Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1687-1708.doi: 10.3864/j.issn.0578-1752.2024.09.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images

ZANG ShaoLong1(), LIU LinRu1, GAO YueZhi1, WU Ke1, HE Li1,3(), DUAN JianZhao1, SONG Xiao2, FENG Wei1,3()   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
    2 Institute of Plant Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    3 National Engineering Research Centre for Wheat, Zhengzhou 450046
  • Received:2023-11-19 Accepted:2024-03-01 Online:2024-05-01 Published:2024-05-09
  • Contact: HE Li, FENG Wei

Abstract:

【Objective】To explore the potential of UAV remote sensing in nitrogen efficiency classification and recognition, a nitrogen efficiency classification method for wheat varieties was constructed, so as to provide the theoretical basis and technical support for nitrogen efficient variety screening.【Method】Six agronomic indicators related to nitrogen efficiency at maturity stage (yield, plant nitrogen accumulation, nitrogen physiological use efficiency, plant dry biomass, total nitrogen uptake of grains, and N harvest index) were used to construct the principal component synthesis value, and K-Means cluster analysis was performed on them. The 121 wheat varieties were divided into three types: high, medium, and low nitrogen efficiency types. A UAV remote sensing platform equipped with a multi-spectral camera was used to obtain remote sensing images of wheat at the jointing, booting and flowering stages, and 34 vegetation indices were extracted to analyze the correlation between vegetation index and nitrogen efficiency comprehensive value. The accuracy of nitrogen efficiency classification models of support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN) classification methods were compared, and the overall classification accuracy (OA) and Kappa coefficient were used to compare the classification and recognition ability of wheat varieties in different growth periods. Three different feature set screening methods(ReliefF algorithm, Boruta algorithm and RF-RFE algorithm) were used to comprehensively evaluate the optimized feature subsets, and an appropriate classification and recognition method for wheat varieties nitrogen efficiency was established.【Result】With the progress of wheat growth stage, the correlation between vegetation index and the comprehensive value of nitrogen efficiency gradually increased, which reached the highest correlation coefficient at flowering stage (r=0.502). The full feature set of vegetation indices was used to classify the nitrogen efficiency of wheat varieties. For the data of single growth stage, SVM model had the best classification accuracy at flowering stage (OA=77.1%, Kappa=0.591), and the worst classification accuracy at jointing stage (OA=65.6%, Kappa=0.406). In general, the classification accuracy of nitrogen efficiency of varieties with multi-growth stage data fusion was higher than that of single growth stage, among which SVM model with jointing stage + booting stage + flowering stage had the best classification accuracy (OA=80.6%, Kappa=0.669). In order to reduce the number of feature set variables in multi-growth period data fusion, the feature optimization effects of RF-RFE, Boruta and ReliefF algorithms were compared and analyzed. The optimal feature subset based on RF-RFE algorithm had the highest classification accuracy, and its OA and Kappa coefficients were 4.0% and 10.1% higher than those of the full feature set classification model, respectively. Among them, the data fusion of three growth stages had the best classification accuracy (OA=85.4%, Kappa=0.749).【Conclusion】The nitrogen efficiency evaluation method with six nitrogen efficiency indexes - principal component analysis -K-Means were established in this study. The RF-RFE algorithm effectively optimized the number of characteristic subsets of the multi-growth period combination, and obtained high classification accuracy. A nitrogen efficiency classification model of wheat varieties based on the fusion of multi-growth period combination and RF-RFE-SVM technology was established, which provided the theoretical basis and technical support for the rapid and accurate classification and identification of wheat varieties with nitrogen efficiency.

Key words: winter wheat, UAV, vegetation index, multiple growth periods, feature selection, nitrogen efficiency classification

Fig. 1

Profile of the research areas a: Xingyang City, Henan Province; b: Yuanyang County, Henan Province"

Table 1

Numbers and names of the studied raw cultivars"

