Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 647-659.doi: 10.3864/j.issn.0578-1752.2025.04.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice

CHEN Ge1(), GU Yu1, WEN Jiong2, FU YueFeng2, HE Xi2, LI Wei2, ZHOU JunYu1, LIU QiongFeng1, WU HaiYong1()   

  1. 1 Hunan Cultivated Land and Agricultural Eco-Environment Institute, Changsha 410125
    2 Yueyang Academy of Agricultural Sciences, Yueyang 414000, Hunan
  • Received:2024-06-09 Accepted:2024-09-06 Online:2025-02-16 Published:2025-02-24
  • Contact: WU HaiYong

Abstract:

【Objective】This study aimed to investigate the effects of different organic materials returning to the field on photosynthetic matter production and yield formation in an indica three-line hybrid rice population, to provide a theoretical basis for the rational utilization of straw resources and the improvement of rice yield. 【Method】 A field experiment was conducted in Matang Town, Yueyang City, Hunan Province, China from 2022 to 2023. Chuanzhongyou 464, a widely cultivated hybrid rice variety, was used as the test material. Six treatments were designed, including conventional nitrogen fertilizer (N), rice straw returning+conventional nitrogen fertilizer (RN), rape straw returning+conventional nitrogen fertilizer (ON), Chinese milk vetch returning+conventional nitrogen fertilizer (MN), fallow weed returning+conventional nitrogen fertilizer (WN), and no nitrogen fertilizer and no straw returning as control (CK). At various growth stages, the tiller dynamics, leaf area index, aboveground dry matter accumulation, SPAD value of flag leaves at heading stage, net photosynthetic rate, and yield and yield components of rice were measured under different modes of straw returning to the field. 【Result】Compared with N treatment, the effective panicles per hm2, total spikelets per hm2, and grain yield under WN treatment increased significantly by 13.65%, 16.85%, and 9.65%, respectively. There was a slight increase in spikelets per panicle and grain weight, while the seed setting rate decreased, but the difference was not significant. In terms of photosynthetic matter production characteristics, under WN treatment, the percentage of productive tiller increased significantly by 13.08%, and the SPAD value in the flag leaf, net photosynthetic rate, and stomatal conductance of flag leaves at heading stage were enhanced significantly by 3.57%, 9.16%, and 16.68%, respectively. Meanwhile, the dry matter accumulation in the aboveground part measured at mature stage increased by 13.79%, photosynthetic potential, crop growth rate, and dry matter accumulation in the aboveground part from heading to mature stage increased by 9.20%, 33.12%, and 33.21%, respectively, and the harvest index improved by 12.31%. In addition, the leaf area index, net assimilation rate, post-heading leaf and stem sheath output and export rate also showed an increase trend. Correlation analysis results indicated that leaf SPAD value, net photosynthetic rate and stomatal conductance significantly and positively correlated with effective panicles per hm2, spikelets per panicle, total spikelets per hm2, and grain yield. 【Conclusion】Fallow weeds returning to the field improved the photosynthetic characteristics of the rice at heading stage, enhanced the production capacity of photosynthetic matter after heading, promoted dry matter accumulation after heading stage, and optimized population quality. Simultaneously, by increasing the ratio of productive tiller, the suitable effective panicles per hm2 were constructed and the total spikelets per·hm2 increased, it thereby achieved higher grain yield.

Key words: fallow weed, leaf area index, dry matter accumulation, photosynthetic characteristics, yield, rice

Table 1

Rice yield and its components under different treatments"

