Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1766-1778.doi: 10.3864/j.issn.0578-1752.2024.09.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield

HAN XiaoJie1(), REN ZhiJie2, LI ShuangJing1, TIAN PeiPei1, LU SuHao1, MA Geng1, WANG LiFang1, MA DongYun1, ZHAO YaNan2, WANG ChenYang1()   

  1. 1 College of Agronomy, Henan Agricultural University/National Engineering Research Center for Wheat, Zhengzhou 450046
    2 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2024-01-05 Accepted:2024-02-29 Online:2024-05-01 Published:2024-05-09
  • Contact: WANG ChenYang

Abstract:

【Objective】The influence mechanism of varying nitrogen (N) rates on the carbon (C) and N content of soil aggregate, as well as wheat yield were investigated in this study, so as to provide a scientific basis for the rational application of N fertilizer.【Method】The 11-year experiment was conducted in Zhangpan Town, Xuchang City, Henan Province, with four different N levels, including 0 (N0), 180 kg·hm-2 (N1), 240 kg·hm-2 (N2), and 300 kg·hm-2 (N3). The study systematically analyzed changes in soil carbon and nitrogen content, cluster distribution and their carbon and nitrogen content in different soil layers as a result of long-term N application, and investigated the regulatory pathways of long-term N application on wheat yield and its composition.【Result】There was a transformation in the composition of soil aggregates in every soil layer, specifically from larger macroaggregates (>0.25 mm) to microaggregates (0.25-0.053 mm) and silt and clay particles (<0.053 mm), as well as an increase in N rate. Additionally, the application of N resulted in a significant decrease in the mean weight diameter (MWD). As N application rates increase, the C and N content of the soil increased in the 0-20 cm layer, the C and N content of the soil in the 20-40 cm soil layer showed the trend to increase at first and then decrease. Compared with the N0 treatment, N application increased soil organic carbon (SOC) and soil total nitrogen (STN) content by 13.1%-37.2% and 19.4%-29.4% in the 0-20 cm layer and by 15.3%-32.2% and 6.1%-29.3% in the 20-40 cm layer, respectively. The N treatment significantly increased the SOC content of each particle size aggregates compared with N0 treatment, with the SOC content of macroaggregates increasing by 31.6%-62.0%, the SOC content of microaggregates increasing by 8.7%-61.2% and the SOC content of silt and clay increasing by 14.0%-81.7%. As N application rates increased, the STN content of the soil increased in the 0-20 cm layer. With the STN content of macroaggregates increasing by 32.6%-51.0%, the STN content of microaggregates increased by 25.7%-35.9% and the STN content of silt and clay increased by 3.2%-9.7%, the N3 treatment had the highest STN content of all particle size aggregates. In the 20-40 cm soil layer, the STN content of all particle size aggregates tended to increase at first and then decrease. With the STN content of macroaggregates increasing by 17.6%-35.2%, the STN content of microaggregates increased by 11.7%-24.0% and the STN content of silt and clay increased by 1.1%-12.9%, and the N1 treatment had the highest STN content of all particle size aggregates. The study results indicated that long-term nitrogen application had a significant impact on the spike number and grain number per spike in wheat, resulting in increased yield. Compared with the N0 treatment, the application of N1, N2, and N3 treatments resulted in a significant increase in wheat yield, with improvements of 188.1%, 177.3%, and 173.2%, respectively. The correlation and structural equation modelling analyses revealed a significant and positive correlation between wheat yield and soil carbon and nitrogen content, as well as carbon and nitrogen content in aggregates. Additionally, the long-term application of nitrogen was found to influence wheat yield formation by affecting carbon and nitrogen content in microaggregates.【Conclusion】In summary, the application of nitrogen over a long period of time raised the content of carbon and nitrogen in both soil and aggregates, enhanced soil fertility, ultimately promoting wheat yield. The optimal nitrogen application rate was 180 kg·hm-2 under the condition of this experiment.