编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
编号
Number
品种名称
Variety name
C1 中麦30
Zhongmai 30
C32 泛育麦20
Fanyumai 20
C62 丰德存5号
Fengdecun 5
C92 西农926
Xinong 926
C2 新麦30
Xinmai 30
C33 西农99
Xinong 99
C63 郑麦1926
Zhengmai 1926
C93 科大116
Keda 116
C3 秋乐168
Qiule 168
C34 泛麦8号
Fanmai 8
C64 矮抗58
Aikang 58
C94 天民304
Tianmin 304
C4 大平原1号
Dapingyuan 1
C35 中育1686
Zhongyu 1686
C65 鑫华818
Xinhua 818
C95 郑366
Zheng 366
C5 新麦26
Xinmai 26
C36 开麦1502
Kaimai 1502
C66 西农633
Xinong 633
C96 豫农416
Yunong 416
C6 周麦27
Zhoumai 27
C37 中麦578
Zhongmai 578
C67 西农579
Xinong 579
C97 郑麦113
Zhengmai 113
C7 郑麦369
Zhengmai 369
C38 漯麦18
Luomai 18
C68 豫农907
Yunong 907
C98 豫农186
Yunong 186
C8 洛麦41
Luomai 41
C39 兰考198
Lankao 198
C69 浚麦8105
Xunmai 8105
C99 西农161
Xinong 161
C9 西农20
Xinong 20
C40 平安0602
Pingan 0602
C70 西农586
Xinong 586
C100 郑麦33
Zhengmai 33
C10 平安658
Pingan 658
C41 泰农18
Tainong 18
C71 豫农908
Yunong 908
C101 郑育11
Zhengyu 11
C11 怀川709
Huaichuan 709
C42 阜麦936
Fumai 936
C72 艾麦24
Aimai 24
C102 豫农804
Yunong 804
C12 周麦30
Zhoumai 30
C43 平安518
Pingan 518
C73 漯丰7011
Luomai 7011
C103 泉麦39
Quanmai 39
C13 洛麦37
Luomai 37
C44 新麦45
Xinmai 45
C74 稷麦337
Jimai 337
C104 连麦1901
Lianmai 1901
C14 怀川758
Huaichuan 758
C45 云台301
Yuntai 301
C75 富麦916
Fumai 916
C105 周麦28
Zhoumai 28
C15 漯麦163
Luomai 163
C46 优麦3号
Youmai 3
C76 春晓158
Chunxiao 158
C106 百农889
Bainong 889
C16 偃高58
Yangao 58
C47 豫麦49198
Yumai 49198
C77 滑育麦1号
Huayumai 1
C107 轮选369
Lunxuan 369
C17 洛麦31
Luomai 31
C48 扬麦22
Yangmai 22
C78 轮选136
Lunxuan 136
C108 洛麦27
Luomai 27
C18 新麦60
Xinmai 60
C49 郑麦163
Zhengmai 163
C79 许麦1706
Xumai 1706
C109 许科168
Xuke 168
C19 天宁38号
Tianning 38
C50 轮选989
Lunxuan 989
C80 昌麦20
Changmai 20
C110 洛麦29
Luomai 29
C20 百麦1811
Baimai 1811
C51 轮选125
Lunxuan 125
C81 徐麦17106
Xumai 17106
C111 天麦119
Tianmai 119
C21 郑麦136
Zhengmai 136
C52 百农207
Bainong 207
C82 新麦65
Xinmai 65
C112 保丰1903
Baofeng 1903
C22 西农511
Xinong 511
C53 豫麦18
Yumai 18
C83 周麦33号
Zhoumai 33
C113 漯丰1901
Luofeng 1901
C23 郑麦158
Zhengmai 158
C54 轮选69
Lunxuan 69
C84 怀川101
Huaichuan 101
C114 许麦1636
Xumai 1636
C24 中育1428
Zhongyu 1428
C55 豫麦61
Yumai 61
C85 吉兴653
Jixing 653
C115 阜麦16
Fumai 16
C25 囤麦259
Tunmai 259
C56 小偃6号
Xiaoyan 6
C86 鹤麦601
Hemai 601
C116 中育1220
Zhongyu 1220
C26 洛麦26
Luomai 26
C57 济麦229
Jimai 229
C87 憨丰3468
Hanfeng 3468
C117 新麦29
Xinmai 29
C27 洛麦34
Luomai 34
C58 存麦29
Cunmai 29
C88 职院171
Zhiyuan 171
C118 周麦32
Zhoumai 32
C28 囤麦257
Tunmai 257
C59 西农979
Xinong 979
C89 郑研麦182
Zhengyanmai 182
C119 囤麦127
Tunmai 127
C29 郑品麦8号
Zhengpinmai 8
C60 太麦198
Taimai 198
C90 百农4199
Bainong 4199
C120 郑麦618
Zhengmai 618
C30 郑麦1860
Zhengmai 1860
C61 涡麦44
Womai 44
C91 郑大181
Zhengda 181
C121 泛育麦18
Fanyumai 18
C31 存麦16 Cunmai 16

Fig. 2

Technical flowchart"

Fig. 3

DJI M600Pro UAV, equipped with camera and image acquisition"

Table 2

Spectral indices and calculation formula in this study"

植被指数 Vegetation indices 公式 Formulas
归一化植被指数NDVI (Rnir-Rred)/(Rnir+Rred)
重归一化植被指数RDVI 0.5(Rnir-Rred)/(Rnir+Rred)
优化土壤调节植被指数OSAVI 1.16(Rnir-Rred)/(Rnir+Rred+0.16)
归一化绿度植被指数GNDVI (Rnir-Rgreen)/(Rnir+Rgreen)
红波段比值植被指数RVIred Rnir/Rred
红边归一化植被指数NDRE (Rnir-Rre)/(Rnir+Rre)
双波段增强植被指数EVI2 2.5(Rnir-Rred)/(Rnir+2.4Rred+1)
改良叶绿素吸收率指数MCARI [Rre-Rred-0.2(Rre-Rgreen)]/(Rre/Rred)
转化叶绿素吸收反射指数TCARI 3[Rnir-Rred-0.2(Rnir-Rgreen)(Rnir/Rred)]
改善简单比率植被指数MSR (Rnir/Rred-1)/[(Rnir/Rred)0.5+1]
结构不敏感色素指数SIPI (Rnir-Rblue)/(Rnir-Rred)
植被衰减指数PSRI (Rnir-Rgreen)/Rnir
宽动态植被指数WDRVI (0.1Rnir-Rred)/(0.1Rnir+Rred)
差值植被指数DVI Rnir-Rred
非线性指数NLI (Rnir2-Rred)/(Rnir2+Rred)
三角植被指数TVI 60(Rnir-Rgreen)-100(Rred-Rgreen)
改善三角植被指数MTVI2 1.5[1.2(Rnir-Rgreen)-2.5(Rred-Rgreen)]/[(2Rnir+1)2-(6Rnir-5Rred0.5)-0.5]0.5
红边土壤调整植被指数RESAVI 1.5(Rnir-Rre)/(Rnir+Rred+0.5)
改进土壤调节植被指数MSAVI 0.5{2Rnir+1-[(2Rnir+1)2-8(Rnir-Rred)]0.5}
红边比值植被指数RERVI Rnir/Rre
垂直植被指数PVI 2.5(Rnir-10.489Rred-6.604)/(1+10.4892)0.5
红边差异植被指数REDVI Rnir-Rre
绿波段比值植被指数RVIgreen Rnir/Rgreen
红边宽动态植被指数REWDRVI (0.12Rnir-Rre)/(0.12Rnir+Rre)
最佳植被指数VIopt1 100(lnRnir-lnRre)
红边反射植被指数RRE (Rnir+Rred)/2
红边重归一化植被指数RERDVI (Rnir-Rre)/(Rnir+Rre)0.5
归一化绿蓝植被指数GBNDVI (Rnir-Rgreen-Rblue)/(Rnir+Rgreen+Rblue)
修正红边变换植被指数MRETVI 1.2[1.2(Rnir-Rgreen)-2.5(Rre-Rgreen)]
绿色宽动态植被指数GWDRVI (0.12Rnir-Rgreen)/(0.12Rnir+Rgreen)
改进归一化差异指数MNDI (Rnir-Rre)/(Rnir-Rgreen)
DATT (Rnir-Rre)/(Rnir-Rred)
归一化红边指数NREI Rre/(Rnir+Rre+Rgreen)
MERIS陆地叶绿素指数MTCI (Rnir-Rre)/(Rre-Rred)