年份
Year
处理
Treatment
有效穗数
Panicle
(×104·hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets (×108·hm-2)
结实率
Filled grain rate (%)
粒重
Grain weight
(mg)
产量
Yield
(t·hm-2)
2022 CK 195.00±11.79c 172.33±6.66b 3.37±0.33c 84.23±0.47a 24.21±0.41a 6.58±0.50c
N 211.33±15.69bc 187.33±4.51a 3.96±0.32b 84.22±0.18a 23.98±0.36a 7.56±0.34b
RN 223.00±9.54ab 195.67±8.96a 4.37±0.37ab 83.62±0.24a 24.67±0.02a 7.92±0.18ab
ON 235.00±18.03ab 183.67±4.51ab 4.32±0.33ab 83.12±1.10a 24.01±0.28a 8.17±0.39ab
MN 231.33±12.66ab 194.00±13.45a 4.48±0.25ab 83.46±0.76a 24.59±0.17a 8.02±0.54ab
WN 243.67±15.04a 190.67±5.51a 4.65±0.36a 83.40±0.53a 24.43±0.84a 8.38±0.39a
2023 CK 193.17±13.01c 169.33±4.73b 3.27±0.16c 84.00±0.51a 24.14±0.34a 6.36±0.37c
N 218.33±9.39b 179.67±6.81ab 3.93±0.31b 83.89±0.50a 24.23±0.38a 7.81±0.39b
RN 227.50±11.76ab 191.33±10.21a 4.35±0.14ab 83.29±0.72a 24.39±0.14a 8.07±0.39ab
ON 231.67±19.42ab 190.67±3.79a 4.42±0.29a 83.57±0.33a 24.32±0.16a 8.01±0.43ab
MN 237.67±11.07ab 193.67±12.06a 4.59±0.14a 83.78±0.76a 24.20±0.52a 8.35±0.15ab
WN 244.50±13.08a 187.67±3.79a 4.57±0.30a 83.55±1.07a 24.26±0.16a 8.47±0.40a
方差分析 ANOVA
年份 Year (Y) 0.24 0.65 0.10 0.03 0.18 0.31
处理 Treatment (T) 9.86** 7.43** 16.80** 1.62 1.05 18.57**
年份×处理 Y×T 0.15 0.65 0.14 0.45 0.78 0.46

Table 2

Number of tillers and rate of productive tillers of rice under different treatments"

年份
Year
处理
Treatment
茎蘖数 Number of tillers and mail stems (per·m-2) 茎蘖成穗率
Productive tillers (%)
分蘖中期 Mid-tillering 拔节期 Jointing 齐穗期 Heading 成熟期 Maturity
2022 CK 100.50±6.38c 301.33±16.50c 205.92±8.04c 195.00±11.79c 64.70±0.38b
N 148.00±15.02a 390.17±20.13a 220.33±13.80bc 211.33±15.69bc 54.24±5.19c
RN 140.33±17.51a 334.17±18.76b 237.67±7.02ab 223.00±9.54ab 66.77±0.91ab
ON 113.17±9.36bc 317.50±17.50bc 244.20±16.54a 235.00±18.03ab 74.28±8.59a
MN 143.83±9.87a 341.67±20.05b 239.00±12.12ab 231.33±12.66ab 67.77±3.15ab
WN 135.00±12.50ab 347.00±8.32b 250.00±13.53a 243.67±15.04a 70.18±2.78ab
2023 CK 103.33±9.46c 306.67±9.00c 205.33±13.20c 193.17±13.01c 62.98±3.65bc
N 157.33±21.05a 371.33±28.44a 224.00±8.19bc 218.33±9.39b 58.99±4.53c
RN 148.83±17.65ab 341.83±20.25ab 233.67±12.74ab 227.50±11.76ab 66.58±1.64ab
ON 125.00±9.01bc 328.67±9.00bc 243.00±14.18ab 231.67±19.42ab 70.44±4.61a
MN 145.83±12.58ab 348.00±21.02ab 250.00±16.46a 237.67±11.07ab 68.35±2.32ab
WN 151.83±7.91a 357.67±15.33ab 255.67±10.97a 244.50±13.08a 68.34±1.38ab
方差分析 ANOVA
年份 Year (Y) 3.84 0.39 0.32 0.24 0.08
处理 Treatment (T) 13.40** 12.74** 11.38** 10.12** 11.59**
年份×处理 Y×T 0.27 0.59 0.28 0.15 0.84

Table 3

Rice leaf area index under different treatments"

