Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 660-675.doi: 10.3864/j.issn.0578-1752.2025.04.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress

SU Ming(), LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang(), KANG JianHong()   

  1. College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2024-06-09 Accepted:2024-09-07 Online:2025-02-16 Published:2025-02-24
  • Contact: WU HongLiang, KANG JianHong

Abstract:

【Objective】In order to explore the mechanism of nitrogen application under high temperature on the antioxidant characteristics of dryland potato in the mountainous area of southern Ningxia, and to elucidate the mechanism of nitrogen regulation, so as to provide the reference for the local development of nitrogen application measures favorable to alleviate high temperature stress. 【Method】 A 2-year field in situ experiment was conducted in Dazui Village, Haiyuan County, Ningxia, from 2020 to 2021, using a split-zone experimental design with four N application levels as the main zones, namely 0 (N0), 75 kg·hm-2 (N1), 150 kg·hm-2 (N2), and 225 kg·hm-2 (N3), and two temperature gradients as the sub-zones, namely (35±2) ℃ (HT) and (30±2) ℃ (CK). The effects of post-flowering high temperature stress on potato leaf area index (LAI), relative chlorophyll content (SPAD), antioxidant properties, membrane lipid peroxidation products and non-enzymatic protective substances were analyzed. 【Result】 The 2-year results showed that potato LAI, SPAD, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) showed a decreasing trend from 30d-35d after flowering under the nitrogen fertilizer×temperature intercropping condition; at the same time, the cell membrane permeability, malondialdehyde content (MDA) and proline content (Pro) of potato leaves showed an increasing trend. Taking 35d after flowering as an example, after high temperature stress, potato LAI decreased by 11.22%-21.20%, SPAD decreased by 23.29%-26.05%, SOD decreased by 12.27%-16.87%, POD decreased by 13.69%-17.71% and CAT decreased by 13.80%-18.39% compared with room temperature; while cell membrane permeability, MDA content and Pro content increased significantly. Meanwhile, after high temperature stress, LAI and SPAD were significantly increased, while SOD, POD, CAT as well as yield reached the highest under N2 treatment (150 kg·hm-2) compared with other treatments and N2 could also reduce cell membrane permeability and MDA content to alleviate high temperature hazards and increase potato yield. To further explore the correlation between potato yield and N application, a quadratic relationship between yield and N application was found, which led to the derivation of the corresponding parameter values for the economically optimal N application rates of 132-142 kg·hm-2 (HT) and 185-210 kg·hm-2 (CK). Pearson's correlation analysis showed that under high temperature stress, yield was only related to leaf LAI, POD, and CAT. LAI, POD and CAT reached significant positive correlation and significant negative correlation with MDA and Pro, while it did not reach significant level with SOD, SPAD and cell membrane permeability. Meanwhile, through the principal component analysis, it was found that after 2 years of high temperature stress, the composite scores of different nitrogen application levels were N2>N3>N1>N0. 【Conclusion】 The application of nitrogen at 150 kg·hm-2 could continue to improve the physiological and antioxidant characteristics of potato leaves and to optimize its yield effectively, and it was also consistent with the theoretical estimation of 2 years of post-flowering high temperature. It was found that the N application rate of 150 kg·hm-2 could continuously improve the physiological characteristics of potato leaves and effectively optimize the yield, and the difference was very small with the theoretically estimated 2-year economic optimum N application rate (132-142 kg·hm-2). Therefore, the present experiment could also take 150 kg·hm-2 as the recommended N application rate for safe potato production in Ningnan mountainous area to cope with the increasingly serious local high temperature hazard.

Key words: potato, nitrogen application, high temperature, physiological characteristics, yield

Table 1

Soil base fertility at test sites in 2020 and 2021"

年份
Year
pH 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
碱解氮
Alkaline nitrogen decomposition (mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
2020 7.95 12.68 0.80 0.79 38.01 26.67 199.03
2021 8.01 13.17 0.76 0.73 34.57 30.06 201.54

Table 2

Variation of daily average temperature and light intensity during temperature treatment period"

