Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 733-747.doi: 10.3864/j.issn.0578-1752.2025.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns

ZHENG Yu1(), CHEN Yi2, TI JinSong1(), SHI LongFei2, XU XiaoBo1, LI YuLin3, GUO Rui1,3()   

  1. 1 College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046
    2 Yunnan Academy of Tobacco Agriculture Science, Kunming 650031
    3 Henan Provincial Tobacco Company, Zhengzhou 450018
  • Received:2024-03-25 Accepted:2024-05-07 Online:2025-02-16 Published:2025-02-24
  • Contact: TI JinSong, GUO Rui

Abstract:

【Objective】This study aimed to clarify the economic benefits and carbon emission characteristics under different cropping patterns, so as to provide a scientific basis for the selection of regional dominant cropping rotation patterns.【Method】Based on the survey data of farmers in Xiangcheng County, Xuchang City, central Henan Province from 2018 to 2022, this study calculated the carbon emissions of four different rotation patterns: cereal-vegetable-tobacco (wheat-pepper-wheat-pepper-wheat-pepper-tobacco), wheat-maize-tobacco (wheat-maize-wheat-maize-wheat-maize-tobacco), cereal-soybean-tobacco (wheat-maize-wheat-soybean- wheat-soybean-tobacco), and cereal-sweet potato-tobacco (wheat-maize-wheat-sweet potato-wheat-sweet potato-tobacco). The life cycle assessment was used to calculate the carbon emissions and carbon footprint of these four cropping models. This study also clarified their composition and comprehensively evaluated the economic and ecological benefits of four crop rotation patterns by considering input costs and harvest output values.【Result】(1) The output value and profit ranking under different planting patterns were as follows: cereal-vegetable-tobacco>cereal-sweet potato-tobacco>wheat-maize-tobacco>cereal-soybean-tobacco. Additionally, the total cost of the grain-vegetable- tobacco model was significantly higher than that of the other three patterns. (2) The carbon footprint per unit area under different rotation patterns was as follows: wheat-maize-tobacco>cereal-sweet potato- tobacco>cereal-soybean-tobacco>cereal-vegetable- tobacco, with the value of 32 391.10, 31 042.64, 30 583.80, and 26 524.57 kg·hm-2, respectively. The carbon footprint per unit yield for different crop rotation patterns followed this order: cereal-soybean- tobacco (0.51 kg·kg-1), wheat-maize-tobacco (0.51 kg·kg-1), cereal-sweet potato-tobacco (0.39 kg·kg-1), and cereal-vegetable-tobacco (0.29 kg·kg-1). The carbon footprint per unit output value of cereal-soybean-tobacco, wheat-maize-tobacco, cereal-sweet potato-tobacco, and cereal-vegetable-tobacco systems were 0.17, 0.17, 0.13, and 0.10 kg/yuan, respectively. (3) Fertilizer accounted for 50.6%, 56.4%, 57.2%, and 57.0% of carbon emissions in cereal-vegetable-tobacco, wheat-maize-tobacco, cereal-soybean-tobacco, and cereal-sweet potato-tobacco, respectively, making it the primary contributor to carbon emissions in each rotation pattern. The second largest contributor was tobacco curing electricity, which accounted for 15.2%, 14.5%, 13.5% and 13.0% in the above rotation patterns. 【Conclusion】Under the four crop rotation patterns, the cereal-vegetable-tobacco model demonstrated high economic benefits and low carbon emission. However, the input cost of this model was the highest, while the output value of tobacco was the lowest. Therefore, reducing labor input with improving tobacco benefits was crucial for promoting this rotation pattern in major tobacco producing areas. Tobacco of cereal-sweet potato-tobacco model had the highest output value and the lowest cost, but the high carbon footprint of this rotation pattern might be a constraint to the promotion. Fertilizer and tobacco curing electricity were the main sources of carbon emissions for each rotation patterns. Therefore, improving fertilizer utilization rate, and promoting clean energy barns to reduce the carbon footprint of tobacco leaf curing were the keys to reduce carbon emissions from various crop rotation patterns.