年份
Year
处理
Treatment
叶面积指数 Leaf area index 叶面积指数衰减幅度
Decreasing rate of LAI
(%)
分蘖中期 Mid-tillering 拔节期 Jointing 齐穗期 Heading 成熟期 Maturity
2022 CK 1.30±0.05b 2.94±0.41b 4.66±0.40c 1.43±0.07d 69.25±1.65a
N 1.40±0.05ab 3.75±0.12a 5.90±0.35b 2.09±0.09bc 64.44±2.56bc
RN 1.40±0.07ab 3.88±0.21a 5.66±0.23b 2.18±0.11ab 61.46±2.11c
ON 1.61±0.20a 4.13±0.36a 6.04±0.51ab 1.96±0.09c 67.42±1.80ab
MN 1.49±0.17ab 4.08±0.04a 6.03±0.14ab 2.13±0.04b 64.71±1.34bc
WN 1.57±0.23a 4.12±0.24a 6.62±0.33a 2.30±0.06a 65.15±2.58b
2023 CK 1.29±0.06c 3.02±0.30c 4.89±0.18b 1.48±0.10c 69.68±3.04a
N 1.52±0.19abc 3.83±0.10b 6.15±0.19a 1.97±0.11b 67.94±1.06ab
RN 1.64±0.06ab 4.23±0.04ab 6.33±0.24a 2.24±0.04a 64.64±0.88c
ON 1.46±0.08bc 4.15±0.07ab 6.21±0.46a 2.14±0.10a 65.45±1.83bc
MN 1.77±0.21a 4.03±0.17ab 6.36±0.07a 2.28±0.08a 64.19±1.46c
WN 1.67±0.26ab 4.29±0.49a 6.48±0.19a 2.19±0.07a 66.19±1.79bc
方差分析 ANOVA
年份 Year (Y) 3.62 1.58 6.23* 1.46 2.12
处理 Treatment (T) 3.80* 19.52** 24.03** 76.67** 7.43**
年份×处理 Y×T 1.61 0.44 1.08 3.50* 1.79

Fig. 1

Rice leaf area duration under different treatments"

Table 4

Dry matter accumulation and harvest index of rice under different treatments"

年份
Year
处理
Treatment
干物质积累量 Dry matter accumulation (t·hm-2) 收获指数
Harvest index (%)
分蘖中期 Mid-tillering 拔节期 Jointing 齐穗期 Heading 成熟期 Maturity
2022 CK 0.59±0.02b 3.27±0.22c 8.88±0.13d 13.60±0.84c 47.35±3.12c
N 0.70±0.12ab 3.80±0.12b 9.16±0.09c 14.05±0.18c 48.09±0.98bc
RN 0.79±0.02a 3.96±0.18ab 9.39±0.23bc 16.24±0.53a 53.88±2.08a
ON 0.72±0.05a 3.87±0.10b 9.32±0.10bc 14.77±0.52bc 50.69±0.64abc
MN 0.78±0.06a 4.23±0.23a 9.79±0.16a 15.56±0.88ab 52.00±3.35ab
WN 0.76±0.09a 3.91±0.09b 9.50±0.03b 15.97±0.87ab 54.47±2.26a
2023 CK 0.64±0.10c 3.49±0.22d 8.86±0.15c 13.42±0.17d 46.33±1.53c
N 0.69±0.07bc 3.71±0.10cd 9.22±0.11b 14.38±1.05cd 49.64±2.58bc
RN 0.83±0.06a 4.32±0.32a 9.53±0.15a 16.05±0.19ab 50.54±1.48bc
ON 0.72±0.07abc 3.86±0.18bcd 9.41±0.23ab 15.03±0.76bc 50.67±4.17b
MN 0.83±0.07a 3.94±0.13abc 9.59±0.15a 16.06±0.73ab 52.98±1.59ab
WN 0.77±0.02ab 4.18±0.26ab 9.46±0.10ab 16.38±0.08a 55.27±1.52a
方差分析 ANOVA
年份 Year (Y) 0.90 1.46 0.02 0.72 0.31
处理 Treatment (T) 6.18** 12.88** 22.39** 16.49** 8.66**
年份×处理 Y×T 0.19 2.36 1.04 0.31 1.04

Table 5

Dry matter accumulation and its proportion of rice at different growth stage under different treatments"