Table 3

Evaluation index analysis of nitrogen efficiency of tested wheat varieties"

项目
Item
产量
Yield
(kg·hm-2
植株氮积累
Plant nitrogen accumulation(kg·hm-2
氮素生理利用效率
Nitrogen physiological utilization efficiency(kg/kg)
植株干生物量
Dry plant weight
(kg·hm-2
籽粒总吸氮量
Total nitrogen uptake amount of grain
(kg·hm-2
N收获指数
N harvest index(kg/kg)
最小值 Minimum 3747.263 92.987 22.697 4690.196 79.300 0.549
最大值 Maximum 10214.400 281.304 56.771 19581.582 217.876 0.905
标准差 SD 947.395 35.408 6.998 2643.563 23.819 0.067
平均值 Mean 6477.528 170.242 39.075 12368.062 136.316 0.763
变异系数 CV (%) 14.626 20.799 17.910 21.374 17.474 8.754

Table 4

Rotated eigenvalues, contributions, cumulative contributions and component loading value of PCA"

主成分
Principal component
载荷值 Load value 特征值
Eigen
value
贡献率
Contribution rate (%)
累计贡献率
Cumulative contribution rate (%)
产量
Yield
植株氮积累量
Plant nitrogen accumulation
氮素生理利用效率
Nitrogen physiological utilization efficiency
植株干生物量
Dry plant weight
籽粒总吸氮量
Total nitrogen uptake amount of grain
N收获指数
N harvest index
F1 0.063 0.860 -0.937 0.780 0.179 -0.001 2.262 37.7 37.7
F2 0.975 0.465 0.263 0.409 0.911 0.104 2.244 37.4 75.1
F3 0.049 0.020 -0.012 -0.022 0.124 0.993 1.006 16.8 91.9

Table 5

Principal component comprehensive evaluation of the studied wheat cultivars"