Key words: carbon footprint, carbon emission, crop rotation, tobacco, pepper, soybean, sweet potato, economic benefits, central Henan

Fig. 1

Time distribution of various crops in the four-year rotation cycle"

Fig. 2

System boundary of carbon footprint calculation"

Table 1

Emission parameters of agricultural materials"

排放源 Emission source 排放参数 Emission factor 数据来源 Data source
氮肥Nitrogenous fertilizer 1.526 kg·kg-1 CLCD 0.7
磷肥Phosphate fertilizer 1.631 kg·kg-1 CLCD 0.7
钾肥Potassium fertilizer 0.6545 kg·kg-1 CLCD 0.7
复合肥Compound fertilizer 1.772 kg·kg-1 CLCD 0.7
农家肥Farmyard manure 0.223 kg·kg-1 [21]
柴油Diesel oil 4.99 kg·kg-1 CLCD 0.7
除草剂herbicide 17.1 kg·kg-1 [22]
灭菌剂Sterilizing agent 16.6 kg·kg-1 [22]
杀虫剂Insecticide 15.9 kg·kg-1 [22]
抑芽剂Bud depressant 12.44 kg·kg-1 Ecoinvent 2.2
农膜Agricultural film 22.72 kg·kg-1 Ecoinvent 2.2
玉米种子Maize seed 1.93 kg·kg-1 Ecoinvent 2.2
小麦种子Wheat seed 0.59 kg·kg-1 CPCD
大豆种子Soybean seed 0.34 kg·kg-1 [10]
红薯种块Sweet potato seedlings 0.10 kg·kg-1 [10]
辣椒种子Pepper seed 0.1572 kg·kg-1 [23]
烟草种子Tobacco seed 0.1572 kg·kg-1 [23]
电Electricity 0.5703 kg·kWh-1 [24]
人工Labour 0.86 kg·(p·d )-1 [25]

Table 2

N2O emission factors of farmland soil in different crop seasons"

轮作模式
Planting pattern
作物种类
Crop type
农田土壤N2O排放系数
N2O emission factor of farmland soil
数据来源
Data source
粮菜烟模式
Cereal-vegetable-tobacco
小麦Wheat 0.0057 kg·kg-1 [26]
辣椒Pepper 0.0033 kg·hm-2 [27]
烟草Tobacco 0.0038 kg·kg-1 [28]
麦玉烟模式
Wheat-maize-tobacco
小麦Wheat 0.0057 kg·kg-1 [26]
玉米Maize 0.0105 kg·kg-1 [26]
烟草Tobacco 0.0033 kg·kg-1 [29]
粮豆烟模式
Cereal-soybean-tobacco
小麦Wheat 0.0027 kg·kg-1 [30]
玉米Maize 0.0105 kg·kg-1 [26]
大豆Soybean 0.0198 kg·kg-1 [30]
烟草Tobacco 0.0038 kg·kg-1 [28]
粮薯烟模式
Cereal-sweet potato-tobacco
小麦Wheat 0.0057 kg·kg-1 [26]
玉米Maize 0.0105 kg·kg-1 [26]
红薯Sweet potato 0.0060 kg·kg-1 [31]
烟草Tobacco 0.0038 kg·kg-1 [28]

Table 3

Nitrogen leaching coefficient of different rotation patterns"

轮作模式 Crop rotation pattern 淋失系数 Coefficient of leaching loss (%)
大田小麦玉米两熟 Double cropping pattern of wheat and maize in field 1.393
保护地Protect the pattern 2.673
露地蔬菜Open vegetable model 1.535
大田其他两熟Other double cropping patterns in the field 1.534

Table 4

Crop yield and economic benefits of different rotation patterns"

轮作模式
Rotation patterns
作物种类
Crop type
收获产量
Yield
(kg·hm-2)
收获产值
Output value (yuan/hm2)
投入成本
Input cost (yuan/hm2)
总产值
Total output value (yuan/hm2)
总成本
Total input (yuan/hm2)
总利润
Total profit (yuan/hm2)
粮菜烟模式
Cereal-vegetable- tobacco
小麦Wheat 6175.00 c 18525.00 g 14854.10 f 275709.47a 173385.31a 102324.16a
辣椒Pepper 4200.00 d 50400.00 d 25511.05 e
烟草Tobacco 2092.50 f 68934.47 c 52289.86 a
麦玉烟模式
Wheat-maize- tobacco
小麦Wheat 6184.76 c 18554.27 g 14324.92 fg 190394.68c 135801.75c 54592.94c
玉米Corn 9018.29 b 21643.90 f 13618.49 g
烟草Tobacco 2122.68 f 69800.17 c 51971.51 a
粮豆烟模式
Cereal-soybean- tobacco
小麦Wheat 6228.41 c 18685.23 g 14914.76 f 181975.27d 132459.56d 49515.71d
玉米Corn 9095.45 b 21829.09 f 13661.12 g
大豆Soya bean 2749.77 e 16498.64 h 11540.26 i
烟草Tobacco 2183.86 f 71093.22 b 50973.65 b
粮薯烟模式
Cereal-sweet potato-tobacco
小麦Wheat 6246.77 c 18740.32 g 14951.44 f 232765.47b 158743.44b 74022.02b
玉米Corn 9007.26 b 21617.42 f 12710.45 h
红薯Sweet potato 30870.97 a 41005.55 e 26727.32 d
烟草Tobacco 2329.84 ef 72915.98 a 47724.04 c