年份
Year
处理
Treatment
移栽期—分蘖中期
TR-MT
分蘖中期—拔节期
MT-JT
拔节期—齐穗期
JT-HD
齐穗期—成熟期
HD-MA
积累量
Accumulation (t·hm-2)
比例
Ratio
(%)
积累量
Accumulation (t·hm-2)
比例
Ratio
(%)
积累量
Accumulation (t·hm-2)
比例
Ratio
(%)
积累量
Accumulation (t·hm-2)
比例
Ratio
(%)
2022 CK 0.59±0.02b 4.39 2.67±0.21c 19.66 5.61±0.22a 41.37 4.72±0.71c 34.58
N 0.70±0.12ab 4.96 3.10±0.02b 22.04 5.36±0.07a 38.18 4.89±0.20c 34.81
RN 0.79±0.02a 4.87 3.17±0.16b 19.51 5.43±0.15a 33.44 6.85±0.38a 42.18
ON 0.72±0.05a 4.88 3.15±0.08b 21.33 5.44±0.02a 36.89 5.46±0.43bc 36.90
MN 0.78±0.06a 5.01 3.45±0.20a 22.15 5.56±0.08a 35.85 5.77±0.75abc 36.98
WN 0.76±0.09a 4.81 3.15±0.01b 19.74 5.59±0.07a 35.06 6.47±0.89ab 40.39
2023 CK 0.64±0.10c 4.78 2.85±0.12c 21.21 5.37±0.34a 40.03 4.56±0.22c 33.98
N 0.69±0.07bc 4.8 3.02±0.17bc 21.13 5.51±0.20a 38.43 5.16±1.07c 35.64
RN 0.83±0.06a 5.18 3.49±0.33a 21.71 5.22±0.41a 32.52 6.52±0.33ab 40.59
ON 0.72±0.07abc 4.81 3.14±0.22abc 20.92 5.55±0.36a 37.03 5.62±0.97bc 37.25
MN 0.83±0.07a 5.17 3.11±0.19abc 19.38 5.65±0.21a 35.22 6.47±0.66ab 40.23
WN 0.77±0.02ab 4.71 3.41±0.25ab 20.83 5.28±0.19a 32.24 6.92±0.12a 42.23
方差分析 ANOVA
年份 Year (Y) 0.31 0.95 0.28 0.88 0.08 0.89 1.24 0.71
处理 Treatment (T) 9.19** 6.58** 0.83 7.78** 0.81 1.00 8.93** 10.76**
年份×处理 Y×T 1.10 0.19 0.33 2.61 3.00* 1.18 0.33 0.53

Fig. 2

Rice crop growth rate under different treatments"

Fig. 3

Rice net assimilation rate under different treatments"

Table 6

Dry matter export and transformation from leaves, stems and sheaths after heading of rice under different treatments"

年份
Year
处理
Treatment
叶片 Leaf 茎鞘 Stem and sheath
输出量
Exportation
(g·m-2)
输出率
Exportation rate (%)
转化率
Transformation rate (%)
输出量
Exportation
(g·m-2)
输出率
Exportation rate (%)
转化率
Transformation rate (%)
2022 CK 49.21c 23.51c 7.66a 26.80b 5.10b 4.06b
N 52.13c 22.40c 7.71a 27.46b 5.27b 4.06b
RN 54.83c 22.93c 6.30a 37.52ab 6.96ab 4.28b
ON 60.77bc 25.50bc 8.13a 44.67a 8.41a 5.99a
MN 71.89ab 28.03ab 8.94a 49.49a 9.09a 6.13a
WN 74.54a 30.27a 8.70a 46.02a 8.55a 5.25ab
2023 CK 46.08c 21.72bc 7.39a 33.25c 6.39c 5.32a
N 64.57ab 27.20ab 9.14a 39.78bc 7.59bc 5.62a
RN 47.05c 19.03c 5.81a 35.45bc 6.56c 4.36a
ON 57.62abc 23.76abc 7.72a 43.20bc 8.11bc 5.72a
MN 54.44bc 21.76bc 6.44a 62.33a 11.56a 7.36a
WN 72.33a 29.05a 7.97a 48.74b 9.21ab 5.39a
方差分析 ANOVA
年份 Year (Y) 0.09 1.96 2.90 1.38 3.61 4.18
处理 Treatment (T) 13.41** 8.73** 5.81** 2.77* 8.53** 8.21**
年份×处理 Y×T 0.65 2.44 2.32 1.47 0.98 1.07