品种编号
Breed number
F1 F2 F3 F 品种编号
Breed number
F1 F2 F3 F
C1 -0.317 0.641 0.818 0.142 C62 -0.629 -0.245 -2.503 -0.770
C2 -2.011 1.418 0.208 -0.586 C63 0.888 0.475 -0.904 0.424
C3 -1.072 2.763 -0.114 0.187 C64 -1.093 -0.445 -1.344 -0.871
C4 1.558 -0.820 -0.464 0.480 C65 -0.927 -0.314 -0.024 -0.546
C5 1.171 -0.146 1.237 0.735 C66 -0.711 2.003 -0.301 0.134
C6 -2.373 1.041 0.733 -0.783 C67 2.748 -1.147 -0.506 0.976
C7 -0.432 0.977 0.119 0.065 C68 1.629 -1.093 0.327 0.567
C8 -0.155 -0.042 0.362 -0.031 C69 -0.765 0.460 -0.511 -0.337
C9 -0.006 0.885 0.963 0.384 C70 -1.388 2.118 0.259 -0.083
C10 0.681 -1.102 -0.443 -0.026 C71 -2.323 1.811 -1.120 -0.844
C11 0.582 -0.452 0.013 0.170 C72 -0.038 -0.899 -0.289 -0.303
C12 -0.981 0.873 -0.662 -0.357 C73 1.612 -3.448 -0.519 -0.201
C13 0.483 1.710 -0.767 0.574 C74 -0.942 1.702 -0.580 -0.105
C14 1.751 -0.988 -0.135 0.583 C75 -1.488 -2.072 -1.125 -1.465
C15 2.400 0.508 -0.070 1.313 C76 -0.146 -2.357 0.762 -0.580
C16 -0.458 0.391 -2.511 -0.517 C77 -3.360 0.514 1.877 -1.233
C17 -1.466 1.810 -1.177 -0.429 C78 0.611 1.384 0.871 0.808
C18 -1.272 2.205 -0.894 -0.183 C79 -2.138 0.572 1.842 -0.618
C19 -0.711 0.174 0.728 -0.191 C80 -1.821 -0.316 1.690 -0.721
C20 -0.111 -0.329 0.171 -0.116 C81 0.568 -0.359 0.577 0.277
C21 -0.197 0.598 0.289 0.107 C82 -0.993 0.503 0.883 -0.220
C22 -1.496 0.626 -0.916 -0.718 C83 1.539 1.277 1.063 1.269
C23 2.322 -0.657 0.150 0.998 C84 -3.303 -0.793 0.820 -1.718
C24 -0.843 1.528 0.105 0.006 C85 -2.781 -0.974 0.833 -1.506
C25 1.371 -0.396 -1.048 0.409 C86 -1.936 -1.588 -0.315 -1.431
C26 -1.296 0.084 0.360 -0.563 C87 0.423 0.861 0.680 0.546
C27 -0.666 -0.680 0.398 -0.449 C88 0.865 -0.012 -0.223 0.390
C28 0.492 -0.398 0.740 0.254 C89 0.954 0.778 0.852 0.813
C29 -1.476 -1.032 0.832 -0.875 C90 4.364 0.249 -0.764 2.107
C30 2.381 -1.044 1.470 1.132 C91 0.372 -1.094 -0.488 -0.183
C31 2.202 -1.051 0.719 0.924 C92 0.039 0.394 0.995 0.281
C32 1.328 -0.610 0.730 0.610 C93 -1.180 0.379 1.978 -0.173
C33 0.202 -0.103 0.702 0.183 C94 -2.722 -0.602 1.461 -1.279
C34 0.126 0.049 -0.126 0.056 C95 -1.469 -0.462 0.316 -0.801
C35 -0.181 1.094 0.192 0.231 C96 0.018 -1.265 -0.429 -0.395
C36 1.531 0.562 -0.051 0.900 C97 5.070 2.615 -0.155 3.183
C37 2.610 -1.414 0.361 0.973 C98 -1.095 -0.871 0.252 -0.735
C38 0.981 -2.864 -1.846 -0.566 C99 0.665 -0.939 -0.135 0.058
C39 -2.627 0.864 -2.907 -1.527 C100 0.654 -0.626 -0.461 0.085
C40 0.902 -0.348 0.359 0.411 C101 1.691 0.077 0.114 0.876
C41 -2.718 0.103 -1.911 -1.619 C102 -4.342 -0.949 2.120 -2.070
C42 -0.107 -1.098 -0.821 -0.474 C103 -0.220 0.625 1.729 0.329
C43 -1.018 1.756 -1.385 -0.254 C104 0.945 0.360 0.120 0.583
C44 -0.485 1.925 -0.780 0.149 C105 2.353 1.331 0.326 1.571
C45 0.864 -0.213 -1.090 0.200 C106 -0.243 -2.186 -0.464 -0.775
C46 -1.828 -0.370 0.557 -0.916 C107 0.958 -0.269 0.418 0.469
C47 -0.065 0.660 -1.906 -0.156 C108 -0.102 -2.081 -0.771 -0.726
C48 -0.708 0.061 -0.690 -0.443 C109 3.877 1.811 0.524 2.485
C49 -0.284 2.189 -1.453 0.214 C110 2.431 -0.157 -0.175 1.135
C50 -0.835 0.143 -0.640 -0.476 C111 -2.170 -1.724 -0.457 -1.605
C51 2.213 -1.481 -1.143 0.522 C112 0.232 0.647 0.690 0.395
C52 2.023 0.189 0.169 1.078 C113 -0.654 0.268 0.714 -0.141
C53 -0.903 -0.914 -0.044 -0.697 C114 -0.670 -0.885 0.353 -0.512
C54 -0.106 0.867 0.908 0.321 C115 0.774 -0.621 -0.040 0.212
C55 -0.587 -0.615 -0.016 -0.457 C116 1.676 1.766 1.622 1.555
C56 -1.346 1.678 -0.780 -0.343 C117 5.175 1.677 0.290 3.055
C57 -2.038 1.776 -1.254 -0.734 C118 2.738 2.314 0.319 2.022
C58 0.668 0.214 -0.468 0.314 C119 -0.605 -0.974 0.267 -0.517
C59 3.495 -2.360 0.963 1.254 C120 -2.297 -1.011 0.991 -1.251
C60 -0.806 -2.776 -2.516 -1.533 C121 -2.325 -1.947 0.824 -1.540
C61 0.654 -2.304 0.522 -0.207

Table 6

Clustering results and clustering centers of tested wheat cultivars based on comprehensive score of nitrogen efficiency"

类别
Classes
品种编号
Breed number
聚类中心
Clustering center
氮低效型
Low nitrogen
efficiency type
C2、C6、C12、C16、C17、C22、C26、C27、C29、C38、C39、C41、C42、C46、C48、C50、C53、C55、C56、C57、C60、C62、C64、C65、C69、C71、C72、C75、C76、C77、C79、C80、C84、C85、C86、C94、C95、C96、C98、C102、C106、C108、C111、C114、C119、C120、C121 -0.856
氮中效型
Medium nitrogen
efficiency type
C1、C3、C4、C5、C7、C8、C9、C10、C11、C13、C14、C18、C19、C20、C21、C23、C24、C25、C28、C31、C32、C33、C34、C35、C36、C37、C40、C43、C44、C45、C47、C49、C51、C54、C58、C61、C63、C66、C67、C68、C70、C73、C74、C78、C81、C82、C87、C88、C89、C91、C92、C93、C99、C100、C101、C103、C104、C107、C112、C113、C115 0.280
氮高效型
High nitrogen efficiency type
C15、C30、C52、C59、C83、C90、C97、C105、C109、C110、C116、C117、C118 1.782