Fig. 3

Carbon footprint of different rotation patterns"

Table 5

Carbon footprint of different crops under different rotation patterns"

轮作模式
Rotation pattern
作物种类
Crop type
单位面积碳排放
Carbon emission
(kg·hm-2)
单位产量碳足迹
Carbon footprint per unit of production (kg·kg-1)
单位产值碳足迹
Carbon footprint per unit of output (kg/yuan)
粮菜烟模式
Cereal-vegetable-tobacco
小麦Wheat 3169.71 g 0.51 f 0.17 c
辣椒Pepper 2192.40 i 0.53 f 0.04 h
烟草Tobacco 10438.22 b 5.00 b 0.15 e
麦玉烟模式
Wheat-maize-tobacco
小麦Wheat 3304.69 fg 0.54 f 0.18 b
玉米Maize 3754.07 e 0.42 g 0.17 bc
烟草Tobacco 11214.82 a 5.30 a 0.16 d
粮豆烟模式
Cereal-soybean-tobacco
小麦Wheat 3013.18 h 0.48 fg 0.16 d
玉米Maize 3821.82 e 0.42 g 0.18 bc
大豆Soybean 4019.41 d 1.46 e 0.24 a
烟草Tobacco 10142.45 c 4.66 c 0.14 f
粮薯烟模式
Cereal-sweet potato-tobacco
小麦Wheat 3222.16 g 0.52 f 0.17 c
玉米Maize 3843.28 e 0.43 g 0.18 b
红薯Sweet potato 3415.32 f 0.11 h 0.08 g
烟草Tobacco 10243.41 c 4.40 d 0.14 f

Fig. 4

Carbon emission composition of different rotation patterns"

Table 6

Carbon emission composition of different crops"

轮作模式
Rotation patterns
作物种类
Crop type
碳排放Carbon emission (kg·hm-2)
种子
Seed
N2O 肥料
Fertilizer
农药
Pesticide
农膜
Agricultural film

Electricity
柴油
Diesel oil
人工
Labour
合计
Total
粮菜烟模式
Cereal-vegetable-tobacco
小麦Wheat 94.40 490.79 2442.24 30.07 - 95.53 500.27 7.21 3169.71
辣椒Pepper 0.01 215.33 1568.70 56.69 - 85.83 329.13 152.05 2192.40
烟草Tobacco 0.00 194.24 1400.10 498.43 3503.70 4395.52 457.72 182.75 10438.22
麦玉烟模式
Wheat-maize- tobacco
小麦Wheat 95.30 494.33 2460.08 27.71 - 96.81 617.60 7.18 3304.69
玉米Maize 43.43 1376.31 3113.73 43.11 - 101.72 445.33 6.76 3754.07
烟草Tobacco 0.00 237.50 1545.46 416.06 3503.70 5079.20 490.72 179.69 11214.82
粮豆烟模式
Cereal-soybean- tobacco
小麦Wheat 95.84 282.24 2259.82 27.20 - 101.49 521.64 7.19 3013.18
玉米Maize 43.43 1411.42 3193.49 39.99 - 104.50 433.40 7.01 3821.82
大豆Soybean 0.46 1517.76 3401.99 38.37 - 69.52 499.11 9.95 4019.41
烟草Tobacco 0.00 150.70 964.79 424.55 3503.70 4568.96 488.42 192.03 10142.45
粮薯烟模式
Cereal-sweet potato-tobacco
小麦Wheat 95.99 498.79 2482.58 28.60 - 104.03 503.75 7.19 3222.16
玉米Maize 43.43 1420.93 3215.08 44.10 - 98.17 436.77 5.74 3843.28
红薯Sweet potato 45.00 757.11 2706.65 198.94 - 65.74 352.16 46.84 3415.32
烟草Tobacco 0.00 267.72 1358.95 408.47 3503.70 4299.34 487.88 185.07 10243.41
[1]
LIU Z. China's Carbon Emissions Report. Report for Harvard Belfer Center for Science and International Affairs, 2016.
[2]
XU B, LIN B Q. Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy, 2017, 104: 404-414.
[3]
张军伟, 张锦华, 吴方卫. 我国粮食生产的碳排放及减排路径分析. 统计与决策, 2018, 34(14): 168-172.
ZHANG J W, ZHANG J H, WU F W. Analysis on carbon emission and emission reduction path of grain production in China. Statistics & Decision, 2018, 34(14): 168-172. (in Chinese
[4]
ZAFEIRIDOU M, HOPKINSON N S, VOULVOULIS N. Cigarette smoking: an assessment of tobacco’s global environmental footprint across its entire supply chain. Environmental Science & Technology, 2018, 52(15): 8087-8094.
[5]
LIU C, CUTFORTH H, CHAI Q, GAN Y T. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, 2016, 36(4): 69.
[6]
BRANKATSCHK G, FINKBEINER M. Crop rotations and crop residues are relevant parameters for agricultural carbon footprints. Agronomy for Sustainable Development, 2017, 37(6): 58.
[7]
MIKSA O, CHEN X L, BALEŽENTIENĖ L, STREIMIKIENE D, BALEZENTIS T. Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: A case from Lithuania. Science of the Total Environment, 2020, 714: 136850.
[8]
杜洋洋, 包媛媛, 刘项宇, 张新永. 荞麦轮作对云南栽培马铃薯根际土壤酶活和微生物的影响. 中国农业科技导报, 2024, 26(5): 192-200.
DU Y Y, BAO Y Y, LIU X Y, ZHANG X Y. Effects of tartary buckwheat rotation on enzyme activities and microorganisms in rhizosphere soil of cultivated potato in Yunnan Province. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. (in Chinese)
[9]
张青, 李慧瑛, 孙媛, 谭春荐, 郝雯辉, 任广鑫, 冯永忠. 旱作条件下轮作模式和秸秆还田对土壤碳平衡的影响. 西北农业学报, 2014, 23(11): 212-218.
ZHANG Q, LI H Y, SUN Y, TAN C J, HAO W H, REN G X, FENG Y Z. Responses of carbon balance to rotation regimen and straw returning in dry land. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(11): 212-218. (in Chinese)
[10]
郑孟静, 张经廷, 崔永增, 姚海坡, 贾秀领, 李岩. 华北平原基于麦玉轮作的粮薯、粮豆轮作模式碳足迹评价. 华北农学报, 2022, 37(S1): 81-89.