Table 7

SPAD value and photosynthetic characteristics of rice under different treatments"

年份
Year
处理
Treatment
SPAD值
SPAD value
净光合速率
Pn (µmol·m-2·s-1)
气孔导度
Gs (mmol·m-2·s-1)
胞间CO2浓度
Ci (µmol·mo1-1)
蒸腾速率
Tr (mmol·m-2·s-1)
2022 CK 37.23±1.19c 18.88±0.70c 0.76±0.01c 320.82±2.57a 12.61±0.38a
N 39.10±0.89b 20.74±0.27b 0.86±0.10bc 315.37±5.05a 13.41±0.37a
RN 40.13±0.45ab 22.39±0.69a 0.96±0.06ab 316.18±1.03a 13.18±0.06a
ON 39.37±0.42b 21.54±0.57ab 0.94±0.04ab 314.08±6.82a 14.51±1.13a
MN 40.23±0.31ab 23.12±1.54a 0.95±0.11ab 315.20±4.12a 14.59±1.48a
WN 40.83±0.31a 22.45±1.16a 1.01±0.05a 312.21±2.20a 14.70±1.52a
2023 CK 36.93±0.38d 18.52±0.97c 0.85±0.01d 321.91±4.42a 12.77±0.96a
N 39.53±0.78bc 21.72±0.74b 0.88±0.03cd 316.03±2.31a 13.58±0.81a
RN 40.27±0.67ab 22.74±1.51ab 0.99±0.05abc 317.12±3.60a 13.10±0.15a
ON 39.97±0.38bc 22.91±0.68ab 0.90±0.08bcd 307.41±5.30a 14.47±1.10a
MN 41.00±0.56a 23.02±0.90ab 1.04±0.07a 319.27±1.67a 14.31±1.28a
WN 40.60±0.36a 23.91±0.86a 1.02±0.09ab 314.62±12.58a 14.35±1.45a
方差分析 ANOVA
年份 Year (Y) 1.29 3.75 2.16 0.06 0.04
处理 Treatment (T) 28.67** 18.85** 8.77** 2.85* 3.65*
年份×处理 Y×T 0.77 0.98 0.72 0.75 0.07

Fig. 4

Pearson’s correlation coefficients of rice photosynthetic characteristics and yield as well as its components"

[1]
HUANG M, ZOU Y B. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Research, 2018, 224: 22-27.
[2]
NORMILE D. Reinventing rice to feed the world. Science, 2008, 321(5887): 330-333.
[3]
DONG Y J, YUAN J, ZHANG G B, MA J, PADILLA H, LIU X J, LU S H. Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China. Pedosphere, 2020, 30(6): 759-768.
[4]
彭碧琳, 李妹娟, 胡香玉, 钟旭华, 唐湘如, 刘彦卓, 梁开明, 潘俊峰, 黄农荣, 傅友强, 胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响. 中国农业科学, 2021, 54(7): 1424-1438. doi: 10.3864/j.issn.0578-1752.2021.07.009.
PENG B L, LI M J, HU X Y, ZHONG X H, TANG X R, LIU Y Z, LIANG K M, PAN J F, HUANG N R, FU Y Q, HU R. Effects of simplified nitrogen managements on grain yield and nitrogen use efficiency of double-cropping rice in South China. Scientia Agricultura Sinica, 2021, 54(7):1424-1438. doi: 10.3864/j.issn.0578-1752.2021.07.009. (in Chinese)
[5]
李立江, 蒋明金, 何星雷, 姬广梅, 张佳凤, 罗丹秋, 江学海, 田晋钰, 黎勇, 李敏. 施氮量对优质稻G优325氮肥利用率和产量的影响. 四川农业大学学报, 2024, 42(3): 515-522.
LI L J, JIANG M J, HE X L, JI G M, ZHANG J F, LUO D Q, JIANG X H, TIAN J Y, LI Y, LI M. Effect of nitrogen application rate on nitrogen efficiency and grain yield of high-quality indica rice variety Gyou325. Journal of Sichuan Agricultural University, 2024, 42(3): 515-522. (in Chinese)
[6]
陈鸽, 李中希, 刘奇颀, 陈慕文, 郑焕, 任大焱, 李宇翔, 傅岳峰. 施氮量对机插优质杂交晚稻盛泰优626产量和米质的影响. 杂交水稻, 2023, 38(5): 115-120.
CHEN G, LI Z X, LIU Q Q, CHEN M W, ZHENG H, REN D Y, LI Y X, FU Y F. Effects of nitrogen rate on yield and grain quality of machine-transplanted high-quality late hybrid rice shengtaiyou 626. Hybrid Rice, 2023, 38(5): 115-120. (in Chinese)
[7]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[8]
LE C, ZHA Y, LI Y, SUN D, LU H, YIN B. Eutrophication of lake waters in China: cost, causes, and control. Environmental Management, 2010, 45(4): 662-668.

