-103.
[39]
周萍, 潘根兴. 长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响. 土壤通报, 2007, 38(2): 256-261.
ZHOU P, PAN G X. Effect of different long-term fertilization treatments on particulate organic carbon in water-stable aggregates of a paddy soil. Chinese Journal of Soil Science, 2007, 38(2): 256-261. (in Chinese)
[40]
蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响. 中国农业科学, 2015, 48(15): 2995-3004. doi: 10.3864/j.issn.0578-1752.2015.15.009.
CAI A D, ZHANG W J, YANG P P, HAN T F, XU M G. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in china—based on meta-analysis. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004. doi:10.3864/j.issn.0578-1752.2015.15.009. (in Chinese)
[41]
ROCCI K S, LAVALLEE J M, STEWART C E, COTRUFO M F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: a meta-analysis. The Science of the Total Environment, 2021, 793: 148569.
[42]
李顺, 李廷亮, 方玲, 何冰, 焦欢, 李彦. 施肥覆膜对旱地小麦产量形成及土壤有机碳组分的影响. 应用与环境生物学报, 2019, 25(3): 603-610.
LI S, LI T L, FANG L, HE B, JIAO H, LI Y. Effects of fertilization and plastic film mulching on yield formation and soil carbon pool of dry land wheat. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 603-610. (in Chinese)
[43]
张世汉, 武均, 张仁陟, 蔡立群, 齐鹏, 张军. 施氮对陇中黄土高原旱作农田土壤颗粒态有机碳的影响. 水土保持研究, 2019, 26(6): 7-11.
ZHANG S H, WU J, ZHANG R Z, CAI L Q, QI P, ZHANG J. Effects of different nitrogen addition levels on soil particulate organic carbon in dry farmland of central Gansu Province on the Loess Plateau. Research of Soil and Water Conservation, 2019, 26(6): 7-11. (in Chinese)
[44]
JANSSENS I A, LUYSSAERT S. Nitrogen’s carbon bonus. Nature Geoscience, 2009, 2: 318-319.
[45]
樊廷录, 王淑英, 周广业, 丁宁平. 长期施肥下黑垆土有机碳变化特征及碳库组分差异. 中国农业科学, 2013, 46(2): 300-309. doi: 10.3864/j.issn.0578-1752.2013.02.009.
FAN T L, WANG S Y, ZHOU G Y, DING N P. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of Loess Plateau in China. Scientia Agricultura Sinica, 2013, 46(2): 300-309. doi: 10.3864/j.issn.0578-1752.2013.02.009. (in Chinese)
[46]
CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57(4): 1071-1076.
[47]
王国兵, 赵小龙, 王明慧, 阮宏华, 徐长柏, 徐亚明. 苏北沿海土地利用变化对土壤易氧化碳含量的影响. 应用生态学报, 2013, 24(4): 921-926.
WANG G B, ZHAO X L, WANG M H, RUAN H H, XU C B, XU Y M. Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, East China. Chinese Journal of Applied Ecology, 2013, 24(4): 921-926. (in Chinese)
[48]
陈文博. 长期菌渣还田对土壤有机碳稳定性、酶活性和微生物多样性的影响[D]. 杭州: 浙江农林大学, 2020.
CHEN W B. Effects of long-term application of mushroom residue to field on soil organic carbon stability, enzyme activity and microbial diversity[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
[49]
戴伊莎, 贾会娟, 熊瑛, 刘帮艳, 成欣, 王龙昌. 保护性耕作措施对西南旱地玉米田土壤有机碳、氮组分及玉米产量的影响. 干旱地区农业研究, 2021, 39(3): 82-90.
DAI Y S, JIA H J, XIONG Y, LIU B Y, CHENG X, WANG L C. Impact of conservation tillage measures on maize yield, soil organic carbon and nitrogen components of maize field in rain-fed region in southwest China. Agricultural Research in the Arid Areas, 2021, 39(3): 82-90. (in Chinese)
[1] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[2] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[3] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[4] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[5] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[6] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[7] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[8] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[9] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[10] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[11] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[12] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[13] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[14] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[15] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!