doi: 10.7668/hbnxb.20193400
ZHENG M J, ZHANG J T, CUI Y Z, YAO H P, JIA X L, LI Y. Evaluation of carbon footprint of grain-potato and grain-bean rotation model based on wheat-jade rotation in North China Plain. Acta Agriculturae Boreali-Sinica, 2022, 37(S1): 81-89. (in Chinese)
[11]
HU T W, MAO Z. Effects of cigarette tax on cigarette consumption and the Chinese economy. Tobacco Control, 2002, 11(2): 105-108.

doi: 10.1136/tc.11.2.105 pmid: 12035000
[12]
贾雪杰, 游明鸿, 李达旭, 董志晓, 李英主, 雷雄, 余青青, 张建波, 马啸. 减量施肥对牧草/烤烟轮作系统中产量和土壤养分的影响. 四川农业大学学报, 2024, 42(1): 166-173.
JIA X J, YOU M H, LI D X, DONG Z X, LI Y Z, LEI X, YU Q Q, ZHANG J B, MA X. Effect of reduced fertilizer application on yield and soil nutrients in a forage/tobacco rotation system. Journal of Sichuan Agricultural University, 2024, 42(1): 166-173. (in Chinese)
[13]
张相辉, 李彦周, 郭永才, 武广鹏, 李秋剑, 张长安. 工业品牌需求导向的河南省浓香烟叶资源配置模式. 中南农业科技, 2023, 44(3): 98-100, 104.
ZHANG X H, LI Y Z, GUO Y C, WU G P, LI Q J, ZHANG C A. Resource allocation model of Luzhou-flavor tobacco leaves in Henan Province oriented by industrial brand demand. South-Central Agricultural Science and Technology, 2023, 44(3): 98-100, 104. (in Chinese)
[14]
邓蒙芝, 刘英杰, 刘剑君, 马永建, 李富欣. 现代烟草农业建设背景下烟叶生产基础设施投资变迁及其发展方向: 以河南省襄城县为例. 华北水利水电大学学报(社会科学版), 2016, 32(1): 38-42.
DENG M Z, LIU Y J, LIU J J, MA Y J, LI F X. Investment changes and development trend of tobacco production infrastructures in the context of modern tobacco agriculture construction: based on Xiangcheng County in Henan Province. Journal of North China University of Water Resources and Electric Power (Social Science Edition), 2016, 32(1): 38-42. (in Chinese)
[15]
王晶, 杨佳豪, 陈雨露, 姚鹏伟, 鲁琪飞, 陈树鸿, 陈炬廷, 位辉琴, 叶协锋. 连续翻压黑麦草对豫中植烟土壤剖面CO2日排放变化的影响. 中国烟草学报, 2024, 30(2): 42-51.
WANG J, YANG J H, CHEN Y L, YAO P W, LU Q F, CHEN S H, CHEN J T, WEI H Q, YE X F. Effects of continuous overturning of ryegrass on diurnal variation of CO2 in tobacco-growing soil profile in central Henan Province. Acta Tabacaria Sinica, 2024, 30(2): 42-51. (in Chinese)
[16]
British American Tobacco. Responding to a changing world. (2016-1-12)[2024-04-20]. https://www.pmi.com/resources/docs/default-source/pmi-sustainability/cdp-climate-change-2016.pdf?sfvrsn=612988b5_4.
[17]
BOETTCHER R, ZAPPE A L, DE OLIVEIRA P F, MACHADO Ê L, DE ASSIS LAWISCH-RODRIGUEZ A, RODRIGUEZ-LOPEZ D A. Carbon Footprint of agricultural production and processing of tobacco (Nicotiana tabacum) in southern Brazil. Environmental Technology & Innovation, 2020, 18: 100625.
[18]
姜超强, 李晨, 朱启法, 徐海清, 刘炎红, 沈嘉, 阎轶峰, 余飞, 祖朝龙. 皖南不同种植模式碳汇效应及经济效益评价. 生态环境学报, 2022, 31(7): 1285-1292.