Key words: nitrogen application rates, soil aggregates, content of carbon and nitrogen, wheat yield

Table 1

Soil nutrient in 2021"

处理
Treatment
有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
碱解氮
Alkaline hydrolysis nitrogen (mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
N0 16.43 0.66 27.88 21.53 157.45
N1 18.58 0.79 37.48 23.69 168.73
N2 18.90 0.80 34.18 23.51 166.63
N3 22.54 0.86 35.20 22.94 164.80

Table 2

The mass percentage and mean weight diameter (MWD) of soil aggregates under different N rates"

土壤深度
Soil depth (cm)
处理
Treatment
土壤团聚体质量百分比Mass percentage of soil aggregates (%) 平均重量直径
MWD (mm)
>0.25 mm 0.053-0.25 mm <0.053 mm
0-20 N0 23.89±0.85a 48.63±0.40a 27.48±1.15b 1.31±0.04a
N1 16.48±1.45b 50.85±2.96a 32.67±2.49a 0.94±0.07b
N2 16.30±0.19b 49.89±1.43a 33.81±1.39a 0.93±0.01b
N3 15.62±1.12b 48.27±1.29a 36.11±1.77a 0.89±0.06b
20-40 N0 13.69±1.24a 58.52±1.58a 27.79±0.37d 0.81±0.06a
N1 9.62±0.61b 58.24±2.16a 32.14±1.57c 0.60±0.03b
N2 7.61±1.14c 57.11±1.70a 35.28±2.84b 0.50±0.06c
N3 5.02±0.18d 55.68±0.15a 39.30±0.33a 0.36±0.01d

Fig. 1

SOC and STN content of bulk soil in different soil depths under long-term different N rates"

Fig. 2

SOC of aggregates in different soil depths under long-term different N rates"

Table 3

Contribution rate of aggregate-associated C with different sizes to soil total C under long-term different N rates"

土壤深度
Soil depth (cm)
处理
Treatment
贡献率 Contribution rate (%)
>0.25 mm 0.053-0.25 mm <0.053 mm
0-20 N0 32.57±1.22a 44.94±0.37c 22.49±1.34b
N1 24.08±0.13b 52.43±1.50a 23.49±1.37ab
N2 25.77±0.60b 52.46±1.50a 22.58±0.93b
N3 25.56±1.77b 48.57±0.96b 25.88±1.04a
20-40 N0 23.15±0.92a 60.15±0.98a 16.70±0.62b
N1 16.69±1.61b 56.02±4.65a 27.29±3.18a
N2 15.43±2.69b 57.36±2.04a 27.21±4.14a
N3 11.26±0.88c 60.49±0.67a 28.25±1.54a

Fig. 3

Total N content of aggregates in different soil depths under long-term different N rates"

Table 4

Contribution rate of aggregate-associated N with different sizes to STN under long-term different N rates"

土壤深度
Soil depth (cm)
处理
Treatment
贡献率 Contribution rate (%)
>0.25 mm 0.053-0.25 mm <0.053 mm
0-20 N0 27.23±1.52a 48.54±2.74a 24.23±2.44a
N1 21.04±2.34b 53.99±3.82a 24.96±1.48a
N2 21.49±0.39b 52.17±2.56a 26.34±2.82a
N3 21.12±1.78b 51.55±1.84a 27.33±0.72a
20-40 N0 19.24±0.59a 58.51±1.44a 22.25±1.34c
N1 15.29±0.93b 60.41±1.90a 24.30±1.82bc
N2 11.78±1.25c 60.04±2.36a 28.18±3.46ab
N3 8.73±0.43d 60.85±0.31a 30.42±0.74a

Table 5

Effects of long-term different N rates on wheat yield and yield components"

处理
Treatment
穗数
Spike number (×104·hm-2)
穗粒数
Grain per spike
千粒重
1000-grain weight (g)
产量
Grain yield (kg·hm-2)
N0 238.89±5.09c 30.17±0.93b 48.00±0.72a 3869.60±118.72c
N1 664.38±5.54a 36.30±0.56a 44.33±0.32bc 11149.91±173.55a
N2 655.63±11.43a 35.83±0.15a 44.93±0.38b 10731.06±110.54b
N3 631.88±8.51b 35.60±1.15a 43.70±0.56c 10571.96±56.33b