doi: 10.1007/s00267-010-9440-3 pmid: 20177679
[9]
ZOU J W, LU Y Y, HUANG Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution, 2010, 158(2): 631-635.

doi: 10.1016/j.envpol.2009.08.026 pmid: 19762135
[10]
牛新胜, 巨晓棠. 我国有机肥料资源及利用. 植物营养与肥料学报, 2017, 23(6): 1462-1479.
NIU X S, JU X T. Organic fertilizer resources and utilization in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462-1479. (in Chinese)
[11]
高利伟, 马林, 张卫峰, 王方浩, 马文奇, 张福锁. 中国作物秸秆养分资源数量估算及其利用状况. 农业工程学报, 2009, 25(7): 173-179.
GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 173-179. (in Chinese)
[12]
ZHANG M, YAO Y L, TIAN Y H, CENG K, ZHAO M, ZHAO M, YIN B. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crops Research, 2018, 227: 102-109.
[13]
张刚, 王德建, 俞元春, 王灿, 庄锦贵. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响. 植物营养与肥料学报, 2016, 22(4): 877-885.
ZHANG G, WANG D J, YU Y C, WANG C, ZHUANG J G. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 877-885. (in Chinese)
[14]
袁浩亮, 张江林, 鲁艳红, 廖育林, 高雅洁, 孙玉桃, 曹卫东, 聂军. 紫云英和秸秆替代部分化肥对双季稻产量、养分含量及土壤综合肥力的影响. 土壤, 2023, 55(6): 1216-1222.
YUAN H L, ZHANG J L, LU Y H, LIAO Y L, GAO Y J, SUN Y T, CAO W D, NIE J. Effects of Chinese milk vetch and straw substituting fertilizers on double rice yields, nutrients and soil integrated fertilities. Soils, 2023, 55(6): 1216-1222. (in Chinese)
[15]
郭保卫, 王岩, 蔡嘉鑫, 唐健, 唐闯, 胡雅杰, 邢志鹏, 张洪程. 氮肥用量对机插优质晚稻光合物质生产的影响. 核农学报, 2023, 37(4): 833-843.

doi: 10.11869/j.issn.1000-8551.2023.04.0833
GUO B W, WANG Y, CAI J X, TANG J, TANG C, HU Y J, XING Z P, ZHANG H C. Effect of nitrogen application on photosynthetic matter production of mechanical transplanting high quality late rice. Journal of Nuclear Agricultural Sciences, 2023, 37(4): 833-843. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.04.0833
[16]
吕军, 王伯伦, 孟维韧, 赵凤艳. 不同穗型粳稻的光合作用与物质生产特性. 中国农业科学, 2007, 40(5): 902-908.
J, WANG B L, MENG W R, ZHAO F Y. The characteristics of photosynthesis and dry matter production in Japonica rice cultivars with different type panicles. Scientia Agricultura Sinica, 2007, 40(5): 902-908. (in Chinese)
[17]
康玉灵, 赵春容, 陈鸽, 陈佳娜, 曹放波, 曹威, 黄敏. 施用冬闲杂草对免耕水稻产量及生长特性的影响. 中国稻米, 2023, 29(5): 51-56.

doi: 10.3969/j.issn.1006-8082.2023.05.009
KANG Y L, ZHAO C R, CHEN G, CHEN J N, CAO F B, CAO W, HUANG M. Effects of applying winter fallow weeds on yield and growth characteristics of No-tillage rice. China Rice, 2023, 29(5): 51-56. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2023.05.009
[18]
裴鹏刚, 张均华, 朱练峰, 胡志华, 金千瑜. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响. 中国水稻科学, 2015, 29(3): 282-290.