Fig. 4

Band reflectance boxplot of three nitrogen efficiency varieties at different growth stages"

Fig. 5

Correlation heat map between vegetation indices and the comprehensive value of nitrogen efficiency of wheat at different growth stages"

Table 7

Classification accuracy of nitrogen efficiency of wheat varieties based on single growth stage"

生育时期
Growth stage
KNN RF SVM 平均值 Mean
OA(%) Kappa OA(%) Kappa OA(%) Kappa OA(%) Kappa
S1 55.8 0.154 62.4 0.358 65.6 0.406 61.3 0.306
S2 65.2 0.354 68.3 0.454 72.1 0.511 68.6 0.440
S3 66.3 0.380 72.2 0.510 77.1 0.591 71.9 0.493
平均值 Mean 62.4 0.296 67.6 0.441 71.6 0.503

Table 8

Classification accuracy of nitrogen efficiency of wheat varieties based on multiple growth stages"

生育时期
Growth stage
KNN RF SVM 平均值 Mean
OA(%) Kappa OA(%) Kappa OA(%) Kappa OA(%) Kappa
S1+S2 65.2 0.352 72.3 0.523 74.4 0.557 70.6 0.477
S1+S3 66.7 0.387 74.7 0.565 77.1 0.609 72.8 0.521
S2+S3 68.1 0.414 76.8 0.592 78.0 0.620 74.3 0.542
S1+S2+S3 70.3 0.451 79.3 0.632 80.6 0.669 76.7 0.584
平均值 Mean 67.6 0.401 75.8 0.578 77.5 0.614

Fig. 6

Optimization results of multiple growth stages feature sets based on RF-RFE"

Fig. 7

Optimization results of multiple growth stages feature sets based on Boruta"

Fig. 8

Optimization results of multiple growth stages feature sets based on ReliefF"

Fig. 9

Evaluation of nitrogen efficiency classification model of wheat varieties based on different feature selection algorithms of vegetation indices in multiple growth stages"

[1]
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63: 153-182.

doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[2]
HAWKESFORD M J. Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 2014, 59(3): 276-283.

pmid: 24882935
[3]
张鹏钰, 高桐梅, 苏小雨, 李丰, 王东勇, 田媛, 芦海灵, 苗红梅, 卫双玲. 芝麻苗期氮高效品种筛选及氮效率评价体系建立. 河南农业科学, 2022, 51: 54-66.
ZHANG P Y, GAO T M, SU X Y, LI F, WANG D Y, TIAN Y, LU H L, MIAO H M, WEI S L. Screening of nitrogen efficient varieties and construction of nitrogen efficiency assessment system at seedling stage of sesame (Sesamum indicum L.). Journal of Henan Agricultural Sciences, 2022, 51(6): 54-66. (in Chinese)
[4]
葛礼姣, 方馨妍, 张云月, 罗孟婷, 管志勇, 陈素梅, 房伟民, 陈发棣, 赵爽. 菊花苗期氮高效品种资源筛选及氮效率评价体系建立. 南京农业大学学报, 2021, 44(6): 1054-1062.
GE L J, FANG X Y, ZHANG Y Y, LUO M T, GUAN Z Y, CHEN S M, FANG W M, CHEN F D, ZHAO S. Screening of nitrogen efficient varieties and its assessment system construction at seedling stage of chrysanthemum. Journal of Nanjing Agricultural University, 2021, 44(6): 1054-1062. (in Chinese)
[5]
杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20(6): 1349-1357.
DU B J, GAO H J, CHANG J, ZHANG L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1349-1357. (in Chinese)
[6]
宋晓, 张珂珂, 黄晨晨, 黄绍敏, 郭斗斗, 岳克, 张水清. 基于主成分分析的氮高效小麦品种的筛选. 河南农业科学, 2020, 49(12): 10-16.
SONG X, ZHANG K K, HUANG C C, HUANG S M, GUO D D, YUE K, ZHANG S Q. Selection of nitrogen-efficient wheat varieties based on principal component analysis. Journal of Henan Agricultural Sciences, 2020, 49(12): 10-16. (in Chinese)
[7]
张盼盼, 李志源, 刘京宝, 黄璐, 乔江方, 李川, 张美微, 刘锋. 黄淮海地区高产氮高效玉米品种的筛选与评价. 河南农业科学, 2021, 50(10): 10-17.
ZHANG P P, LI Z Y, LIU J B, HUANG L, QIAO J F, LI C, ZHANG M W, LIU F. Screening and evaluation of maize varieties with high yield and nitrogen use efficiency in Huang-Huai-Hai region. Journal of Henan Agricultural Sciences, 2021, 50(10): 10-17. (in Chinese)
[8]
朱新开, 郭文善, 朱冬梅, 朱波风, 封超年, 彭永欣. 不同基因型小麦氮素吸收积累差异研究. 扬州大学学报, 2005, 26(3): 52-57.
ZHU X K, GUO W S, ZHU D M, ZHU B F, FENG C N, PENG Y X. Studies on differences of accumulated N amount in different genotypes of winter wheat. Journal of Yangzhou University, 2005, 26(3): 52-57. (in Chinese)
[9]
李艳, 董中东, 郝西, 崔党群. 小麦不同品种的氮素利用效率差异研究. 中国农业科学, 2007, 40(3): 472-477. doi: 10.3864/j.issn.0578-1752.at-2006-7202.
LI Y, DONG Z D, HAO X, CUI D Q. The studies on genotypic difference of nitrogen utilization efficiency in winter wheat. Scientia Agricultura Sinica, 2007, 40(3): 472-477. doi: 10.3864/j.issn.0578-1752.at-2006-7202. (in Chinese)
[10]
QIU R C, WEI S, ZHANG M, SUN H, LI H, LIU G, LI M Z. Sensors for measuring plant phenotyping: A review. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 1-17.
[11]
FENG L, CHEN S S, ZHANG C, ZHANG Y C, HE Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Computers and Electronics in Agriculture, 2021, 182: 106033.

