Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1709-1721.doi: 10.3864/j.issn.0578-1752.2024.09.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area

FAN Hong(), YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang()   

  1. College of Agronomy, Gansu Agricultural University/State Key Laboratory of Arid Land Crop Science, Lanzhou 730070
  • Received:2023-11-15 Accepted:2024-02-01 Online:2024-05-01 Published:2024-05-09
  • Contact: CHAI Qiang

Abstract:

【Objective】To address the issue of excessive nitrogen fertilizer use for maize production in an oasis irrigation area, this study investigated the compensation effect for nitrogen fertilizer reduction through dense planting on maize yield.【Method】From 2019 to 2021, a two-factor split-plot experiment was carried out to explore the effect of different maize densities on yield and yield components under nitrogen reduction conditions. The main plot was two nitrogen application rate, including 25% reduction (N1, 270 kg·hm-2) and local habitual nitrogen application (N2, 360 kg·hm-2), and sub-plot was three planting densities of maize, including traditional (M1, 78 000 plants/hm2), medium (M2, 104 000 plants/hm2, 33% increase), and high planting density (M3, 129 000 plants/hm2, 66% increase).【Result】(1) The grain yield and biomass of maize under N1 decreased by 4.0% and 4.9% than that under N2 respectively due to nitrogen reduction, which could be compensated by dense planting. The grain yield of N1M2 was increased by 4.1% compared with that of the control treatment (N2M1), while the biomass of treatment of high density and nitrogen reduction (N1M3) had the largest compensation effect, which was increased by 14.2% compared with that under the control. (2) According to the regression analysis, at the N1 level, the density of 84 000 plants/hm2 could get the equal grain yield of the control treatment, and reached the maximum grain yield of 13 537 kg·hm-2 at 106 000 plants/hm2, achieving a 4.9% increase in grain yield. (3) Compared with N2, N1 reduced maize ear number, kernel number per ear, and 1 000-kernel weight by 5.0%, 3.3%, and 3.4%, respectively, but had no significant effect on the harvest index. M2 and M3 increased the maize ear number by 27.9% and 49.7%, reduced kernel number per ear by 3.8% and 8.4%, respectively, and decreased 1 000-kernel weight by 5.2% and 8.9%, respectively. M2 had no significant effect on the harvest index, while M3 significantly reduced the harvest index by 14.2%. Therefore, compared with N2M1, N1M2 compensated for the decrease in ear number, kernel number per ear, and 1 000-kernel caused by nitrogen reduction through the increase of ear number. (4) N1 decreased the maize growth rate from the jointing stage to the tasseling and silking stage by 7.2%-8.4%, while M2 and M3 significantly increased the maize growth rate by 27.3% and 60.3% compared with traditional density from the seedling stage to the trumpet stage. (5) Compared with N2M1, N1M2 increased maize leaf,stem, and sheath dry matter transportation amount (DTA) by 9.6%, 13.6%, and 3.7%, respectively, and the contribution rate of vegetative organs to grain (GCR) by 5.3% and 9.0%, respectively.【Conclusion】In the oasis irrigation area, the maize grain yield decrease caused by nitrogen reduction could be compensated by reasonably dense planting. Increasing the density to 104 000 plants/hm2 based on 25% nitrogen reduction could maximize the yield compensation effect, which was a feasible measure to save nitrogen for a stable and high yield of maize.

Key words: maize dense planting, nitrogen fertilizer reduction, compensation potential, grain yield, oasis irrigation area

Table 1

Precipitation and temperature in the experimental area from 2019 to 2021"

年份
Year
项目
Item
四月
April
五月
May
六月
June
七月
July
八月
August
九月
September
全生育期
Entire growth period
2019 降雨量 Precipitation (mm) 7.5 26.4 61.3 30.0 25.2 19.9 170.3
气温 Temperature (℃) 13.2 15.2 20.2 21.5 21.1 16.1 17.9
2020 降雨量 Precipitation (mm) 0 11.4 10.3 28.4 31.5 64.3 145.9
气温 Temperature (℃) 10.7 16.4 21.4 22.6 20.9 15.8 18.0
2021 降雨量 Precipitation (mm) 26.8 12.9 31.0 6.0 16.3 69.5 162.5
气温 Temperature (℃) 10.4 17.3 20.2 25.7 21.6 18.9 19.0