doi: 10.16258/j.cnki.1674-5906.2022.07.001
JIANG C Q, LI C, ZHU Q F, XU H Q, LIU Y H, SHEN J, YAN Y F, YU F, ZU C L. Evaluation of carbon sink and economic benefit in different planting patterns in southern Anhui. Ecology and Environmental Sciences, 2022, 31(7): 1285-1292. (in Chinese)
[19]
IPCC. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, 2021.
[20]
IPCC Intergovernmental Panel on Climate Change. Climate Change 2021-The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2023.
[21]
ZHANG D, SHEN J B, ZHANG F S, LI Y E, ZHANG W F. Carbon footprint of grain production in China. Scientific Reports, 2017, 7(1): 4126.
[22]
张国, 逯非, 黄志刚, 陈舜, 王效科. 我国主粮作物的化学农药用量及其温室气体排放估算. 应用生态学报, 2016, 27(9): 2875-2883.

doi: 10.13287/j.1001-9332.201609.031
ZHANG G, LU F, HUANG Z G, CHEN S, WANG X K. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. Chinese Journal of Applied Ecology, 2016, 27(9): 2875-2883. (in Chinese)
[23]
ADEWALE C, HIGGINS S, GRANATSTEIN D, STÖCKLE C O, CARLSON B R, ZAHER U E, CARPENTER-BOGGS L. Identifying hotspots in the carbon footprint of a small scale organic vegetable farm. Agricultural Systems, 2016, 149: 112-121.
[24]
生态环境部. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知. (2023-02-07)[2023-11-27]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
Ministry of Ecology and Environment. Notice on the management of greenhouse gas emission reporting of power generation enterprises from 2023 to 2025. (2023-02-07)[2023-11-27]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html. (in Chinese)
[25]
刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6): 1-11.
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11. (in Chinese)
[26]
CAI Y J, DING W X, LUO J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: A 3-year field measurement. Atmospheric Environment, 2013, 65: 112-122.
[27]
雷宏军, 刘欢, 刘鑫, 潘红卫, 陈德立. 水肥气一体化灌溉对温室辣椒地土壤N2O排放的影响. 农业机械学报, 2019, 50(3): 262-270.
LEI H J, LIU H, LIU X, PAN H W, CHEN D L. Effects of oxyfertigation on soil N2O emission under greenhouse pepper cropping system. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 262-270. (in Chinese)
[28]
殷全玉, 孟祥瑞, 赵世民, 王玉洁, 王宏, 申洪涛, 刘国顺. 有机无机氮肥配施下洛阳烟田土壤N2O排放特点及其控制因素. 水土保持学报, 2021, 35(2): 330-337.
YIN Q Y, MENG X R, ZHAO S M, WANG Y J, WANG H, SHEN H T, LIU G S. The N2O emission characteristics and controlling factors in Luoyang tobacco field under the combined application of organic and inorganic nitrogen fertilizer. Journal of Soil and Water Conservation, 2021, 35(2): 330-337. (in Chinese)
[29]
蒋雨洲, 刘青丽, 李志宏, 张云贵, 邹焱, 朱经纬, 石俊雄. 不同种植模式对黄壤烟田N2O排放的影响. 中国土壤与肥料, 2020(4): 26-31.
JIANG Y Z, LIU Q L, LI Z H, ZHANG Y G, ZOU Y, ZHU J W, SHI J X. Effect of different planting patterns on N2O emissions characteristics in tobacco yellow soil. Soil and Fertilizer Sciences in China, 2020(4): 26-31. (in Chinese)
[30]
WANG Y Y, HU Z H, LIU C, ISLAM A R M T, CHEN S T, ZHANG X S, ZHOU Y P. Responses of CO2 and N2O emissions from soil-plant systems to simulated warming and acid rain in cropland. Journal of Soils and Sediments, 2021, 21(2): 1109-1126.
[31]
营娜, 麻金继, 周丰, 马舒坦, 高伟, 徐鹏, 后希康. 中国农田肥料N2O直接和间接排放重新评估. 环境科学学报, 2013, 33(10): 2828-2839.
YING N, MA J J, ZHOU F, MA S T, GAO W, XU P, HOU X K. Re-quantification of the direct/indirect N2O emissions from agricultural fertilizer in China. Acta Scientiae Circumstantiae, 2013, 33(10): 2828-2839. (in Chinese)
[32]