doi: 10.1016/j.compag.2021.106033
[12]
朱婉雪, 李仕冀, 张旭博, 李洋, 孙志刚. 基于无人机遥感植被指数优选的田块尺度冬小麦估产. 农业工程学报, 2018, 34(11): 78-86.
ZHU W X, LI S J, ZHANG X B, LI Y, SUN Z G. Estimation of winter wheat yield using optimal vegetation indices from unmanned aerial vehicle remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 78-86. (in Chinese)
[13]
刘畅, 杨贵军, 李振海, 汤伏全, 王建雯, 张春兰, 张丽妍. 融合无人机光谱信息与纹理信息的冬小麦生物量估测. 中国农业科学, 2018, 51(16): 3060-3073. doi: 10.3864/j.issn.0578-1752.2018.16.003.
LIU C, YANG G J, LI Z H, TANG F Q, WANG J W, ZHANG C L, ZHANG L Y. Biomass estimation in winter wheat by UAV spectral information and texture information fusion. Scientia Agricultura Sinica, 2018, 51(16): 3060-3073. doi: 10.3864/j.issn.0578-1752.2018.16.003. (in Chinese)
[14]
郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析. 中国农业科学, 2023, 56(5): 850-865. doi: 10.3864/j.issn.0578-1752.2023.05.004.
GUO Y, JING Y H, WANG L G, HUANG J Y, HE J, FENG W, ZHENG G Q. UAV multispectral image-based nitrogen content prediction and the transferability analysis of the models in winter wheat plant. Scientia Agricultura Sinica, 2023, 56(5): 850-865. doi: 10.3864/j.issn.0578-1752.2023.05.004. (in Chinese)
[15]
刘涛, 张寰, 王志业, 贺超, 张全国, 焦有宙. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量. 农业工程学报, 2021, 37(19): 65-72.
LIU T, ZHANG H, WANG Z Y, HE C, ZHANG Q G, JIAO Y Z. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 65-72. (in Chinese)
[16]
董德誉. 冬小麦氮高效鉴定及光合效率和籽粒蛋白质含量的反演. 乌鲁木齐:新疆农业大学, 2022.
DONG D Y. Identification of nitrogen efficiency and inversion of photosynthetic efficiency and grain protein content in winter wheat. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
[17]
YANG M J, HASSAN M A, XU K J, ZHENG C Y, RASHEED A, ZHANG Y, JIN X L, XIA X C, XIAO Y G, HE Z H. Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Frontiers in Plant Science, 2020, 11: 927.

doi: 10.3389/fpls.2020.00927
[18]
李郅琴, 杜建强, 聂斌, 熊旺平, 黄灿奕, 李欢. 特征选择方法综述. 计算机工程与应用, 2019, 55(24): 10-19.

doi: 10.3778/j.issn.1002-8331.1909-0066
LI Z Q, DU J Q, NIE B, XIONG W P, HUANG C Y, LI H. Summary of feature selection methods. Computer Engineering and Applications, 2019, 55(24): 10-19. (in Chinese)

doi: 10.3778/j.issn.1002-8331.1909-0066
[19]
周小成, 郑磊, 黄洪宇. 基于多特征优选的无人机可见光遥感林分类型分类. 林业科学, 2021, 57(6): 24-36.
ZHOU X C, ZHENG L, HUANG H Y. Classification of forest stand based on multi-feature optimization of UAV visible light remote sensing. Scientia Silvae Sinicae, 2021, 57(6): 24-36. (in Chinese)
[20]
LI X H, LI X Z, LIU W, WEI B H, XU X L. A UAV-based framework for crop lodging assessment. European Journal of Agronomy, 2021, 123: 126201.