年份
Year
测定项目
Measured item
处理
Treatment
处理时间段内各指标的平均值 Average of indicators in the processing period
1 d 2 d 3 d 4 d 5 d
2020 气温
Temperature (℃)
高温HT 35.20 35.23 35.54 36.89 35.03
常温CK 30.56 30.71 31.78 31.92 30.32
光照强度
Light intensity (LX)
高温HT 69453.23 68899.12 69159.28 68974.59 69122.31
常温CK 72313.30 73214.52 71932.26 72341.29 71493.82
2021 气温
Temperature (℃)
高温HT 35.35 35.16 36.16 35.62 35.29
常温CK 31.21 31.02 31.92 30.52 30.17
光照强度
Light intensity (LX)
高温HT 72402.41 70361.13 70236.29 69991.56 71361.52
常温CK 75361.22 75362.20 73368.19 76128.97 72337.84

Table 3

Analysis of variance of potato indices by different inter-annual, nitrogen-fertilizer and temperature interactions"

变异来源
Source of variation
年份
Year
(Y)
温度
Temperature
(T)
氮肥
Nitrogen fertilizer (N)
年份×氮肥
Year×Nitrogen fertilizer (Y×N)
年份×温度
Year×Temperature
(Y×T)
温度×氮肥
Temperature×
Nitrogen fertilizer (T×N)
年份×温度×氮肥
Year×Temperature×
Nitrogen fertilizer (Y×T×N)
LAI ** ** ** ** ** ** **
SPAD NS ** ** ** ** ** **
SOD ** ** ** ** ** ** **
POD ** ** ** * ** ** *
CAT ** ** ** ** ** * *
CMP ** ** ** NS ** NS NS
MDA ** ** ** NS ** * NS
Pro ** ** ** ** * * NS
产量Yield ** ** ** ** NS * *

Fig. 1

Dynamic changes of potato LAI under nitrogen-temperature interactions"

Fig. 2

Dynamics of SPAD in potato leaves under nitrogen-temperature interactions"

Fig. 3

Dynamic changes in cell membrane permeability of potato leaves under nitrogen-temperature interactions"

Fig. 4

Dynamics of malondialdehyde content in potato leaves under nitrogen-temperature interactions"

Fig. 5

Dynamic changes of SOD activity in potato leaves under nitrogen-temperature interactions"

Fig. 6

Dynamic changes of POD activity in potato leaves under nitrogen-temperature interactions"

Fig. 7

Dynamic changes of CAT activity in potato leaves under nitrogen-temperature interactions"

Fig. 8

Dynamic changes of Pro content in potato leaves under nitrogen-temperature interactions"

Fig. 9

Potato yield dynamics under nitrogen-temperature interactions"

Table 4

Relationship between potato yield and nitrogen applied"

年份
Year
处理
Treatment
二次函数拟合
Quadratic function fitting
R2 经济最佳施氮量
Economic optimal nitrogen application (kg·hm-2)
经济最高产量
Economic maximum yield (kg·hm-2)
2020 常温 CK Y= -0.161X2+70.04X+33753 0.8968 210.24 41361.87
高温 HT Y= -0.125X2+35.29X+32856 0.9647 131.79 35335.79
2021 常温 CK Y= -0.132X2+51.30X+33520 0.9142 185.44 38493.86
高温 HT Y= -0.309X2+89.81X+29106 0.9802 141.53 35627.31

Table 5

Correlation analysis of potato yield and indicators of physiological characteristics under different temperature treatments"

年份
Year
处理
Treatment
产量 Yield
LAI SPAD SOD POD CAT Pro MDA CMP
2020
常温 CK 0.87** 0.74** 0.88** 0.89** 0.91** -0.91** -0.87** -0.84**
高温 HT 0.61* 0.24NS 0.31NS 0.83** 0.66* -0.72** -0.81** -0.49NS
2021 常温 CK 0.79** 0.72** 0.75** 0.74** 0.83** -0.95** -0.81** -0.86**
高温 HT 0.74** 0.46NS 0.73** 0.64* 0.43NS -0.36NS -0.75** -0.44NS

Fig. 10

Comprehensive evaluation of different nitrogen fertilizer treatments on physiological characteristics and yield of potato leaves after high temperature stresstreatments"