Table 2

Experiment treatment and its code"

施氮水平
Nitrogen rate
(kg·hm-2)
玉米种植密度
Maize planting density (104 plant/hm2)
M1 (7.8) M2 (10.4) M3 (12.9)
N1 (270) N1M1 N1M2 N1M3
N2 (360) N2M1(对照 Control) N2M2 N2M3

Table 3

Maize yield performance and yield components under nitrogen reduction and different planting densities"

年份
Year
施氮
Nitrogen
密度
Density
籽粒产量
Grain yield (kg·hm-2)
生物产量
Biomass (kg·hm-2)
穗数
Ear number (104·hm-2)
穗粒数
Kernels per ear
千粒重
1000-grain weight (g)
2019 N1 M1 12530±131d 28480±341d 7.22±0.27c 535±17a 374±10abc
M2 13633±114ab 31055±453b 9.20±0.38b 519±11ab 357±18bc
M3 12794±325cd 32412±491a 10.64±0.22a 501±12b 350±12c
N2 M1 13605±213ab 29736±640c 7.47±0.38c 542±17a 387±12a
M2 13974±300a 32228±645a 9.67±0.37b 536±15a 377±9ab
M3 13265±151bc 33037±390a 11.25±0.43a 510±13b 357±8bc
2020 N1 M1 12295±151d 25927±587f 8.05±0.33d 491±15b 338±10ab
M2 14032±142a 29182±512d 9.40±0.25c 477±17bc 311±11cd
M3 13559±83b 32514±307b 11.87±0.5a 462±14c 297±12d
N2 M1 12890±299c 27314±417e 8.53±0.47d 530±18a 348±11a
M2 14307±286a 30941±666c 10.44±0.42b 507±21ab 328±18bc
M3 14198±290a 33320±448a 12.00±0.33a 485±16b 302±12d
2021 N1 M1 12496±189bc 25085±720e 7.17±0.3c 552±18ab 348±12a
M2 12954±208b 27790±769d 9.27±0.43b 529±20bc 326±13b
M3 12141±250c 31488±518b 10.99±0.35a 499±22c 325±14b
N2 M1 12542±245bc 27347±798d 7.12±0.47c 576±19a 359±12a
M2 13788±194a 29705±784c 10.29±0.53a 534±13bc 342±9ab
M3 12741±367b 33763±638a 11.47±0.47a 499±26c 331±10b
方差分析Analysis of variance
年 Year (Y) * NS NS * **
氮肥 Nitrogen (N) ** ** ** * *
密度 Density (D) ** ** ** ** *
年×氮肥 Y×N NS NS NS NS NS
年×密度 Y×D NS NS NS NS NS
密度×氮肥 D×N ** NS NS NS NS
年×密度×氮肥 Y×D×N ** NS NS NS NS

Fig. 1

The compensation effect of density on maize grain yield and biomass under nitrogen reduction"

Fig. 2

The effect of density on maize grain yield and biomass under nitrogen reduction"

Table 4

Correlation coefficient and path coefficient between maize yield and yield component"

产量构成因素
Yield component
与籽粒产量的相关系数
Correlation coefficient with yield
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
穗数
Ear number
穗粒数
Kernels per ear
千粒重
1000-grain weight
穗数 Ear number 0.687** 0.311 - 0.033 0.342
穗粒数 Kernels per ear -0.635** -0.040 -0.259 - -0.336
千粒重1000-grain weight -0.712** -0.440 -0.242 -0.031 -

Fig. 3

Maize crop growth rate dynamic curve under nitrogen reduction and different planting densities Maize crop growth rates at each growth stage were not significantly different in year, but had significant differences in nitrogen and planting density, and nitrogen and planting density had an interaction effect"

Fig. 4

Maize dry matter distribution under nitrogen reduction and different planting densities Maize ear dry matter distributions were not significantly different in year and nitrogen, but had significant differences in planting density, and nitrogen and planting density had an interaction effect"

Table 5

Dry matter translocation and contribution rate to grain yield of each organ in maize under different treatments"