Fig. 4

Relationship between wheat yield and SOC and aggregate-associated C"

Fig. 5

Relationship between wheat yield and STN and aggregate-associated N"

Fig. 6

Structural equation model of effects of N rate on yield, soil C, and soil N χ2/df=0.792,GFI=0.938,RMSEA=0.000 The number adjacent to arrow line is standardized coefficients that shows the variance explained by the variable. The dotted line shows no significant correlation. *P<0.05, **P<0.01, ***P<0.001"

[1]
刘玉秀, 黄淑华, 王景琳, 张正茂. 小麦籽粒钙元素含量的研究进展. 作物学报, 2021, 47(2): 187-196.

doi: 10.3724/SP.J.1006.2021.01045
LIU Y X, HUANG S H, WANG J L, ZHANG Z M. Research advance on calcium content in wheat grains. Acta Agronomica Sinica, 2021, 47(2): 187-196. (in Chinese)

doi: 10.3724/SP.J.1006.2021.01045
[2]
朱统泉, 吴大付. 河南小麦生产现状分析. 陕西农业科学, 2014, 60(1): 78-81.
ZHU T Q, WU D F. Analysis of wheat production status in Henan Province. Shaanxi Journal of Agricultural Sciences, 2014, 60(1): 78-81. (in Chinese)
[3]
李雪萌, 杨梅, 秦保平, 李赛星, 郝倩倩, 石彩云, 张敏, 蔡瑞国, 杨敏. 施氮量对强筋小麦物质积累与籽粒产量的影响. 麦类作物学报, 2023, 43(5): 609-622.
LI X M, YANG M, QIN B P, LI S X, HAO Q Q, SHI C Y, ZHANG M, CAI R G, YANG M. Effect of nitrogen application rate on matter accumulation and grain yield of strong gluten wheat. Journal of Triticeae Crops, 2023, 43(5): 609-622. (in Chinese)
[4]
赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良. 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012.
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L. Nitrogen requirement and saving potential for wheat and maize in Henan Province. Scientia Agricultura Sinica, 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012. (in Chinese)
[5]
娄庭, 龙怀玉, 杨丽娟, 陈宝鸿, 周水亮, 穆真. 在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响. 中国土壤与肥料, 2010(2): 11-15, 34.
LOU T, LONG H Y, YANG L J, CHEN B H, ZHOU S L, MU Z. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers. Soil and Fertilizer Sciences in China, 2010(2): 11-15, 34. (in Chinese)
[6]
吴波, 张亚军. 氮肥施用量对冬小麦的影响. 现代农业, 2009(11): 19-20.
WU B, ZHANG Y J. Effect of nitrogen fertilizer application rate on winter wheat. Modern Agriculture, 2009(11): 19-20. (in Chinese)
[7]
丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征. 作物学报, 2020, 46(4): 544-556.

doi: 10.3724/SP.J.1006.2020.91041
DING Y G, LI F J, WANG Y H, TANG X Q, DU T Q, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Characteristics of yield components and population quality in high-nitrogen- utilization wheat cultivars. Acta Agronomica Sinica, 2020, 46(4): 544-556. (in Chinese)

doi: 10.3724/SP.J.1006.2020.91041
[8]
翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征. 中国生态农业学报 (中英文), 2023, 31(5): 765-775.
ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765-775. (in Chinese)
[9]
陈津赛, 孙玮皓, 王广帅, Abubakar Sunusi Amin, 高阳. 不同施氮量对麦田土壤水稳性团聚体和N2O排放的影响. 应用生态学报, 2021, 32(11): 3961-3968.

