Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 537-547.doi: 10.3864/j.issn.0578-1752.2025.03.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm

MU ShuJia1(), DONG LiXia1(), LI Guang2, YAN ZhenGang1, LU YuLan1   

  1. 1 School of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2 School of Forestry, Gansu Agricultural University, Lanzhou 730070
  • Received:2024-03-13 Accepted:2024-05-28 Online:2025-02-01 Published:2025-02-11
  • Contact: DONG LiXia

Abstract:

【Objective】In order to improve the simulation accuracy of N2O emissions by using APSIM model, this study used Whale Optimization Algorithm (WOA) to optimize the default parameters related to soil N2O emissions in the APSIM model to improve the accuracy and applicability of the model in simulating soil N2O emissions in the semi-arid agricultural region of northwest China, for providing support for precise assessment and management of greenhouse gas emissions in agricultural activities. 【Method】This study used field experimental data measured by the Anjiapo integrated long-term positioning test station in Anding District, Dingxi City, Gansu Province from 2020 to 2021, combined with meteorological data provided by the Meteorological Bureau from 1970 to 2021, to optimize the four key parameters of N2O formation stage in the APSIM model (soil nitrification potential (nitration_pot), concentration of ammonium nitrogen at semi maximum utilization efficiency (nh4_at-half_pot), denitrification coefficient (dnit_rate-coeff), and power term of denitrification water coefficient (dnit_wf_power) using the WOA for single objective and multi parameter optimization. The accuracy of the optimized APSIM soil N2O emission model was evaluated by comparing the errors between the default parameter simulation values, optimized parameter simulation values, and measured values of the APSIM model. 【Result】Through multiple executions of the optimization program, the optimal combination of four parameters was ultimately determined. Among them, the soil nitrification potential was 7.62 mg·kg-1·d-1, the concentration of ammonia nitrogen at semi maximum utilization efficiency was 49.3 mg·kg-1, the denitrification coefficient was 0.00063, and the power term of the denitrification water coefficient calculation was 0.64. Compared with the default parameters of the APSIM model, the coefficient of determination R2 increased from 0.432 to 0.719, the root mean square error (RMSE) decreased from 39.42 to 25.37 μg·m-2·h-1, and the normalized root mean square error (NRMSE) decreased from 18.51% to 11.92%. The whale algorithm exhibited significant global search capability and fast convergence during the optimization process. The optimized APSIM model significantly improved the accuracy of simulating soil N2O emissions, indicating that this method could achieve rapid and accurate calibration of model parameters. 【Conclusion】By applying WOA, four key parameters were precisely adjusted, which significantly reduced the prediction error of the model and significantly improving the performance of the APSIM soil N2O emission model. The optimized model has shown higher accuracy and applicability in the semi-arid agricultural region of northwest China, which also proved the effectiveness of the optimization strategy.

Key words: N2O emission, APSIM model, parameter optimization, Whale Optimization Algorithm (WOA), spring wheat, dryland soil

Table 1

Soil parameters in the experimental area"

参数
Parameter
土壤深度 Soil depth (cm)
0-5 5-10 10-30 30-50 50-80 80-110 110-140 140-170 170-200
容重Bulk density (g·cm-3) 1.29 1.23 1.33 1.20 1.14 1.14 1.25 1.12 1.11
风干含水量 Air-dried moisture (mm·mm-1) 0.01 0.01 0.05 0.07 0.09 0.10 0.11 0.12 0.13
萎蔫系数 Wilting coefficient (mm·mm-1) 0.09 0.09 0.09 0.09 0.09 0.11 0.11 0.12 0.13
田间持水量 Field capacity (mm·mm-1) 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26 0.26
饱和含水量 Saturated moisture (mm·mm-1) 0.46 0.49 0.45 0.50 0.52 0.52 0.48 0.53 0.53
有效水分下限 Lower available moisture (mm·mm-1) 0.09 0.09 0.09 0.09 0.10 0.12 0.13 0.18 0.2

Fig. 1

Whale Algorithm process"

Table 2

Upper and lower limits of parameters to be optimized"