年份
Year
施氮
Nitrogen
密度
Density
转运量 DTA (kg) 转运率 DTR (%) 贡献率 GCR (%)
叶 Leaf 茎 Stem 鞘 Sheath 叶 Leaf 茎 Stem 鞘 Sheath 叶 Leaf 茎 Stem 鞘 Sheath
2019 N1 M1 1166±29c 1708±27c 621±33a 24.6±1ab 17.1±0.9ab 17.6±1.2a 9.3±0.5a 13.6±0.7a 5.0±0.3a
M2 1374±14a 2034±51a 604±21a 26.7±0.3a 17.8±0.4a 15.5±0.7ab 10.1±0.1a 14.9±0.4a 4.4±0.2a
M3 1289±16b 1830±29b 515±18b 22.9±0.3b 15.1±0.2b 12.9±0.9b 10.1±0.1a 14.3±0.8a 4.0±0.3a
N2 M1 1287±42b 1862±53b 586±21a 25.7±2.1a 17.4±0.7a 15.7±2.6ab 9.5±0.8a 13.7±0.9a 4.3±0.8a
M2 1363±10a 1873±34b 587±19a 24.1±0.4ab 15.9±1.5ab 14.7±0.3ab 9.8±0.1a 13.4±1.5a 4.2±0.1a
M3 1369±13a 1962±12a 591±17a 22.9±0.2b 15.7±0.7ab 14.3±1b 10.3±0.1a 14.8±0.5a 4.5±0.3a
2020 N1 M1 1099±22b 1469±41bc 451±21b 25.0±0.6a 17.6±0.4a 14.1±0.3a 8.9±0.2a 11.9±0.3a 3.7±0.2a
M2 1270±27a 1580±43ab 471±16b 25.1±0.6a 16.2±0.5ab 13.1±0.3bc 9.1±0.2a 11.3±0.3abc 3.4±0.3a
M3 1239±31a 1383±50cd 442±20b 22.2±1.3c 12.4±0.9e 10.9±0.4d 9.1±0.5a 10.2±0.8bc 3.3±0.3a
N2 M1 1139±26b 1296±53d 458±16b 24.2±1.2ab 14.3±0.6cd 14.0±0.4a 8.8±0.5a 10.1±0.4c 3.6±0.2a
M2 1232±17a 1603±75a 507±24a 23.6±0.3abc 15.4±0.8bc 13.3±0.6ab 8.6±0.4a 11.2±0.7abc 3.5±0.2a
M3 1285±38a 1617±51a 508±18a 22.9±0.5bc 13.7±0.5de 12.4±0.3c 9.1±0.3a 11.4±0.4ab 3.6±0.4a
2021 N1 M1 1188±61c 1528±78b 500±26ab 26.5±1.4ab 17.4±0.9a 15.8±0.8a 9.5±0.5b 12.2±0.6b 4.0±0.2a
M2 1371±70ab 1819±93a 549±28a 27.8±1.4ab 17.8±0.9a 15.7±0.3a 10.6±0.5ab 14.0±0.7a 4.2±0.3a
M3 1219±62bc 1537±78b 503±26ab 21.2±1.1d 13.2±0.7b 12.6±0.6b 10.0±0.5ab 12.7±0.6ab 4.1±0.3a
N2 M1 1241±63abc 1661±85ab 522±27a 24.7±1.3bc 16.6±0.8a 15.0±0.8a 9.9±0.5ab 13.2±0.7ab 4.2±0.2a
M2 1292±66abc 1808±92a 448±23b 23.2±1.2cd 16.4±0.8a 12±0.6b 9.4±0.4b 13.1±0.7ab 3.2±0.2b
M3 1380±70a 1738±89a 520±26a 21.8±1.1d 13.8±0.7b 12.2±0.6b 10.8±0.6a 13.6±0.7ab 4.1±0.4a
方差分析Analysis of variance
年 Year (Y) NS NS NS NS NS NS NS NS NS
氮肥 Nitrogen (N) * * NS NS NS NS NS NS NS
密度 Density (D) ** ** NS NS * ** ** NS *
年×氮肥 Y×N NS NS * * NS * * NS NS
年×密度 Y×D * NS NS NS NS NS ** NS NS
密度×氮肥 D×N * NS NS * NS NS NS NS NS
年×密度×氮肥 Y×D×N NS NS NS NS NS NS NS NS NS