doi: 10.13287/j.1001-9332.202111.024
CHEN J S, SUN W H, WANG G S, ABUBAKAR S A, GAO Y. Effects of different nitrogen application rates on soil water stable aggregates and N2O emission in winter wheat field. Chinese Journal of Applied Ecology, 2021, 32(11): 3961-3968. (in Chinese)
[10]
李彩霞, 陈津赛, 付媛媛, 韩其晟, 宁慧峰, 王广帅. 施氮和灌溉管理对麦田土壤团聚体组成及有机碳的影响. 灌溉排水学报, 2022, 41(12): 59-64, 80.
LI C X, CHEN J S, FU Y Y, HAN Q S, NING H F, WANG G S. Effects of nitrogen fertilization and irrigation on soil aggregation and soil organic carbon in winter wheat field. Journal of Irrigation and Drainage, 2022, 41(12): 59-64, 80. (in Chinese)
[11]
郭戎博, 李国栋, 潘梦雨, 郑险峰, 王朝辉, 何刚. 秸秆还田与施氮对耕层土壤有机碳储量、组分和团聚体的影响. 中国农业科学, 2023, 56(20): 4035-4048. doi: 10.3864/j.issn.0578-1752.2023.20.009.
GUO R B, LI G D, PAN M Y, ZHENG X F, WANG Z H, HE G. Effects of long-term straw return and nitrogen application rate on organic carbon storage, components and aggregates in cultivated layers. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048. doi: 10.3864/j.issn.0578-1752.2023.20.009. (in Chinese)
[12]
WANG F L, LIU Y, LIANG B, LIU J, ZONG H Y, GUO X H, WANG X X, SONG N N. Variations in soil aggregate distribution and associated organic carbon and nitrogen fractions in long-term continuous vegetable rotation soil by nitrogen fertilization and plastic film mulching. The Science of the Total Environment, 2022, 835: 155420.

doi: 10.1016/j.scitotenv.2022.155420
[13]
杨家明, 胡健, 潘军晓, 彭逸飞, 魏春雪, 汪金松, 田大栓, 周青平. 氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响. 北京林业大学学报, 2022, 44(12): 102-110.
YANG J M, HU J, PAN J X, PENG Y F, WEI C X, WANG J S, TIAN D S, ZHOU Q P. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow. Journal of Beijing Forestry University, 2022, 44(12): 102-110. (in Chinese)
[14]
WANG J J, SUN X, DU L N, SUN W L, WANG X L, GAAFAR A R Z, ZHANG P, CAI T, LIU T N, JIA Z K, CHEN X L, REN X L. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma, 2024, 441: 116743.

doi: 10.1016/j.geoderma.2023.116743
[15]
张宁. 河南省典型土壤生态系统服务功能及其价值评价研究[D]. 郑州: 河南农业大学, 2016.
ZHANG N. Study on the typical soil ecosystem services value in Henan Province[D]. Zhengzhou: Henan Agricultural University, 2016. ( in Chinese)
[16]
SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377.

doi: 10.2136/sssaj1998.03615995006200050032x
[17]
CHENG Y T, XU G C, WANG X K, LI P, DANG X H, JIANG W T, MA T T, WANG B, GU F Y, LI Z B. Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecological Indicators, 2023, 155: 110988.

doi: 10.1016/j.ecolind.2023.110988
[18]
姚俊红, 武俊男, 王呈玉, 崔炎田, 高云航, 孙嘉璐, 刘淑霞. 长期不同施氮量下黑土团聚体稳定性及有机碳含量的变化. 农业环境科学学报, 2024, 43(1): 102-110.
YAO J H, WU J N, WANG C Y, CUI Y T, GAO Y H, SUN J L, LIU S X. Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 2024, 43(1): 102-110. (in Chinese)
[19]
ZHANG J, WEI D, ZHOU B K, ZHANG L J, HAO X Y, ZHAO S C, XU X P, HE P, ZHAO Y, QIU S J, ZHOU W. Responses of soil aggregation and aggregate-associated carbon and nitrogen in black soil to different long-term fertilization regimes. Soil and Tillage Research, 2021, 213: 105157.