doi: 10.1016/j.eja.2020.126201
[21]
梁加玲, 刘彦花, 徐军, 王茜茜, 欧镇丽. 基于ReliefF算法的遥感影像分类特征优化. 地矿测绘, 2020, 36(3): 1-5.
LIANG J L, LIU Y H, XU J, WANG X X, OU Z L. Classification feature optimization of remote sensing images based on ReliefF algorithm. Surveying and Mapping of Geology and Mineral Resources, 2020, 36(3): 1-5. (in Chinese)
[22]
杨珺雯, 张锦水, 朱秀芳, 谢登峰, 袁周米琪. 随机森林在高光谱遥感数据中降维与分类的应用. 北京师范大学学报(自然科学版), 2015, 51(S1): 82-88.
YANG J W, ZHANG J S, ZHU X F, XIE D F, YUANZHOU M Q. Application of random forest in dimensionality reduction and classification of hyperspectral remote sensing data. Journal of Beijing Normal University (Natural Science), 2015, 51(S1): 82-88. (in Chinese)
[23]
王晓晔, 王正欧. K-最近邻分类技术的改进算法. 电子与信息学报, 2005, 27(3): 487-491.
WANG X Y, WANG Z O. An improved K-nearest neighbor algorithm. Journal of Electronics & Information Technology, 2005, 27(3): 487-491. (in Chinese)
[24]
李欣海. 随机森林模型在分类与回归分析中的应用. 应用昆虫学报, 2013, 50(4): 1190-1197.
LI X H. Using “random forest” for classification and regression. Chinese Journal of Applied Entomology, 2013, 50(4): 1190-1197. (in Chinese)
[25]
刘志刚, 李德仁, 秦前清, 史文中. 支持向量机在多类分类问题中的推广. 计算机工程与应用, 2004, 40(7): 10-13, 65.
LIU Z G, LI D R, QIN Q Q, SHI W Z. An analytical overview of methods for multi-category support vector machines. Computer Engineering and Applications, 2004, 40(7): 10-13, 65. (in Chinese)
[26]
赵瑞, 张旭辉, 张程炀, 郭泾磊, 汪妤, 李红霞. 小麦种质资源成株期氮效率评价及筛选. 中国农业科学, 2021, 54(18): 3818-3833. doi: 10.3864/j.issn.0578-1752.2021.18.003.
ZHAO R, ZHANG X H, ZHANG C Y, GUO J L, WANG Y, LI H X. Evaluation and screening of nitrogen efficiency of wheat germplasm resources at mature stage. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833. doi: 10.3864/j.issn.0578-1752.2021.18.003. (in Chinese)
[27]
黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16(1): 87-93.
HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2015.01.013
[28]
崔文芳, 高聚林, 屈佳伟, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷. 氮高效玉米杂交种的筛选及氮效率相关特性分析. 玉米科学, 2016, 24(4): 72-82.
CUI W F, GAO J L, QU J W, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. Analysis of nitrogen efficient maize hybrid screening and nitrogen efficiency related characteristics. Journal of Maize Sciences, 2016, 24(4): 72-82. (in Chinese)
[29]
冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062.
FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Nitrogen efficiency screening of rice cultivars popularized in South China. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese)
[30]
钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002.
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronomica Sinica, 2017, 43(7): 993-1002. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00993
[31]
林海明, 张文霖. 主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷. 统计研究, 2005, 22(3): 65-69.
LIN H M, ZHANG W L. The relationship between principal component analysis and factor analysis and SPSS software—To discuss with comrade Liu Yumei, Lu Wendai etc. Statistical Research, 2005, 22(3): 65-69. (in Chinese)
[32]
周丽艳, 郭振清, 马玉玲, 东方阳, 林小虎. 春小麦品种农艺性状的主成分分析与聚类分析. 麦类作物学报, 2011, 31(6): 1057-1062.
ZHOU L Y, GUO Z Q, MA Y L, DONGFANG Y, LIN X H. Principal component and cluster analysis of different spring wheat cultivars based on agronomic traits. Journal of Triticeae Crops, 2011, 31(6): 1057-1062. (in Chinese)
[33]
连盈, 卢娟, 胡成梅, 牛胤全, 史雨刚, 杨进文, 王曙光, 张文俊, 孙黛珍. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报(中英文), 2020, 28(4): 523-534.
LIAN Y, LU J, HU C M, NIU Y Q, SHI Y G, YANG J W, WANG S G, ZHANG W J, SUN D Z. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28(4): 523-534. (in Chinese)
[34]
陈林涛, 马旭, 曹秀龙, 温志成, 季传栋, 李宏伟. 基于主成分分析的杂交稻芽种物理特性评价研究. 农业工程学报, 2019, 35(16): 334-342.
CHEN L T, MA X, CAO X L, WEN Z C, JI C D, LI H W. Evaluation research of physical characteristics of hybrid rice buds based on principal component analysis. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 334-342. (in Chinese)
[35]
王佳儿, 肖悦, 王志昊, 郑长娟, 王勇, 白旭乾, 于广多, 张智韬. 剔除土壤背景对反演玉米根域土壤含水率的影响研究. 节水灌溉, 2021(12): 81-86, 93.
WANG J E, XIAO Y, WANG Z H, ZHENG C J, WANG Y, BAI X Q, YU G D, ZHANG Z T. Effect of removing soil background on inversion of soil moisture content in maize root zone. Water Saving Irrigation, 2021(12): 81-86, 93. (in Chinese)
[36]
徐海成. 冬小麦高产高效群体构建的栽培模式研究[D]. 泰安: 山东农业大学, 2016.
XU H C. Study on cultivation mode of high yield and high efficiency population construction of winter wheat[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[37]
米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13(1): 155-159.
MI G H, CHEN F J, CHUN L, GUO Y F, TIAN Q Y, ZHANG F S. Biological characteristics of nitrogen efficient maize genotypes. Journal of Plant Nutrition and Fertilizer Science, 2007, 13(1): 155-159. (in Chinese)
[38]
王春晓, 凌飞, 鹿泽启, 姜蔚, 臧宏伟, 张伟, 姚杰, 兰丰, 柳璇, 王志新, 郑永美. 不同氮效率花生品种氮素累积与利用特征. 中国生态农业学报(中英文), 2019, 27(11): 1706-1713.
WANG C X, LING F, LU Z Q, JIANG W, ZANG H W, ZHANG W, YAO J, LAN F, LIU X, WANG Z X, ZHENG Y M. Characteristics of nitrogen accumulation and utilization in peanuts (Arachis hypogaea) with different nitrogen use efficiencies. Chinese Journal of Eco- Agriculture, 2019, 27(11): 1706-1713. (in Chinese)
[39]
DU M M, NOGUCHI N. Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sensing, 2017, 9(3): 289.

doi: 10.3390/rs9030289
[40]
ZHOU X, ZHENG H B, XU X Q, HE J Y, GE X K, YAO X, CHENG T, ZHU Y, CAO W X, TIAN Y C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255.