Fig. 5

Maize harvest index under nitrogen reduction and different planting densities Maize harvest indexes were significantly affected by year, nitrogen, and planting density, but nitrogen and planting density had no interaction effect"

[1]
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese)
[2]
张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010.
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010. (in Chinese)
[3]
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L Q, AN N, WU L, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

doi: 10.1038/nature13609
[4]
ZHANG W S, HE X M, ZHANG Z D, GONG S, ZHANG Q, ZHANG W, LIU D Y, ZOU C Q, CHEN X P. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 2018, 167: 75-86.

doi: 10.1016/j.biosystemseng.2017.12.008
[5]
麻碧娇, 苟志文, 殷文, 于爱忠, 樊志龙, 胡发龙, 赵财, 柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55(18): 3501-3515. doi: 10.3864/j.issn.0578-1752.2022.18.003.
MA B J, GOU Z W, YIN W, YU A Z, FAN Z L, HU F L, ZHAO C, CHAI Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515. doi: 10.3864/j.issn.0578-1752.2022.18.003. (in Chinese)
[6]
杨晨璐, 刘兰清, 王维钰, 任广鑫, 冯永忠, 杨改河. 麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究. 中国农业科学, 2018, 51(9): 1664-1680. doi: 10.3864/j.issn.0578-1752.2018.09.005.
YANG C L, LIU L Q, WANG W Y, REN G X, FENG Y Z, YANG G H. Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat-maize multiple cropping system. Scientia Agricultura Sinica, 2018, 51(9): 1664-1680. doi: 10.3864/j.issn.0578-1752.2018.09.005. (in Chinese)
[7]
李永华, 武雪萍, 何刚, 王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应. 中国农业科学, 2020, 53(23): 4879-4890. doi: 10.3864/j.issn.0578-1752.2020.23.013.
LI Y H, WU X P, HE G, WANG Z H. Benefits of yield, environment and economy from substituting fertilizer by manure for wheat production of China. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890. doi: 10.3864/j.issn.0578-1752.2020.23.013. (in Chinese)
[8]
宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 38(12): 2267-2277.

doi: 10.3724/SP.J.1006.2012.02267
SONG Z W, QI H, ZHANG Z P, QIAN C R, GUO J R, DENG A X, ZHANG W J. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in Northeast China. Acta Agronomica Sinica, 2012, 38(12): 2267-2277. (in Chinese)

doi: 10.3724/SP.J.1006.2012.02267
[9]
宋鹏飞, 毛培, 李鸿萍, 王宗超, 罗梅浩. 秸秆还田对夏玉米主要害虫发生程度的影响. 河南农业大学学报, 2014, 48(3): 334-338, 347.
SONG P F, MAO P, LI H P, WANG Z C, LUO M H. Effects of straw returning on the occurrence degree of summer maize pests. Journal of Henan Agricultural University, 2014, 48(3): 334-338, 347. (in Chinese)
[10]
李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华. 实施密植高产机械化生产, 实现玉米高产高效协同. 作物杂志, 2016(4):1-6.
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016(4):1-6. (in Chinese)
[11]
张卫建. 对我国玉米绿色增产增效栽培技术的探讨:增密减氮. 作物杂志, 2015(4):1-4.
ZHANG W J. On the cultivation approach to green improvement of maize yield and N use efficiency in China: dense planting with less N fertilizer. Crops, 2015(4):1-4. (in Chinese)
[12]
HOU P, LIU Y E, LIU W M, LIU G Z, XIE R Z, WANG K R, MING B, WANF Y H, ZHAO R L, ZHANG W J, WANG Y J, BIAN S F, REN H, ZHAO X Y, LIU P, CHANG J Z, ZHANG G Z, LIU J Y, YUAN L Z, ZHAO H Y, SHI L, ZHANG L L, YU LIN, GAO J L, YU X F, SHEN L G, YANG S Z, ZHANG Z D, XUE J Q, MA X F, WANG X Q, LU T Q, DONG B C, LI G, MA B X, LI J Q, DENG X F, LIU Y H, YANG Q, FU H, LIU X Z, CHEN X P, HUANG C L, LI S K. How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling, 2020, 160:104913.