[1]
QIN R Z, ZHANG F, YU C Q, ZHANG Q, QI J G, LI F M. Contributions made by rain-fed potato with mulching to food security in China. European Journal of Agronomy, 2022, 133: 126435.
[2]
杨亚东, 杜娅婷, 杜歆仪, 巨章宏, 罗其友, 张晴. 中国马铃薯农户种植意愿及其空间差异. 中国农业资源与区划, 2022, 43(2): 220-230.
YANG Y D, DU Y T, DU X Y, JU Z H, LUO Q Y, ZHANG Q. Potato farmers’willingness to plant and its spatial difference in China. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(2): 220-230. (in Chinese)
[3]
勉卫忠, 李愉. 马铃薯在宁夏的传播及其影响. 农业考古, 2022(4): 67-73.
MIAN W Z, LI Y. The spread and influence of potato in Ningxia. Agricultural Archaeology, 2022(4): 67-73. (in Chinese)
[4]
张晓宁, 杨飞, 包娟, 王彦琪, 周兴隆, 张战胜, 王晓媛, 赵雁, 王思成, 赵占强, 王晓蕾, 田巧环, 张小晓, 李珍. 关于宁夏地区马铃薯种植规模缩减的原因分析及产业发展建议. 上海农业科技, 2023(3):29-31.
ZHANG X N, YANG F, BAO J, WANG Y Q, ZHOU X L, ZHANG Z S, WANG X Y, ZHAO Y, WANG S C, ZHAO Z Q, WANG X L, TIAN Q H, ZHANG X X, LI Z. Analysis of the reasons for the reduction of potato planting scale in Ningxia and suggestions for industrial development. Shanghai Agricultural Science and Technology, 2023(3):29-31. (in Chinese)
[5]
罗慧, 刘杰, 王丽, 唐智亿. 西北气候暖湿化的农业经济影响评估: 以宁夏为例. 气候变化研究进展, 2023, 19(3): 293-304.
LUO H, LIU J, WANG L, TANG Z Y. Impact assessment of climate warming and wetting on agricultural economy in Northwest China: A case study of Ningxia. Climate Change Research, 2023, 19(3): 293-304. (in Chinese)
[6]
张志良, 和志豪, 茹晓雅, 蒋腾聪, 何英彬, 冯浩, 于强, 何建强. 未来气候变化对中国马铃薯种植气候适宜性的影响. 中国农业科学, 2023, 56(18): 3530-3542. doi: 10.3864/j.issn.0578-1752.2023.18.004.
ZHANG Z L, HE Z H, RU X Y, JIANG T C, HE Y B, FENG H, YU Q, HE J Q. Influence of future climate change on the climate suitability of potato cultivation in China. Scientia Agricultura Sinica, 2023, 56(18): 3530-3542. doi: 10.3864/j.issn.0578-1752.2023.18.004. (in Chinese)
[7]
肖国举, 仇正跻, 张峰举, 马飞, 姚玉璧, 张强, 王润元. 增温对西北半干旱区马铃薯产量和品质的影响. 生态学报, 2015, 35(3): 830-836.
XIAO G J, QIU Z J, ZHANG F J, MA F, YAO Y B, ZHANG Q, WANG R Y. Influence of increased temperature on the potato yield and quality in a semiarid district of Northwest China. Acta Ecologica Sinica, 2015, 35(3): 830-836. (in Chinese)
[8]
孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响. 草业学报, 2022, 31(9): 63-75.