参数Parameter 默认值Default 范围Range
土壤硝化潜力Soil nitrification potential (mg·kg-1·d-1) 40 6—60
铵态氮在半最大利用效率时的浓度
The concentration of ammonia nitrogen at semi maximum utilization efficiency (mg·kg-1)
90 6—186
反硝化系数Denitrification coefficient 0.0006 0.0005—0.0018
反硝化水系数计算的幂项P Power term P for calculating denitrification water coefficient 1 0.5—5

Fig. 2

Trend chart of four parameter changes"

Fig. 3

Trend chart of fitness function changes"

Table 3

Comparison between default and optimized values of model parameters to be optimized"

参数Parameter 默认值Default 优化值Optimization
土壤硝化潜力Soil nitrification potential (mg·kg-1·d-1) 40 7.62
铵态氮在半最大利用效率时的浓度
The concentration of ammonia nitrogen at semi maximum utilization efficiency (mg·kg-1)
90 49.3
反硝化系数Denitrification coefficient 0.0006 0.00063
反硝化水系数计算的幂项P Power term P for calculating denitrification water coefficient 1 0.64

Table 4

Comparison of results before and after parameter optimization"

模型参数
Model parameter
决定系数
R2
均方根误差
RMSE (μg·m-2·h-1)
归一化均方根误差
NRMSE (%)
默认值Default 0.423 39.42 18.51
优化后After optimization 0.719 25.37 11.92

Fig. 4

Comparison of default, measured, and optimized N2O emissions"

[1]
李军. 农业信息技术. 2版. 北京: 科学出版社, 2010: 1-17.
LI J. Agricultural Information Technology. 2nd ed. Beijing: Science Press, 2010: 1-17. (in Chinese)
[2]
MYRGIOTIS V, WILLIAMS M, TOPP C F E, REES R M. Improving model prediction of soil N2O emissions through Bayesian calibration. The Science of the Total Environment, 2018, 624: 1467-1477.
[3]
LI T T, ZHANG W, WANG J, ZHANG W, WANG G C, XU J J, ZHANG Q. Parameterizing an agricultural production model for simulating nitrous oxide emissions in a wheat-maize system in the North China Plain. Atmospheric and Oceanic Science Letters, 2016, 9(6): 403-410.
[4]
ZHANG Y J, YU Q. Does agroecosystem model improvement increase simulation accuracy for agricultural N2O emissions? Agricultural and Forest Meteorology, 2021, 297: 108281.
[5]
聂志刚, 李广, 雒翠萍, 马维伟, 代永强. 利用混合蛙跳算法优化基于APSIM的旱地小麦产量形成模型参数. 作物学报, 2018, 44(8): 1229-1236.