GATHIYE G S, KUSHWAHA H S. Comparative studies of soybean (Glycine max L.) based cropping systems for sustainable production in malwa plateau of central India. Legume Research-an International Journal, 2023, 46(3): 359-363.
[33]
王秀存, 梁晶, 栗慧. 洛阳市烟-薯轮作模式优势分析与建议. 中国农技推广, 2021, 37(8): 23-24.
WANG X C, LIANG J, LI H. Analysis and suggestions on the advantages of tobacco-potato rotation mode in Luoyang City. China Agricultural Technology Extension, 2021, 37(8): 23-24. (in Chinese)
[34]
LI X. Microbial activity and community diversity in tobacco rhizospheric soil affected by different pre-crops. Applied Ecology and Environmental Research, 2017, 15(4): 15-30.
[35]
高晓晓, 涂丽琴, 杨柳, 刘亚楠, 高丹娜, 孙枫, 李硕, 章松柏, 季英华. 基于基因组序列分析的烟草轻绿花叶病毒江苏辣椒分离物侵染性克隆构建. 中国农业科学, 2023, 56(8): 1494-1502. doi: 10.3864/j.issn.0578-1752.2023.08.006.
GAO X X, TU L Q, YANG L, LIU Y N, GAO D N, SUN F, LI S, ZHANG S B, JI Y H. Construction of an infectious clone of tobacco mild green mosaic virus isolate infecting pepper from Jiangsu based on genomic clone. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502. doi: 10.3864/j.issn.0578-1752.2023.08.006. (in Chinese)
[36]
介元芬, 夏亚真, 李胜利. 探析河南辣椒产业高质量发展之路. 中国瓜菜, 2022, 35(11): 106-110.
JIE Y F, XIA Y Z, LI S L. Exploring the high-quality development path of pepper industry in Henan province. China Cucurbits and Vegetables, 2022, 35(11): 106-110. (in Chinese)
[37]
肖蓉. 江苏省蔬菜产业的经济效益研究[D]. 南京: 南京农业大学, 2011.
XIAO R. Study on economic benefit of vegetable industry in Jiangsu Province[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[38]
宋国义. 辣椒生产的机械化产业化发展探讨. 农业技术与装备, 2021(9): 38-39.
SONG G Y. Discussion on the mechanization industrialization development of pepper production. Agricultural Technology & Equipment, 2021(9): 38-39. (in Chinese)
[39]
洛阳市人民政府. 种辣椒用5G 耕种管收一点就成. (2023-04-12) [2024-03-10]. https://www.ly.gov.cn/html/1/2/10/65/66/10976947.html.
Luoyang Municipal People's Government. It takes a little bit of 5G to grow peppers. (2023-04-12)[2024-03-10]. https://www.ly.gov.cn/html/1/2/10/65/66/10976947.html. (in Chinese)
[40]
柘城县人民政府. 柘城县“十四五”现代物流业发展规划. (2023-11-24)[2024-03-10]. https://www.zhecheng.gov.cn/zcxbmxxgk/zcxswjgk/zcxswjfdzdgknr/zcxswjghjh/zcxswjgzgh/content_84729.
Zhecheng County People's Government. Zhecheng County "Fourteen five" modern logistics industry development plan. (2023-11-24) [2024-03-10]. https://www.zhecheng.gov.cn/zcxbmxxgk/zcxswjgk/zcxswjfdzdgknr/zcxswjghjh/zcxswjgzgh/content_84729. (in Chinese)
[41]
人民网. “流水线+信息化”开启烤烟新模式. (2023-07-25)[2024-03-08]. http://sd.people.com.cn/n2/2023/0725/c386785-40506401.html.
People's Daily Online. "Assembly line+information" opens a new model of flue-cured tobacco. (2023-07-25)[2024-03-08]. http://sd.people.com.cn/n2/2023/0725/c386785-40506401.html. (in Chinese)
[42]
沈梦雪, 王金阳, 李竹焘, 林海燕, 郭姝敏, 邹建文. 不同海拔茶园土壤N2O排放的温度敏感性. 环境科学, 2024, 45(12): 7401-7409.
SHEN M X, WANG J Y, LI Z T, LIN H Y, GUO S M, ZOU J W. Temperature sensitivity of soil nitrous oxide emission in tea plantations at different elevations. Environmental Science, 2024, 45(12): 7401-7409. (in Chinese)
[43]
王璐, 刘俊杰, 刘株秀, 顾海东, 张兴义, 王光华, 刘晓冰. 作物茬口对黑土农田土壤反硝化细菌数量及群落结构的影响. 植物营养与肥料学报, 2022, 28(10): 1782-1792.
WANG L, LIU J J, LIU Z X, GU H D, ZHANG X Y, WANG G H, LIU X B. Effects of crop stubbles in different cropping systems on the number and community structure of denitrifying bacteria in black soil farmland. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1782-1792. (in Chinese)