doi: 10.1016/j.resconrec.2020.104913
[13]
蒋鹏, 徐富贤, 张林, 周兴兵, 朱永川, 郭晓艺, 刘茂, 陈琳, 张容, 熊洪. 高温高湿区增密减氮对杂交稻‘内6优107’产量形成和氮肥利用率的影响. 中国生态农业学报(中英文), 2021, 29(10): 1679-1691.
JIANG P, XU F X, ZHANG L, ZHOU X B, ZHU Y C, GUO X Y, LIU M, CHEN L, ZHANG R, XIONG H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679-1691. (in Chinese)
[14]
张余, 龙梦千, 何佩云, 吴兴慧, 黄小燕, 黄凯丰. 减氮密植对苦荞灌浆特性及产量形成的影响. 应用与环境生物学报, 2021, 27(5): 1334-1340.
ZHANG Y, LONG M Q, HE P Y, WU X H, HUANG X Y, HUANG K F. Effect of increased planting density with reduced nitrogen application on grain filling characteristics and yield formation of tartary buckwheat. Chinese Journal of Applied and Environmental Biology, 2021, 27(5): 1334-1340. (in Chinese)
[15]
王金凤, 王壮壮, 谷丰序, 牟海萌, 王宇, 段剑钊, 冯伟, 王永华, 郭天财. 氮密调控对两个冬小麦品种碳氮代谢及产量的影响. 中国农业科学, 2021, 54(19): 4070-4083. doi: 10.3864/j.issn.0578-1752.2021.19.004.
WANG J F, WANG Z Z, GU F X, MOU H M, WANG Y, DUAN J Z, FENG W, WANG Y H, GUO T C. Effects of nitrogen fertilizer and plant density on carbon metabolism, nitrogen metabolism and grain yield of two winter wheat varieties. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083. doi: 10.3864/j.issn.0578-1752.2021.19.004. (in Chinese)
[16]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[17]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. (in Chinese)
[18]
闫湘, 金继运, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率. 土壤, 2017, 49(6): 1067-1077.
YAN X, JIN J Y, LIANG M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China. Soils, 2017, 49(6): 1067-1077. (in Chinese)
[19]
杨国虎, 李建生, 罗湘宁, 王承莲. 干旱条件下玉米叶面积变化及地上干物质积累与分配的研究. 西北农林科技大学学报(自然科学版), 2005, 33(5): 27-32.
YANG G H, LI J S, LUO X N, WANG C L. Studies on leaf area change and above-ground dry material accumulation and distribution of maize in different droughts. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2005, 33(5): 27-32. (in Chinese)
[20]
焦智辉, 陈桂平, 范虹, 张金丹, 殷文, 李含婷, 王琦明, 胡发龙, 柴强. 绿洲灌区密植减量施氮玉米的水分利用特征. 中国农业科学, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004.
JIAO Z H, CHEN G P, FAN H, ZHANG J D, YIN W, LI H T, WANG Q M, HU F L, CHAI Q. Water use characteristics of increased plant density and reduced nitrogen application maize in oasis irrigated area. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099. doi: 10.3864/j.issn.0578-1752.2023.16.004. (in Chinese)
[21]
丁民伟, 杜雄, 刘梦星, 张建恒, 崔彦宏. 氮素运筹对夏玉米产量形成与氮素利用效果的影响. 植物营养与肥料学报, 2010, 16(5): 1100-1107.
DING M W, DU X, LIU M X, ZHANG J H, CUI Y H. Effects of nitrogen management modes on yield formation and nitrogen utilization efficiency of summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1100-1107. (in Chinese)
[22]
李含婷, 柴强, 胡发龙, 王国璀, 王琦明, 樊志龙, 殷文, 范虹. 间作绿肥弥补减施氮肥引起的玉米产量损失. 植物营养与肥料学报, 2022, 28(7): 1329-1340.
LI H T, CHAI Q, HU F L, WANG G C, WANG Q M, FAN Z L, YIN W, FAN H. Intercropping green manure with maize reduces nitrogen fertilizer input and stabilizes grain yield. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1329-1340. (in Chinese)
[23]
蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004.
KUAI J, WANG J J, ZUO Q S, CHEN H L, GAO J Q, WANG B, ZHOU G S, FU T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004. (in Chinese)
[24]
ZHAI L C, XIE R Z, MING B, LI S K, MA D L. Evaluation and analysis of intraspecific competition in maize: A case study on plant density experiment. Journal of Integrative Agriculture, 2018, 17(10): 2235-2244.