doi: 10.1016/j.still.2021.105157
[20]
谭文峰, 许运, 史志华, 蔡鹏, 黄巧云. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 2023, 60(5): 1297-1308.
TAN W F, XU Y, SHI Z H, CAI P, HUANG Q Y. The formation process and stabilization mechanism of soil aggregates driven by binding materials. Acta Pedologica Sinica, 2023, 60(5): 1297-1308. (in Chinese)
[21]
王楚涵, 刘菲, 高健永, 张慧芳, 谢英荷, 曹寒冰, 谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征. 中国农业科学, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn.0578-1752.2022.19.008.
WANG C H, LIU F, GAO J Y, ZHANG H F, XIE Y H, CAO H B, XIE J Y. The variation characteristics of soil organic carbon component content under nitrogen reduction and film mulching. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn.0578-1752.2022.19.008. (in Chinese)
[22]
王慧, 刘金山, 惠晓丽, 戴健, 王朝辉. 旱地土壤有机碳氮和供氮能力对长期不同氮肥用量的响应. 中国农业科学, 2016, 49(15): 2988-2998. doi: 10.3864/j.issn.0578-1752.2016.15.013.
WANG H, LIU J S, HUI X L, DAI J, WANG Z H. Responses of soil organic carbon, organic nitrogen and nitrogen supply capacity to long-term nitrogen fertilization practices in dryland soil. Scientia Agricultura Sinica, 2016, 49(15): 2988-2998. doi: 10.3864/j.issn.0578-1752.2016.15.013. (in Chinese)
[23]
祁瑜, 黄永梅, 王艳, 赵杰, 张景慧. 施氮对几种草地植物生物量及其分配的影响. 生态学报, 2011, 31(18): 5121-5129.
QI Y, HUANG Y M, WANG Y, ZHAO J, ZHANG J H. Biomass and its allocation of four grassland species under different nitrogen levels. Acta Ecologica Sinica, 2011, 31(18): 5121-5129. (in Chinese)
[24]
夏雪, 谷洁, 车升国, 高华, 秦清军. 施氮水平对塿土微生物群落和酶活性的影响. 中国农业科学, 2011, 44(8): 1618-1627. doi: 10.3864/j.issn.0578-1752.2011.08.010.
XIA X, GU J, CHE S G, GAO H, QIN Q J. Effects of nitrogen application rates on microbial community and enzyme activities in Lou soil. Scientia Agricultura Sinica, 2011, 44(8): 1618-1627. doi: 10.3864/j.issn.0578-1752.2011.08.010. (in Chinese)
[25]
HU Q Y, LIU T Q, DING H N, LI C F, YU M, LIU J, CAO C G. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice-wheat rotation system. Pedobiologia, 2023, 101: 150913.

doi: 10.1016/j.pedobi.2023.150913
[26]
WANG Y L, WU P N, QIAO Y B, LI Y M, LIU S M, GAO C K, LIU C S, SHAO J, YU H L, ZHAO Z H, GUAN X K, WEN P F, WANG T C. The potential for soil C sequestration and N fixation under different planting patterns depends on the carbon and nitrogen content and stability of soil aggregates. The Science of the Total Environment, 2023, 897: 165430.

doi: 10.1016/j.scitotenv.2023.165430
[27]
SIX J, ELLIOTT E T, PAUSTIAN K. Aggregate and soil organic matter dynamics under conventional and No-tillage systems. Soil Science Society of America Journal, 1999, 63(5): 1350-1358.

doi: 10.2136/sssaj1999.6351350x
[28]
陈秋雨. 长期覆盖和施氮下塿土土壤质量演变及碳氮转化特征研究[D]. 杨凌: 西北农林科技大学, 2021.
CHEN Q Y. Evaluation on soil quality evolution and carbon and nitrogen transformation characteristics of Lou soil under long-term mulching and nitrogen application[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[29]
KOOL D M, CHUNG H, TATE K R, ROSS D J, NEWTON P C D, SIX J. Hierarchical saturation of soil carbon pools near a natural CO2 spring. Global Change Biology, 2007, 13(6): 1282-1293.