doi: 10.3724/SP.J.1006.2018.01229
NIE Z G, LI G, LUO C P, MA W W, DAI Y Q. Parameter optimization in APSIM-based simulation model for yield formation of dryland wheat using shuffled frog leaping algorithm. Acta Agronomica Sinica, 2018, 44(8): 1229-1236. (in Chinese)
[6]
崔炜楠, 聂志刚, 李广, 王钧. 基于改进的混合蛙跳算法对旱地小麦籽粒生长模型参数的优化. 中国农业科学, 2023, 56(12): 2274-2287. doi: 10.3864/j.issn.0578-1752.2023.12.004.
CUI W N, NIE Z G, LI G, WANG J. Optimization of dryland wheat grain growth model parameters based on an improved shuffled frog leaping algorithm. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287. doi: 10.3864/j.issn.0578-1752.2023.12.004. (in Chinese)
[7]
张博, 董莉霞, 李广, 燕振刚, 刘强, 王钧, 张燕. 基于混沌万有引力算法对APSIM模型中旱地春小麦产量形成参数的优化. 麦类作物学报, 2024, 44(7): 919-925.
ZHANG B, DONG L X, LI G, YAN Z G, LIU Q, WANG J, ZHANG Y. Optimization of dryland spring wheat yield formation parameters in APSIM model based on chaotic gravitational algorithm. Journal of Triticeae Crops, 2024, 44(7): 919-925. (in Chinese)
[8]
王钧, 李广, 闫丽娟, 刘强, 聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟. 中国农业科学, 2020, 53(5): 904-916. doi: 10.3864/j.issn.0578-1752.2020.05.004.
WANG J, LI G, YAN L J, LIU Q, NIE Z G. Simulation of spring wheat yield response to temperature changes of different growth stages in drylands. Scientia Agricultura Sinica, 2020, 53(5): 904-916. doi: 10.3864/j.issn.0578-1752.2020.05.004. (in Chinese)
[9]
李广, 黄高宝, William Bellotti, 陈文. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009, 29(5): 2655-2663.
LI G, HUANG G B, BELLOTTI W, CHEN W. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region. Acta Ecologica Sinica, 2009, 29(5): 2655-2663. (in Chinese)
[10]
姚瑶, 李广, 王钧, 杨传杰, 张世康, 刘帅楠. 不同耕作措施下旱作春小麦农田二氧化碳排放模拟及敏感性分析. 干旱地区农业研究, 2021, 39(3): 171-178.
YAO Y, LI G, WANG J, YANG C J, ZHANG S K, LIU S N. Simulation and sensitivity analysis of carbon dioxide emissions under different tillage systems in dryland spring wheat fields. Agricultural Research in the Arid Areas, 2021, 39(3): 171-178. (in Chinese)
[11]
HOLZWORTH D P, HUTH N I, DEVOIL P G, ZURCHER E J, HERRMANN N I, MCLEAN G, CHENU K, VAN OOSTEROM E J, SNOW V, MURPHY C, MOORE A D, BROWN H, WHISH J P M, VERRALL S, FAINGES J, BELL L W, PEAKE A S, POULTON P L, HOCHMAN Z, THORBURN P J, GAYDON D S, DALGLIESH N P, RODRIGUEZ D, COX H, CHAPMAN S, DOHERTY A, TEIXEIRA E, SHARP J, CICHOTA R, VOGELER I, LI F Y, WANG E L, HAMMER G L, ROBERTSON M J, DIMES J P, WHITBREAD A M, HUNT J, VAN REES H, MCCLELLAND T, CARBERRY P S, HARGREAVES J N G, MACLEOD N, MCDONALD C, HARSDORF J, WEDGWOOD S, KEATING B A. APSIM-Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 2014, 62: 327-350.
[12]
WANG E, ROBERTSON M J, HAMMER G L, CARBERRY P S, HOLZWORTH D, MEINKE H, CHAPMAN S C, HARGREAVES J N G, HUTH N I, MCLEAN G. Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 2002, 18(1/2): 121-140.
[13]
BERGHUIJS H N C, WEIH M, VAN DER WERF W, KARLEY A J, ADAM E, VILLEGAS-FERNÁNDEZ Á M, KIÆR L P, NEWTON A C, SCHERBER C, TAVOLETTI S, VICO G. Calibrating and testing APSIM for wheat-faba bean pure cultures and intercrops across Europe. Field Crops Research, 2021, 264: 108088.
[14]
CHAKI A K, GAYDON D S, DALAL R C, BELLOTTI W D, GATHALA M K, HOSSAIN A, MENZIES N W. How we used APSIM to simulate conservation agriculture practices in the rice-wheat system of the Eastern Gangetic Plains. Field Crops Research, 2022, 275: 108344.
[15]
MOHANTY M, SINHA N K, SOMASUNDARAM J, MCDERMID S S, PATRA A K, SINGH M, DWIVEDI A K, REDDY K S, RAO C S, PRABHAKAR M, HATI K M, JHA P, SINGH R K, CHAUDHARY R S, KUMAR S N, TRIPATHI P, DALAL R C, GAYDON D S, CHAUDHARI S K. Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agricultural Systems, 2020, 184: 102906.
[16]
LUO Z K, WANG E L, XING H T, SMITH C, WANG G C, CRESSWELL H. Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems. Agricultural and Forest Meteorology, 2017, 232: 400-410.
[17]
WANG G C, LUO Z K, WANG E L, ZHANG W. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain, China. Agricultural and Forest Meteorology, 2018, 260/261: 80-94.
[18]
王良. 黄淮海小麦-玉米周年农田土壤N2O排放动态分析及施氮调控模拟研究[D]. 泰安: 山东农业大学, 2019.
WANG L. Dynamic analysis and nitrogen application simulation on N2O emission from wheat-maize farmland in Huang-Huai-Hai region[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[19]
李建政. 农田生态系统温室气体减排技术评价及实证分析[D]. 北京: 中国农业科学院, 2015.
LI J Z. Technology evaluation for greenhouse gas mitigation in cropland ecosystem and case studies[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[20]
马晨光, 蔡焕杰, 卢亚军. 基于APSIM模型不同水氮处理下N2O的排放研究. 灌溉排水学报, 2020, 39(11): 120-129.
MA C G, CAI H J, LU Y J. Modelling the impact of water and nitrogen application on N2O emission from farmland using the APSIM model. Journal of Irrigation and Drainage, 2020, 39(11): 120-129. (in Chinese)
[21]
刘兴宇, 李广, 袁建钰, 徐万恒, 赵萍. 不同耕作措施下温度升高对旱作春小麦农田土壤N2O排放的影响. 干旱地区农业研究, 2022, 40(4): 177-184.
LIU X Y, LI G, YUAN J Y, XU W H, ZHAO P. Effects of temperature rise under different tillage measures on N2O emission in dryland spring wheat farmland soil. Agricultural Research in the Arid Areas, 2022, 40(4): 177-184. (in Chinese)
[22]
WATKINS W A, SCHEVILL W E. Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. Journal of Mammalogy, 1979, 60(1): 155-163.
[23]
MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51-67.
[24]
牛培峰, 吴志良, 马云鹏, 史春见, 李进柏. 基于鲸鱼优化算法的汽轮机热耗率模型预测. 化工学报, 2017, 68(3): 1049-1057.