doi: 10.3969/j.issn.1001G7216.2015.03.007
PEI P G, ZHANG J H, ZHU L F, HU Z H, JIN Q Y. Effects of straw returning coupled with N application on rice photosynthetic characteristics, nitrogen uptake and grain yield formation. Chinese Journal of Rice Science, 2015, 29(3): 282-290. (in Chinese)
[19]
李纲, 朱旺冲, 黄晶, 莫志军, 唐利忠. 种植和秸秆还田模式对一季稻产量和产量因子的影响. 湖南农业大学学报(自然科学版), 2022, 48(3): 251-256.
LI G, ZHU W C, HUANG J, MO Z J, TANG L Z. Effects of different planting patterns and straw returning methods on yield and yield factor of single-season rice. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(3): 251-256. (in Chinese)
[20]
李昌新, 赵锋, 芮雯奕, 黄欠如, 余喜初, 张卫建. 长期秸秆还田和有机肥施用对双季稻田冬春季杂草群落的影响. 草业学报, 2009, 18(3): 142-147.
LI C X, ZHAO F, RUI W Y, HUANG Q R, YU X C, ZHANG W J. The long-term effects of returning straw and applying organic fertilizer on weed communities in a paddy field with a double rice cropping system. Acta Prataculturae Sinica, 2009, 18(3): 142-147. (in Chinese)
[21]
HUANG M, SHAN S L, CAO F B, CHEN J N, ZOU Y B. The potential of naturally occurring fallow weeds to scavenge nitrogen in rice cropping systems. Ecological Indicators, 2018, 93: 183-187.
[22]
HUANG M, JIANG P, ZHOU X F, ZOU Y B. No-tillage increases nitrogen scavenging by fallow weeds in a double-season rice cropping system in China. Weed Biology and Management, 2018, 18(3): 105-109.
[23]
徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响. 作物学报, 2024, 50(2): 425-439.

doi: 10.3724/SP.J.1006.2024.32016
XU R, YANG W Y, ZHU J L, CHEN S, XU C M, LIU Y H, ZHANG X F, WANG D Y, CHU G. Effects of different irrigation regimes on grain yield and water use efficiency in Japonica-indica hybrid rice cultivar Yongyou 1540. Acta Agronomica Sinica, 2024, 50(2): 425-439. (in Chinese)
[24]
车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异. 作物学报, 2021, 47(10): 1953-1965.

doi: 10.3724/SP.J.1006.2021.02068
CHE Y, CHENG S, TIAN J Y, TAO Y, LIU Q Y, XING Z P, DOU Z, XU Q, HU Y J, GUO B W, WEI H Y, GAO H, ZHANG H C. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agronomica Sinica, 2021, 47(10): 1953-1965. (in Chinese)

doi: 10.3724/SP.J.1006.2021.02068
[25]
刘彩玲, 何春梅, 王飞, 黄春应. 紫云英压青结合稻秸还田对水稻的节肥增效作用. 植物营养与肥料学报, 2024, 30(2): 279-288.
LIU C L, HE C M, WANG F, HUANG C Y. Co-incorporation of rice stubble and Chinese milk vetch saves fertilizer input and increases production efficiency of rice. Plant Nutrition and Fertilizer Science, 2024, 30(2): 279-288. (in Chinese)
[26]
彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响. 中国水稻科学, 2024, 38(2): 198-210.

doi: 10.16819/j.1001-7216.2024.230404
PENG X L, DONG Q, ZHANG C, LI P F, LI B L, LIU Z L, YU C L. Effects of straw return rate on soil reducing substances and rice growth under different soil conditions. Chinese Journal of Rice Science, 2024, 38(2): 198-210. (in Chinese)

doi: 10.16819/j.1001-7216.2024.230404
[27]
胡聪聪, 李红宇, 孙显龙, 王童, 赵海成, 范名宇, 张巩亮. 秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响. 作物杂志, 2024: 1-11. (2024-04-07). https://kns.cnki.net/kcms/detail/11.1808.s.20240405.1900.002.html.
HU C C, LI H Y, SUN X L, WANG T, ZHAO H C, FAN M Y, ZHANG G L. Effects of straw returning and nitrogen fertilizer application on photosynthetic characteristics and yield of rice in cold region. Crops, 2024: 1-11. https://kns.cnki.net/kcms/detail/11.1808.s.20240405.1900.002.html. (in Chinese)
[28]
苏卫, 冯跃华, 许桂玲, 管正策, 欧达, 张佳凤, 王玲莉. 秸秆还田与施氮量对喀斯特地区杂交籼稻干物质积累和产量的影响. 核农学报, 2019, 33(9): 1856-1864.