doi: 10.1111/gcb.2007.13.issue-6
[30]
阮文亮, 彭松, 祝晓慧, 崔凯荣, 赵利强, 揭佳惠, 李瑞琦, 王建武, 田纪辉. 减量施氮与间作大豆对甜玉米土壤团聚体及有机碳含量的影响. 四川农业大学学报, 2023, 41(5): 811-819.
RUAN W L, PENG S, ZHU X H, CUI K R, ZHAO L Q, JIE J H, LI R Q, WANG J W, TIAN J H. Effects of nitrogen reduction and soybean intercropping on soil aggregates and organic carbon content of sweet maize. Journal of Sichuan Agricultural University, 2023, 41(5): 811-819. (in Chinese)
[31]
庞飞, 李志刚, 李健. 有机物料和氮添加对宁夏沙化土壤碳矿化的影响. 水土保持研究, 2018, 25(3): 75-80.
PANG F, LI Z G, LI J. Effects of incorporated organic materials with n fertilizer on soil carbon mineralization of desertified soil in Ningxia. Research of Soil and Water Conservation, 2018, 25(3): 75-80. (in Chinese)
[32]
向艳文, 郑圣先, 廖育林, 鲁艳红, 谢坚, 聂军. 长期施肥对红壤水稻土水稳性团聚体有机碳、氮分布与储量的影响. 中国农业科学, 2009, 42(7): 2415-2424. doi: 10.3864/j.issn.0578-1752.2009.07.021.
XIANG Y W, ZHENG S X, LIAO Y L, LU Y H, XIE J, NIE J. Effects of long-term fertilization on distribution and storage of organic carbon and nitrogen in water-stable aggregates of red paddy soil. Scientia Agricultura Sinica, 2009, 42(7): 2415-2424. doi: 10.3864/j.issn.0578-1752.2009.07.021. (in Chinese)
[33]
董雪, 郝玉光, 辛智鸣, 段瑞兵, 李新乐, 刘芳. 科尔沁沙地4种典型灌木灌丛下土壤碳、氮、磷化学计量特征. 西北植物学报, 2019, 39(1): 164-172.
DONG X, HAO Y G, XIN Z M, DUAN R B, LI X L, LIU F. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus of four typical shrubs in horqin sandy land. Acta Botanica Boreali- Occidentalia Sinica, 2019, 39(1): 164-172. (in Chinese)
[34]
曹寒冰, 谢钧宇, 强久次仁, 郭璐, 洪坚平, 荆耀栋, 孟会生. 施肥措施对复垦土壤团聚体碳氮含量和作物产量的影响. 农业工程学报, 2020, 36(18): 135-143.
CAO H B, XIE J Y, QIANG J, GUO L, HONG J P, JING Y D, MENG H S. Effects of fertilization regimes on carbon and nitrogen contents of aggregates and maize yield in reclaimed soils. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 135-143. (in Chinese)
[35]
黄建华, 史永晖, 马庆国, 王蕾, 陈国庆. 施氮量对夏玉米不同生长阶段氮素吸收及N2O排放的影响. 山东农业科学, 2023, 55(3): 109-116.
HUANG J H, SHI Y H, MA Q G, WANG L, CHEN G Q. Effects of nitrogen application on nitrogen uptake and N2O emission of maize at different growth stages. Shandong Agricultural Sciences, 2023, 55(3): 109-116. (in Chinese)
[36]
刘金山, 戴健, 刘洋, 郭雄, 王朝辉. 过量施氮对旱地土壤碳、氮及供氮能力的影响. 植物营养与肥料学报, 2015, 21(1): 112-120.
LIU J S, DAI J, LIU Y, GUO X, WANG Z H. Effects of excessive nitrogen fertilization on soil organic carbon and nitrogen and nitrogen supply capacity in dryland. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 112-120. (in Chinese)
[37]
宋亚娜, 林智敏, 林艳. 氮肥对稻田土壤反硝化细菌群落结构和丰度的影响. 中国生态农业学报, 2012, 20(1): 7-12.
SONG Y N, LIN Z M, LIN Y. Response of denitrifying bacteria community structure and abundance to nitrogen in paddy fields. Chinese Journal of Eco-Agriculture, 2012, 20(1): 7-12. (in Chinese)

doi: 10.3724/SP.J.1011.2012.00007
[38]
任开明, 杨文俊, 王犇, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮量对稻茬弱筋小麦籽粒氮代谢及灌浆的影响. 核农学报, 2023, 37(3): 606-616.