doi: 10.11949/j.issn.0438-1157.20161099
NIU P F, WU Z L, MA Y P, SHI C J, LI J B. Prediction of steam turbine heat consumption rate based on whale optimization algorithm. CIESC Journal, 2017, 68(3): 1049-1057. (in Chinese)
[25]
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 2014, 7(3): 1247-1250.
[26]
SHCHERBAKOV M, BREBELS A, SHCHERBAKOVA N L, TYUKOV A, JANOVSKY T A, KAMAEV V A. A survey of forecast error measures. World Applied Sciences Journal, 2013, 24(24): 171-176.
[27]
陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 2019, 35(19): 107-116.
TAO H L, XU L J, FENG H K, YANG G J, YANG X D, MIAO M K, DAI Y. Estimation of plant height and biomass of winter wheat based on UAV digital image. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 107-116. (in Chinese)
[28]
HASTIE T, TIBSHIRANI R, FRIEDMAN J H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer, 2009.
[29]
LI J Z, WANG L G, LUO Z K, WANG E L, WANG G C, ZHOU H, LI H, XU S W. Reducing N2O emissions while maintaining yield in a wheat-maize rotation system modelled by APSIM. Agricultural Systems, 2021, 194: 103277.
[30]
FANG Q X, MA L, HALVORSON A D, MALONE R W, AHUJA L R, DEL GROSSO S J, HATFIELD J L. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field. Environmental Modelling & Software, 2015, 72: 56-70.
[31]
LI Y, CHEN D L, ZHANG Y M, EDIS R, DING H. Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Global Biogeochemical Cycles, 2005, 19(3): GB3002.
[1] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[2] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[3] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[6] LI Hong, WANG XiNa, WEI GuangYuan, MA YongXin, TIAN HaiMei, WANG YueMei, QIAN ZhiJin, TAN JunLi. Effects of Water Saving and Nitrogen Reduction on Lodging Resistance and Grain Yield of Spring Wheat in the Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439.
[7] SUN WeiHao, LIU Ting, SANG YiNan, YANG ZhengWei, ZHANG GaiSheng, SONG YuLong, ZHANG ShuangXi. Analysis of Heterosis and Combining Ability of Lodging Resistance Traits of Spring Wheat Varieties (Lines) in the Ningxia Yellow River Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(13): 2497-2508.
[8] ZHANG DianKai, LI Pan, FAN Hong, HE Wei, FAN ZhiLong, HU FaLong, SUN YaLi, TAN XiangNian, YIN Wen, CHEN GuiPing. Soil Water Use Characteristics of Spring Wheat with Multiple- Cropping Green Manure and Nitrogen Reduction in Northwest Irrigated Areas [J]. Scientia Agricultura Sinica, 2024, 57(11): 2189-2201.
[9] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[10] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[11] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[12] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[13] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[14] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[15] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!