[44]
段智源, 李玉娥, 万运帆, 秦晓波, 王斌. 不同氮肥处理春玉米温室气体的排放. 农业工程学报, 2014, 30(24): 216-224.
DUAN Z Y, LI Y E, WAN Y F, QIN X B, WANG B. Emission of green house gases for spring maize on different fertilizer treatments. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 216-224. (in Chinese)
[45]
曹明锋, 宁尚辉, 祝利, 梅光军, 彭斯文, 卢红玲, 张清壮, 龙世平. 烟草-早熟食用豆轮作模式研究. 湖南农业科学, 2019(12): 26-29.
CAO M F, NING S H, ZHU L, MEI G J, PENG S W, LU H L, ZHANG Q Z, LONG S P. Study on rotation mode of tobacco and early maturing edible bean. Hunan Agricultural Sciences, 2019(12): 26-29. (in Chinese)
[46]
张晨晨, 曹雪莹, 刘昊翔. 基于碳足迹视角的农作物碳排放研究进展. 智慧农业导刊, 2024, 4(4): 49-53, 58.
ZHANG C C, CAO X Y, LIU H X. Research progress of crop carbon emission based on carbon footprint. Journal of Smart Agriculture, 2024, 4(4): 49-53, 58. (in Chinese)
[47]
JAYASUNDARA S, WAGNER-RIDDLE C, DIAS G, KARIYAPPERUMA K A. Energy and greenhouse gas intensity of corn (Zea mays L.) production in Ontario: A regional assessment. Canadian Journal of Soil Science, 2014, 94(1): 77-95.
[48]
雍太文, 杨文钰, 向达兵, 陈小容, 万燕. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定. 草业学报, 2012, 21(1): 50-58.
YONG T W, YANG W Y, XIANG D B, CHEN X R, WAN Y. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Prataculturae Sinica, 2012, 21(1): 50-58. (in Chinese)
[49]
杨文亭, 李志贤, 舒磊, 王建武. 甘蔗//大豆间作和减量施氮对甘蔗产量、植株及土壤氮素的影响. 生态学报, 2011, 31(20): 6108-6115.
YANG W T, LI Z X, SHU L, WANG J W. Effect of sugarcane// soybean intercropping and reduced nitrogen rates on sugarcane yield, plant and soil nitrogen. Acta Ecologica Sinica, 2011, 31(20): 6108-6115. (in Chinese)
[50]
雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014, 25(2): 474-482.
YONG T W, LIU X M, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y. Effects of reduced N application rate on yield and nutrient uptake and utilization in maizesoybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014, 25(2): 474-482. (in Chinese)
[51]
CONDORÍ M, ALBESA F, ALTOBELLI F, DURAN G, SORRENTINO C. Image processing for monitoring of the cured tobacco process in a bulk-curing stove. Computers and Electronics in Agriculture, 2020, 168: 105113.
[52]
WANG J A. Combination of waste-heat-recovery heat pump and auxiliary solar-energy heat supply priority for tobacco curing. Applied Ecology and Environmental Research, 2017, 15(4): 1871-1882.
[53]
任筱童, 柴以潇, 张莹, 谢凯柳, 王敏, 郭俊杰, 郭世伟. 县域稻麦轮作系统碳足迹分析: 以江苏兴化为例. 中国土壤与肥料, 2023(4): 67-75.
REN X T, CHAI Y X, ZHANG Y, XIE K L, WANG M, GUO J J, GUO S W. Carbon footprint analysis of rice-wheat rotation system at county level: a case study of Xinghua, Jiangsu province. Soil and Fertilizer Sciences in China, 2023(4): 67-75. (in Chinese)
[54]
杨晨, 胡珮琪, 刁贝娣, 成金华, 崔恒瑜. 粮食主产区政策的环境绩效: 基于农业碳排放视角. 中国人口·资源与环境, 2021, 31(12): 35-44.
YANG C, HU P Q, DIAO B D, CHENG J H, CUI H Y. Environmental performance evaluation of policies in main grain producing areas: from the perspective of agricultural carbon emissions. China Population, Resources and Environment, 2021, 31(12): 35-44. (in Chinese)
[55]
张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi:10.3864/j.issn.0578-1752.2020.02.007.
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007. (in Chinese)
[56]
董秀, 张燕, MUNYAMPIRWA Tito, 陶海宁, 沈禹颖. 长期保护性耕作对黄土高原旱作农田土壤碳含量及转化酶活性的影响. 中国农业科学, 2023, 56(5): 907-919. doi:10.3864/j.issn.0578-1752.2023.05.008.