doi: 10.1016/j.isprsjprs.2017.05.003
[41]
王晶晶, 李长硕, 卓越, 檀海斌, 侯永胜, 严海军. 基于多时相无人机遥感生育时期优选的冬小麦估产. 农业机械学报, 2022, 53(9): 197-206.
WANG J J, LI C S, ZHUO Y, TAN H B, HOU Y S, YAN H J. Yield estimation of winter wheat based on optimization of growth stages by multi-temporal UAV remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 197-206. (in Chinese)
[42]
WANG L G, TIAN Y C, YAO X, ZHU Y, CAO W X. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Research, 2014, 164: 178-188.

doi: 10.1016/j.fcr.2014.05.001
[43]
程千, 徐洪刚, 曹引波, 段福义, 陈震. 基于无人机多时相植被指数的冬小麦产量估测. 农业机械学报, 2021, 52(3): 160-167.
CHENG Q, XU H G, CAO Y B, DUAN F Y, CHEN Z. Grain yield prediction of winter wheat using multi-temporal UAV based on multispectral vegetation index. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 160-167. (in Chinese)
[44]
GUYON I, ELISSEEFF A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3(3): 1157-1182.
[45]
赵静, 李志铭, 鲁力群, 贾鹏, 杨焕波, 兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别. 中国农业科学, 2020, 53(8): 1545-1555. doi: 10.3864/j.issn.0578-1752.2020.08.005.
ZHAO J, LI Z M, LU L Q, JIA P, YANG H B, LAN Y B. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. doi: 10.3864/j.issn.0578-1752.2020.08.005. (in Chinese)
[46]
魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测. 中国农业科学, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005.
WEI Y K, YANG T C, ZANG S L, HE L, DUAN J Z, XIE Y X, WANG C Y, FENG W. Monitoring wheat lodging based on UAV multi-spectral image feature fusion. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005. (in Chinese)
[47]
刘忠, 万炜, 黄晋宇, 韩已文, 王佳莹. 基于无人机遥感的农作物长势关键参数反演研究进展. 农业工程学报, 2018, 34(24): 60-71.
LIU Z, WAN W, HUANG J Y, HAN Y W, WANG J Y. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 60-71. (in Chinese)
[48]
陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 2019, 35(19): 107-116.
TAO H L, XU L J, FENG H K, YANG G J, YANG X D, MIAO M K, DAI Y. Estimation of plant height and biomass of winter wheat based on UAV digital image. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 107-116. (in Chinese)
[49]
潘治利, 祁萌, 魏春阳, 李锋, 张仕祥, 王建伟, 过伟民, 艾志录. 基于图像处理和支持向量机的初烤烟叶颜色特征区域分类. 作物学报, 2012, 38(2): 374-379.
PAN Z L, QI M, WEI C Y, LI F, ZHANG S X, WANG J W, GUO W M, AI Z L. Color region classification of flue-cured tobacco leaves based on the image processing and support vector machine. Acta Agronomica Sinica, 2012, 38(2): 374-379. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00374
[50]
毋雪雁, 王水花, 张煜东. K最近邻算法理论与应用综述. 计算机工程与应用, 2017, 53(21): 1-7.

doi: 10.3778/j.issn.1002-8331.1707-0202
WU X Y, WANG S H, ZHANG Y D. Survey on theory and application of K-Nearest-Neighbors algorithm. Computer Engineering and Applications, 2017, 53(21): 1-7. (in Chinese)

doi: 10.3778/j.issn.1002-8331.1707-0202
[51]
周涛丽. 基于支持向量机的多分类方法研究[D]. 成都: 电子科技大学, 2015.
ZHOU T L. Research on multi-classification method based on support vector machine[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
[1] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[2] ZHOU ZhiHui, GU XiaoBo, CHENG ZhiKai, CHANG Tian, ZHAO TongTong, WANG YuMing, DU YaDan. Inversion of Chlorophyll Content of Film-Mulched Maize Based on Image Segmentation [J]. Scientia Agricultura Sinica, 2024, 57(6): 1066-1079.
[3] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[4] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[5] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[6] MEI GuangYuan, LI Rong, MEI Xin, CHEN RiQiang, FAN YiGuang, CHENG JinPeng, FENG ZiHeng, TAO Ting, ZHAO Qian, ZHAO PeiQin, YANG XiaoDong. A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2024, 57(3): 484-499.
[7] WANG Yu, SONG YiFan, ZHANG Rong, MU HaiMeng, SUN LiFang, FU KaiXia, WU ZiJun, HUANG QingQing, XU YingMing, LI GeZi, WANG YongHua, GUO TianCai. Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(1): 126-141.
[8] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[9] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[10] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[11] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[12] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[13] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[14] WANG WeiKang, ZHANG JiaYi, WANG Hui, CAO Qiang, TIAN YongChao, ZHU Yan, CAO WeiXing, LIU XiaoJun. Non-Destructive Monitoring of Rice Growth Key Indicators Based on Fixed-Wing UAV Multispectral Images [J]. Scientia Agricultura Sinica, 2023, 56(21): 4175-4191.
[15] AI DaiLong, LEI Fang, ZOU QiaoSheng, HE Peng, YANG HongKun, FAN GaoQiong. Effects of Straw Mulching and Nitrogen Application on the Improvement of Wheat Root Architecture and the Absorption and Utilization of H+ and NO3- in Hilly Dry Land [J]. Scientia Agricultura Sinica, 2023, 56(21): 4192-4207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!