doi: 10.11869/j.issn.100-8551.2019.09.1856
SU W, FENG Y H, XU G L, GUAN Z C, OU D, ZHANG J F, WANG L L. Effects of straw returning and nitrogen application rate on dry matter accumulation and yield of indica hybrid rice in Karst Region. Journal of Nuclear Agricultural Sciences, 2019, 33(9): 1856-1864. (in Chinese)

doi: 10.11869/j.issn.100-8551.2019.09.1856
[29]
ROHÁČEK K, BARTÁK M. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 1999, 37(3): 339-363.
[30]
李晓峰, 程金秋, 梁健, 陈梦云, 任红茹, 张洪程, 霍中洋, 戴其根, 许轲, 魏海燕, 郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响. 作物学报, 2017, 43(6): 912-924.
LI X F, CHENG J Q, LIANG J, CHEN M Y, REN H R, ZHANG H C, HUO Z Y, DAI Q G, XU K, WEI H Y, GUO B W. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted Japonica rice. Acta Agronomica Sinica, 2017, 43(6): 912-924. (in Chinese)
[31]
WEI H Y, ZHANG H C, BLUMWALD E, LI H L, CHENG J Q, DAI Q G, HUO Z Y, XU K, GUO B W. Different characteristics of high yield formation between inbred Japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2016, 198: 179-187.
[32]
王国骄, 宋鹏, 杨振中, 张文忠. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响. 作物杂志, 2021(4): 67-72.
WANG G J, SONG P, YANG Z Z, ZHANG W Z. Effects of straw returning on photosynthetic matter production characteristics, quality of rice and soil nutrients. Crops, 2021(4): 67-72. (in Chinese)
[33]
唐海明, 肖小平, 李超, 汤文光, 郭立君, 程凯凯, 汪柯, 潘孝晨, 李微艳. 不同土壤耕作模式对双季稻区水稻植株养分积累与转运的影响. 南京农业大学学报, 2019, 42(2): 220-228.
TANG H M, XIAO X P, LI C, TANG W G, GUO L J, CHENG K K, WANG K, PAN X C, LI W Y. Effects of different soil tillage systems on nutrition accumulation and translocation of rice plant in double cropping paddy field. Journal of Nanjing Agricultural University, 2019, 42(2): 220-228. (in Chinese)
[34]
彭志芸, 丁峰, 谌洁, 向开宏, 马鹏, 郭长春, 马均. 麦油稻轮作秸秆还田与施氮对水稻光合特性及产量的影响. 湖南农业大学学报(自然科学版), 2020, 46(3): 253-261.
PENG Z Y, DING F, CHEN J, XIANG K H, MA P, GUO C C, MA J. Effects of straw mulching and nitrogen management on photosynthetic characteristics and yield of direct seeding rice under wheat rape rice rotation. Journal of Hunan Agricultural University (Natural Sciences), 2020, 46(3): 253-261. (in Chinese)
[35]
李忠义, 唐红琴, 董文斌, 韦彩会, 何铁光. 稻秸-紫云英联合还田对水稻光合特性及产量品质的影响. 中国农业科技导报, 2024, 26(2): 171-180.
LI Z Y, TANG H Q, DONG W B, WEI C H, HE T G. Effects of co- incorporation of rice straw and Chinese milk vetch on photosynthetic characteristics, yield and quality of rice. Journal of Agricultural Science and Technology, 2024, 26(2): 171-180. (in Chinese)
[1] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[2] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[3] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[4] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[5] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[6] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[7] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[8] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[9] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[10] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[11] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[12] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[13] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[14] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[15] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!