doi: 10.1016/S2095-3119(18)61917-3
[25]
李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018, 44(7): 1032-1042.

doi: 10.3724/SP.J.1006.2018.01032
LI R F, LIU P, YANG Q L, REN H, DONG S T, ZHANG J W, ZHAO B. Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agronomica Sinica, 2018, 44(7): 1032-1042. (in Chinese)

doi: 10.3724/SP.J.1006.2018.01032
[26]
申丽霞, 魏亚萍, 王璞, 易镇邪, 张红芳, 兰林旺. 施氮对夏玉米顶部籽粒早期发育及产量的影响. 作物学报, 2006, 32(11): 1746-1751.
SHEN L X, WEI Y P, WANG P, YI Z X, ZHANG H F, LAN L W. Effect of nitrogen supply on early kernel development and yield in summer maize (Zea mays L.). Acta Agronomica Sinica, 2006, 32(11): 1746-1751. (in Chinese)
[27]
米国华, 陈范骏, 袁力行. 氮素调节玉米幼穗及籽粒发育的生理机制. 土壤与作物, 2012, 1(4): 193-198.
MI G H, CHEN F J, YUAN L X. Regulatory mechanism of nitrogen availability on earshoot and kernel development in maize. Soil and Crop, 2012, 1(4): 193-198. (in Chinese)
[28]
李春奇, 郑慧敏, 李芸, 李潮海. 种植密度对夏玉米雌穗发育和产量的影响. 中国农业科学, 2010, 43(12): 2435-2442. doi: 10.3864/j.issn.0578-1752.2010.12.006.
LI C Q, ZHENG H M, LI Y, LI C H. Effect of planting density on the yield and development of maize ear. Scientia Agricultura Sinica, 2010, 43(12): 2435-2442. doi: 10.3864/j.issn.0578-1752.2010.12.006. (in Chinese)
[29]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93034
[30]
陈涛, 宋振伟, 张明, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 遮阴和种植密度对东北春玉米穗部发育和植株生产力的影响. 应用生态学报, 2016, 27(10): 3237-3246.

doi: 10.13287/j.1001-9332.201610.028
CHEN T, SONG Z W, ZHANG M, YAN X G, ZHU P, REN J, DENG A X, ZHANG W J. Effects of shading and plant density on ear development and plant productivity of spring maize in Northeast China. Chinese Journal of Applied Ecology, 2016, 27(10): 3237-3246. (in Chinese)
[31]
王昌亮, 张国合, 常建智, 吴西利, 闫丽慧, 李彦昌, 王芬霞, 侯现军, 蔡馨燕. 黄淮海子粒收获玉米对种植密度的响应. 玉米科学, 2023, 31(4):99-107.
WANG C L, ZHANG G H, CHANG J Z, WU X L, YAN L H, LI Y C, WANG F X, HOU X J, CAI X Y. Response to planting density of maize suitable for machine harvesting in Huang-Huai-Hai. Journal of Maize Sciences, 2023, 31(4): 99-107. (in Chinese)
[1] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[2] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[3] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[4] LI Yi, LU JianXin, CAO Peng, ZHOU DengWen, LIU JiMin, TIAN PingPing, CAI MingLi, CAO CouGui, YANG TeWu. Critical Lowest Temperature for the Safe Heading of Various Types of Late-Season Rice Cultivars and the Safe Dates for Their Full Heading in Different Double-Season Rice Cropping Regions of Hubei Province [J]. Scientia Agricultura Sinica, 2023, 56(17): 3302-3316.
[5] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[6] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[7] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[8] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] GUI RunFei, WANG ZaiMan, PAN ShengGang, ZHANG MingHua, TANG XiangRu, MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[11] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[12] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[13] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[14] GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[15] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!