doi: 10.11686/cyxb2021343
SUN Y L, ZHAO J W, LIU X S, LI S Y, MA C H, WANG X Z, ZHANG Q B. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage. Acta Prataculturae Sinica, 2022, 31(9): 63-75. (in Chinese)
[9]
坚天才, 吴宏亮, 康建宏, 李鑫, 刘根红, 陈倬, 高娣. 氮素缓解春小麦花后高温早衰的荧光特性研究. 中国农业科学, 2021, 54(15): 3355-3368. doi: 10.3864/j.issn.0578-1752.2021.15.018.
JIAN T C, WU H L, KANG J H, LI X, LIU G H, CHEN Z, GAO D. Fluorescence characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis. Scientia Agricultura Sinica, 2021, 54(15):3355-3368. doi: 10.3864/j.issn.0578-1752.2021.15.018. (in Chinese)
[10]
米美多, 慕宇, 代晓华, 赵晶晶, 康建宏. 花后高温胁迫下不同施氮量对春小麦抗氧化特性的影响. 江苏农业科学, 2017, 45(1): 52-56.
MI M D, MU Y, DAI X H, ZHAO J J, KANG J H. Effects of different nitrogen application rates on antioxidant properties of spring wheat under post-anthesis high temperature stress. Jiangsu Agricultural Sciences, 2017, 45(1): 52-56. (in Chinese)
[11]
李永飞, 李战魁, 张战胜, 陈永伟, 康建宏, 吴宏亮. 氮肥后移对高温胁迫下春小麦旗叶生理特性和产量的影响. 中国农业科学, 2024, 57(8): 1455-1468. doi: 10.3864/j.issn.0578-1752.2024.08.004.
LI Y F, LI Z K, ZHANG Z S, CHEN Y W, KANG J H, WU H L. Effects of postponing nitrogen fertilizer application on flag leaf physiological characteristics and yield of spring wheat under high temperature stress. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468. doi: 10.3864/j.issn.0578-1752.2024.08.004. (in Chinese)
[12]
李中海, 郭永峰, 任国栋, 张可伟, 缪颖, 郭红卫. 叶片衰老研究进展. 植物生理学报, 2023, 59 (9): 1627-1656.
LI Z H, GUO Y F, REN G D, ZHANG K W, MIAO Y, GUO H W. Advances in leaf senescence. Plant Physiology Journal, 2023, 59(9): 1627-1656. (in Chinese)
[13]
仇琳, 赵林姝, 谢永盾, 熊宏春, 古佳玉, 毕秀丽, 刘录祥, 郭会君. 植物早衰研究进展. 植物遗传资源学报, 2022, 23(2): 346-357.

doi: 10.13430/j.cnki.jpgr.20210930001
QIU L, ZHAO L S, XIE Y D, XIONG H C, GU J Y, BI X L, LIU L X, GUO H J. Advances in research on premature senescence in plants. Journal of Plant Genetic Resources, 2022, 23(2): 346-357. (in Chinese)
[14]
苏明, 柳强娟, 张正珍, 周甜, 洪自强, 李翻过, 康建宏, 吴宏亮. 施氮量对宁夏南部山区旱地马铃薯叶片抗氧化特性及产量的影响. 中国生态农业学报(中英文), 2024, 32(8): 1341-1354.
SU M, LIU Q J, ZHANG Z Z, ZHOU T, HONG Z Q, LI F G, KANG J H, WU H L. The impact of nitrogen application on antioxidant characteristics of dryland potato leaves and yield in the mountainous region of southern Ningxia, China. Chinese Journal of Eco- Agriculture, 2024, 32(8): 1341-1354. (in Chinese)
[15]
STUMPF B, YAN F, WEN G P, EDER K, HONERMEIER B. Dynamics of antioxidant properties, phenolic compounds, and transcriptional expression of key enzymes for the phenylpropanoid pathway in leaves of field-grown winter wheat with different nitrogen fertilization schemes. Journal of Plant Nutrition and Soil Science, 2019, 182(3): 411-418.
[16]
王瑞, 李向岭, 郭栋, 王新兵, 马玮, 李从锋, 赵明, 周宝元. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响. 作物学报, 2023, 49(12): 3342-3351.

doi: 10.3724/SP.J.1006.2023.33003
WANG R, LI X L, GUO D, WANG X B, MA W, LI C F, ZHAO M, ZHOU B Y. Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress. Acta Agronomica Sinica, 2023, 49(12): 3342-3351. (in Chinese)