doi: 10.11869/j.issn.1000-8551.2023.03.0606
REN K M, YANG W J, WANG B, FAN Y H, ZHANG W J, MA S Y, HUANG Z L. Effect of nitrogen application rate on grain nitrogen metabolism and grain filling of weak gluten wheat after rice. Journal of Nuclear Agricultural Sciences, 2023, 37(3): 606-616. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.03.0606
[39]
傅晓艺, 何明琦, 赵彦坤, 张士昌, 单子龙, 韩然, 张铁石, 史占良. 长期定位施氮条件下种植密度对冬小麦石4366品质和氮肥利用的影响. 麦类作物学报, 2023, 43(2): 215-224.
FU X Y, HE M Q, ZHAO Y K, ZHANG S C, SHAN Z L, HAN R, ZHANG T S, SHI Z L. Effect of planting density on quality characteristics and nitrogen utilization of winter wheat Shi 4366 under long-term positioning nitrogen application. Journal of Triticeae Crops, 2023, 43(2): 215-224. (in Chinese)
[40]
王丽芳, 康娟, 马耕, 王家瑞, 申圆心, 刘世洁, 王晨阳. 农田施氮对冬小麦产量、根-冠氮素积累及其利用效率的影响. 麦类作物学报, 2021, 41(11): 1403-1408.
WANG L F, KANG J, MA G, WANG J R, SHEN Y X, LIU S J, WANG C Y. Effect of Nitrogen Application on yield, nitrogen accumulation and use efficiency in root-shoot of winter wheat. Journal of Triticeae Crops, 2021, 41(11): 1403-1408. (in Chinese)
[41]
张姗, 石祖梁, 杨四军, 顾克军, 戴廷波, 王飞, 李想, 孙仁华. 施氮和秸秆还田对晚播小麦养分平衡和产量的影响. 应用生态学报, 2015, 26(9): 2714-2720.
ZHANG S, SHI Z L, YANG S J, GU K J, DAI T B, WANG F, LI X, SUN R H. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation. Chinese Journal of Applied Ecology, 2015, 26(9): 2714-2720. (in Chinese)
[42]
李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响. 作物杂志, 2023(3): 148-153.
LI J Z, CHANG X H, WANG D M, WANG Y J, YANG Y S, ZHAO G C. Effects of nitrogen application levels on yield and quality of different strong gluten wheat varieties. Crops, 2023(3): 148-153. (in Chinese)
[43]
王丽芳, 刘世洁, 康娟, 马耕, 王晨阳. 施氮对小麦根-冠及土壤碳氮特征的影响. 麦类作物学报, 2022, 42(4): 451-456.
WANG L F, LIU S J, KANG J, MA G, WANG C Y. Influence of nitrogen application on the carbon and nitrogen characteristics of root-shoot and soil in wheat filed. Journal of Triticeae Crops, 2022, 42(4): 451-456. (in Chinese)
[44]
李存东, 曹卫星, 张月辰, 严美春. 氮肥施用时期对小麦不同茎蘖位顶端发育的调控效应. 植物营养与肥料学报, 2001, 7(1): 17-22.
LI C D, CAO W X, ZHANG Y C, YAN M C. Effect of N fertilizer application on apex development of different tiller positions at different spike development stages. Plant Nutrition and Fertilizer Science, 2001, 7(1): 17-22. (in Chinese)
[45]
田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32(11): 1699-1705.
TIAN J C, DENG Z Y, HU R B, WANG Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agronomica Sinica, 2006, 32(11): 1699-1705. (in Chinese)
[46]
REN Z J, HAN X J, FENG H X, WANG L F, MA G, LI J H, LV J J, TIAN W Z, HE X H, ZHAO Y N, WANG C Y. Long-term conservation tillage improves soil stoichiometry balance and crop productivity based on a 17-year experiment in a semi-arid area of Northern China. The Science of the Total Environment, 2024, 908: 168283.

doi: 10.1016/j.scitotenv.2023.168283
[47]
YANG H S, FANG C, MENG Y, DAI Y J, LIU J. Long-term ditch-buried straw return increases functionality of soil microbial communities. Catena, 2021, 202: 105316.