DONG X, ZHANG Y, TITO M, TAO H N, SHEN Y Y. Effects of long-term conservation tillage on soil carbon content and invertase activity in dry farmland on the Loess Plateau. Scientia Agricultura Sinica, 2023, 56(5): 907-919. doi: 10.3864/j.issn.0578-1752.2023.05.008. (in Chinese)
[57]
蒋如, 宁诗琪, 隋宗明, 袁玲, 刘京. 长期轮作施肥处理对植烟土壤有机碳组分和酶活性的影响. 土壤, 2024, 56(3): 510-516.
JIANG R, NING S Q, SUI Z M, YUAN L, LIU J. Effects of long-term rotation and fertilization treatments on organic carbon fractions and enzyme activities in tobacco-planting soil. Soils, 2024, 56(3): 510-516. (in Chinese)
[1] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[2] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[3] LIU Jing, WANG Hong, ZHANG Lei, XIAO JiuJun, WU JianGao, GONG MingChong. Inversion of Nitrogen Content in Chili Pepper Leaves Based on Hyperspectral Analysis [J]. Scientia Agricultura Sinica, 2025, 58(2): 252-265.
[4] YUAN HuiLin, LI YaYing, GU WenJie, XU PeiZhi, LU YuSheng, SUN LiLi, ZHOU ChangMin, LI WanLing, QIU RongLiang. Characterization and Correlation Analysis of Soil Dissolved Organic Matter and Microbial Communities Under Long-Term Application of Fresh and Composted Manure [J]. Scientia Agricultura Sinica, 2025, 58(2): 307-325.
[5] WANG Wei, WU ChuanLei, HU XiaoYu, LI JiaJia, BAI PengYu, WANG GuoJi, MIAO Long, WANG XiaoBo. Genome-Wide Identification of Soybean LOX Gene Family and the Effect of GmLOX15A1 Gene Allele on 100-Seed Weight [J]. Scientia Agricultura Sinica, 2025, 58(1): 10-29.
[6] ZHANG SuXin, SHEN Ge, YU QiangYi, WU WenBin. Remote Sensing Detection of Cropping System and Its Spatial-Temporal Pattern in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1469-1489.
[7] WANG ChuFan, NIU Jun. Water and Carbon Footprint and Layout Optimization of Major Grain Crops in the Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(6): 1137-1152.
[8] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[9] LI YunJing, REN XueZhen, XIAO Fang, JIN Fang, GAO HongFei, JING Qi, WU YuHua, SUN Quan, LI Jun, WANG Pei, ZHAI ShanShan, JIN ShiQiao, WU Gang. Accurate and Rapid Identification of Event Purity for Transgenic Soybean Seeds Based on Duplex Real-Time Fluorescence PCR Method [J]. Scientia Agricultura Sinica, 2024, 57(23): 4698-4711.
[10] WANG Jing, WANG TianShu, WANG Li, ZHOU XinYu, LI TingYu, MENG YiLi, HUANG XinYang, YAO ShuiHong. The Effects of Soil Residual Nitrogen from Wheat Season on Summer Soybean Root Nodules, Root System and Yield [J]. Scientia Agricultura Sinica, 2024, 57(23): 4712-4724.
[11] FENG WenMi, ZHOU FangXue, YU Zhe, MOU KeXin, JING Yan, LI HaiYan. Cloning and Functional Analysis of GmRHF1 Gene Against Soybean Mosaic Virus [J]. Scientia Agricultura Sinica, 2024, 57(23): 4632-4643.
[12] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[13] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[14] TIAN Yun, WANG XiaoRui, YIN MinHao, ZHANG HuiJie. Re-Evaluation of China’s Agricultural Net Carbon Sink: Current Situation, Spatial-Temporal Pattern and Influencing Factors [J]. Scientia Agricultura Sinica, 2024, 57(22): 4507-4521.
[15] LU Lu, LI YiNuo, ZHANG XiuGuo, GAO DanMei, WU FengZhi. Effects of Wheat and Broad Bean Catch Crop and Their Decomposed Liquids on the Growth and Blight of Continuous Cropping Pepper Seedlings [J]. Scientia Agricultura Sinica, 2024, 57(22): 4541-4552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!