doi: 10.3724/SP.J.1006.2023.33003
[17]
王星强. 花后高温胁迫对旱区马铃薯早衰的响应机理研究[D]. 银川: 宁夏大学, 2022.
WANG X Q. Responce post-anthesis high temperature stress to premature senescence of potato in arid area mechanism study[D]. Yinchuan: Ningxia University, 2022. (in Chinese)
[18]
孙群, 胡景江. 植物生理学研究技术. 杨凌: 西北农林科技大学出版社, 2006.
SUN Q, HU J J. Research Technology of Plant Physiology. Yangling: Northwest A&F University Press, 2006. (in Chinese)
[19]
吕文河, 马子竣, 李莹, 白雅梅, 李文霞, 徐学谱. 马铃薯4x-4x和4x-2x杂种后代高世代选系总产和商品薯产量比较. 东北农业大学学报, 2014, 45(10): 1-9.
W H, MA Z J, LI Y, BAI Y M, LI W X, XU X P. Comparison for total and marketable Tuber yield of advanced clones selected from potato 4x-4x and 4x-2x crosses. Journal of Northeast Agricultural University, 2014, 45(10): 1-9. (in Chinese)
[20]
杨启睿, 李岚涛, 张潇, 张倩, 张银杰, 张铎, 王宜伦. 施钾对夏花生产量、品质及光温生理特性的影响. 中国农业科学, 2024, 57(7): 1335-1349. doi: 10.3864/j.issn.0578-1752.2024.07.010.
YANG Q R, LI L T, ZHANG X, ZHANG Q, ZHANG Y J, ZHANG D, WANG Y L. Effects of potassium application dosage on yield, quality and light temperature physiological characteristics of summer peanut. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349. doi: 10.3864/j.issn.0578-1752.2024.07.010. (in Chinese)
[21]
周丹, 李海燕, 王秀军, 李庆卫. 外源褪黑素对盐胁迫下银杏幼苗渗透调节和抗氧化能力的影响. 应用生态学报, 2024, 35(2): 431-438.

doi: 10.13287/j.1001-9332.202402.001
ZHOU D, LI H Y, WANG X J, LI Q W. Effects of exogenous melatonin on the osmotic regulation and antioxidant capacity of Ginkgo biloba seed-lings under salt stress. Chinese Journal of Applied Ecology, 2024, 35(2): 431-438. (in Chinese)

doi: 10.13287/j.1001-9332.202402.001
[22]
李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响. 作物学报, 2023, 49(8): 2210-2224.

doi: 10.3724/SP.J.1006.2023.21057
LI Y X, MA L L, ZHANG Y, QIN B Y, ZHANG W J, MA S Y, HUNAG Z L, FAN Y H. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage. Acta Agronomica Sinica, 2023, 49(8): 2210-2224. (in Chinese)
[23]
汝晨, 胡笑涛, 吕梦薇, 陈滇豫, 王文娥, 宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响. 中国农业科学, 2022, 55(17): 3303-3320. doi: 10.3864/j.issn.0578-1752.2022.17.004.
RU C, HU X T, M W, CHEN D Y, WANG W E, SONG T Y. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320. doi: 10.3864/j.issn.0578-1752.2022.17.004. (in Chinese)
[24]
YANG J, YU Q Y, CHEN X R, ZHU C L, PENG X S, HE X P, FU J R, OUYANG L J, BIAN J M, HU L F, SUN X T, XU J, HE H H. Effects of Nitrogen Level and High Temperature Stress on Yield, SPAD Value and Soluble Sugar Content of Early Rice Ganxin 203. Agricultural Science & Technology, 2016, 17(2): 385-390.
[25]
董勇杰, 张刁亮, 李越, 彭建辰, 胡发龙, 殷文, 柴强, 樊志龙. 不同施氮量下玉米生长及产量对间作豆科绿肥的响应. 中国农业科学, 2024, 57(10): 1900-1914. doi: 10.3864/j.issn.0578-1752.2024.10.005.
DONG Y J, ZHANG D L, LI Y, PENG J C, HU F L, YIN W, CHAI Q, FAN Z L. Response of maize growth and yield with different nitrogen application rates to intercropped leguminous green manure. Scientia Agricultura Sinica, 2024, 57(10): 1900-1914. doi: 10.3864/j.issn.0578-1752.2024.10.005. (in Chinese)
[26]
王昀杰, 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强. 不同灌水量下玉米的产量可持续性对间作绿肥的响应. 作物学报, 2024, 50 (10): 2562-2574.