doi: 10.1016/j.catena.2021.105316
[48]
HENNERON L, KARDOL P, WARDLE D A, CROS C, FONTAINE S. Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. The New Phytologist, 2020, 228(4): 1269-1282.

doi: 10.1111/nph.v228.4
[49]
MA T T, YANG K, YANG L, ZHU Y, JIANG B Q, XIAO Z P, SHUAI K F, FANG M, GONG J, GU Z M, XIANG P H, LIU Y J, LI J. Different rotation years change the structure and diversity of microorganisms in the nitrogen cycle, affecting crop yield. Applied Soil Ecology, 2024, 193: 105123.

doi: 10.1016/j.apsoil.2023.105123
[50]
侯永坤. 不同耕作模式对土壤理化性质和冬小麦产量的影响[D]. 泰安: 山东农业大学, 2019.
HOU Y K. Effects of different tillage models on soil physicochemical properties and winter wheat yield[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[51]
BAI J S, ZHANG S Q, HUANG S M, XU X P, ZHAO S C, QIU S J, HE P, ZHOU W. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture, 2023, 22(11): 3517-3534.

doi: 10.1016/j.jia.2023.09.012
[52]
马原, 迟美静, 张玉玲, 范庆峰, 虞娜, 邹洪涛. 黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征. 中国农业科学, 2020, 53(8): 1594-1605. doi: 10.3864/j.issn.0578-1752.2020.08.009.
MA Y, CHI M J, ZHANG Y L, FAN Q F, YU N, ZOU H T. Change characteristics of organic carbon and total nitrogen in water-stable aggregate after conversion from upland to paddy field in black soil. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605. doi: 10.3864/j.issn.0578-1752.2020.08.009. (in Chinese)
[1] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[2] XU JunFeng, ZHANG XueMei, YANG Jun, GUO ZiKang, HUANG Cui, DING YuLan, HUANG Ning, SUN RuiQing, TIAN Hui, WANG ZhaoHui, SHI Mei. Relationship Between Grain Nitrogen Content and Yield Formation, Uptake and Partitioning of NPK of High-Yielding Wheat Cultivars in Drylands [J]. Scientia Agricultura Sinica, 2023, 56(24): 4880-4894.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effect of Dextran Modified Phosphate Fertilizer on the Winter Wheat Yield and Fertilizer Utilization Rate [J]. Scientia Agricultura Sinica, 2023, 56(12): 2317-2328.
[6] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[7] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[8] XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
[9] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[10] ZHANG Qi, WANG ShuLan, WANG Hao, LIU PengZhao, WANG XuMin, ZHANG YuanHong, LI HaoYu, WANG Rui, WANG XiaoLi, LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
[11] JIN XiuKuan, MA MaoTing, ZHAO TongKe, AN ZhiZhuang, JIANG LingLing. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat Under Supplemental Irrigation Based on Measured Soil Moisture Content [J]. Scientia Agricultura Sinica, 2018, 51(7): 1334-1344.
[12] GAO MeiLing, ZAHNG XuBo, SUN ZhiGang, SUN Nan, LI ShiJi, GAO YongHua, ZHANG ChongYu. Wheat Yield and Growing Period in Response to Field Warming in Different Climatic Zones in China [J]. Scientia Agricultura Sinica, 2018, 51(2): 386-400.
[13] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[14] MA JianHui, YE XuHong, HAN Bing, LI Wen, YU Na, FAN QingFeng, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Controlled Irrigation Low Limits on the Size Distribution of Soil Aggregates with Drip Irrigation Under Film Mulching in a Greenhouse Soil [J]. Scientia Agricultura Sinica, 2017, 50(18): 3561-3571.
[15] LI Chao, LIU WenZhao, LIN Wen, HAN XiaoYang, ZHOU Ling, WANG YaPing. Grain Yield and WUE Responses to Different Soil Water Storage Before Sowing and Water Supplies During Growing Period for Winter Wheat in the Loess Tableland [J]. Scientia Agricultura Sinica, 2017, 50(18): 3549-3560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!