doi: 10.3724/SP.J.1006.2024.33068
WANG Y J, FAN Z L, ZHANG D L, MAO S F, HU F L, YIN W, CHAI Q. Response of the yield sustainability of maize with different irrigated quota to intercropped green manure. Acta Agronomica Sinica, 2024, 50 (10): 2562-2574. (in Chinese)
[27]
张秦泽, 郝广, 李洪远. 外源输入氮的有效性及形态对植物生长与生理影响的研究进展. 生态学杂志, 2024, 43(3): 878-887.
ZHANG Q Z, HAO G, LI H Y. Effects of availability and form of exogenous nitrogen on plant growth and physiology: Progress and pros-pects. Chinese Journal of Ecology, 2024, 43(3): 878-887. (in Chinese)
[28]
马昕, 蔡丰乐, 穆心愿, 李鸿萍, 邵瑞鑫, 李树岩, 徐佳敏, 王帅丽, 卢良涛, 赵霞, 赵亚丽, 刘天学. 施氮量对穗期高温胁迫下玉米叶片光合生理及产量的影响. 植物营养与肥料学报, 2022, 28(10): 1852-1866.
MA X, CAI F L, MU X Y, LI H P, SHAO R X, LI S Y, XU J M, WANG S L, LU L T, ZHAO X, ZHAO Y L, LIU T X. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1852-1866. (in Chinese)
[29]
李敏, 赖晨骏, 李金鹏, 李金才, 朱玉磊, 宋有洪. 灌浆期高温对冬小麦叶源与粒库生理特征的影响. 麦类作物学报, 2022, 42(12): 1567-1574.
LI M, LAI C J, LI J P, LI J C, ZHU Y L, SONG Y H. Effect of high temperature during grain filling stage on physiological properties of both leaf source and grain sink in winter wheat. Journal of Triticeae Crops, 2022, 42(12): 1567-1574. (in Chinese)
[30]
LU J Y, ZHANG Q, SUN X J, DENG Y, GUO H X, WANG C Y, ZHAO L. Study on the mechanism of slow-release fertilizer and nitrogen fertilizer on the senescence characteristics of quinoa leaves. Agronomy, 2024, 14(5): 884.
[31]
班文慧. 温度与氮肥互作对旱地马铃薯块茎淀粉及产量形成和氮素利用效率的影响研究[D]. 银川: 宁夏大学, 2022.
BAN W H. Effects of temperature and nitrogen fertilization on starch and yield formation and nitrogen use efficiency of dryland potato tubers[D]. Yinchuan: Ningxia University, 2022. (in Chinese)
[32]
班文慧, 王星强, 柳强娟, 孙建波, 吕开源, 康建宏. 施氮对块茎形成期高温胁迫后马铃薯块茎产量、淀粉含量和相关酶代谢活性的影响. 核农学报, 2022, 36(2): 422-434.

doi: 10.11869/j.issn.100-8551.2022.02.0422
BAN W H, WANG X Q, LIU Q J, SUN J B, K Y, KANG J H. Effects of nitrogen application rate on potato yield, starch content and related enzyme metabolic during Tuber formation after high temperature stress. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 422-434. (in Chinese)
[33]
余梦奇, 路梦莉, 张雅婷, 程嘉慧, 李文阳. 褪黑素对高温胁迫玉米叶片光合特性与抗氧化酶活性的调控. 玉米科学, 2024, 32(1): 90-99.
YU M Q, LU M L, ZHANG Y T, CHENG J H, LI W Y. Regulation of melatonin on photosynthetic characteristics and antioxidant enzyme activities in maize leaves under high temperature stress condition. Journal of Maize Sciences, 2024, 32(1): 90-99. (in Chinese)
[34]
霍治国, 张海燕, 李春晖, 孔瑞, 江梦圆. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14.
HUO Z G, ZHANG H Y, LI C H, KONG R, JIANG M Y. Review on high temperature heat damage of maize in China. Journal of Applied Meteorological Science, 2023, 34(1): 1-14. (in Chinese)
[35]
坚天才, 康建宏, 吴宏亮, 刘根红, 高娣, 马雪莹, 李鑫. 氮素缓解春小麦花后高温早衰的抗氧化特性研究. 中国农业科技导报, 2021, 23(7): 33-44.
JIAN T C, KANG J H, WU H L, LIU G H, GAO D, MA X Y, LI X. Antioxidative characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis. Journal of Agricultural Science and Technology, 2021, 23(7): 33-44. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0374
[1] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[2] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[3] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[4] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[5] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[6] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[7] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[8] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[9] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[10] LI PeiSong, LU YongDi, GUO Yu, ZHANG QiPeng, LIU TaoFen, WANG TianHe, YANG MingFeng, XIANG Dao, TIAN JingShan, ZHANG WangFeng. The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton [J]. Scientia Agricultura Sinica, 2025, 58(1): 58-74.
[11] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[12] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[13] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[14] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[15] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!