Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4863-4878.doi: 10.3864/j.issn.0578-1752.2022.24.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China

DU WenTing(),LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan()   

  1. College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2021-10-22 Accepted:2022-01-17 Online:2022-12-16 Published:2023-01-04
  • Contact: ShuLan ZHANG E-mail:duwentinga@163.com;zhangshulan@nwafu.edu.cn

Abstract:

【Objective】 The present study investigated the effects of reducing nitrogen application rate on the yields of three major cereals in China and its relationship with soil and other factors, so as to clarify the feasibility of reducing nitrogen application. 【Method】 90 published papers from 2010 to 2021 were collected and analyzed the effects of different nitrogen fertilizer reduction ratios on yield, and its relationship with planting systems and different conditions (fertilizer type, soil organic matter content, total nitrogen, soil pH, and water management). 【Result】 Compared with conventional fertilization rate, 0-40% nitrogen reduction did not significantly reduce the yield of rice, 0-30% nitrogen reduction did not significantly affect the yields of wheat and maize, when the nitrogen reduction was 30%-40%, the yield of wheat and maize significantly reduced by 6.1% and 5.4%, respectively. The yield level without nitrogen input area did not significantly affect crop yield of the three cereals following reduction of nitrogen rate. When soil total nitrogen was more than 2 g·kg-1, rice yield with reduced nitrogen application (6.5 t·hm-2) was significantly higher than that with conventional nitrogen application (6.3 t·hm-2); when total nitrogen was more than 1 g·kg-1, wheat yield with reduced nitrogen application (6.9 t·hm-2) was significantly lower than that with conventional nitrogen application (7.4 t·hm-2); when total nitrogen was more than 1.5 g·kg-1, maize yield with reduced nitrogen application (8.8 t·hm-2) was significantly lower than that with conventional nitrogen application (9.1 t·hm-2). When soil organic matter content was more than 30 g·kg-1, rice yield with reduced nitrogen application (6.9 t·hm-2) was significantly higher than that with conventional nitrogen application (6.7 t·hm-2), but soil organic matter content were 10-20 g·kg-1 and more than 20 g·kg-1, the reducing nitrogen application significantly reduced wheat yield. When soil pH was lower than 6.5, rice yield with reduced nitrogen application (6.6 t·hm-2) was significantly higher than that with conventional nitrogen application (6.4 t·hm-2). Wheat yield (6.6 t·hm-2) with reducing nitrogen application under single cropping was significantly higher than that with conventional nitrogen application (5.9 t·hm-2); maize yield (8.9 t·hm-2) with reducing nitrogen application under double cropping was significantly lower than that with conventional nitrogen application (9.1 t·hm-2). Based on common fertilizer, wheat yield with reducing nitrogen application (6.8 t·hm-2) was significantly lower than that with conventional nitrogen application (7.1 t·hm-2). Under rainfed, wheat yield with reducing nitrogen application (5.9 t·hm-2) was significantly lower than that with conventional nitrogen application (6.6 t·hm-2). 【Conclusion】 The yield of three major cereals in China can be maintained by reducing conventional nitrogen application rate by 30% although crop yield varied to certain extent with soil properties and management measures. Therefore, the reduced application of nitrogen fertilizer needed to be adjusted according to soil properties and management practices to achieve high yield and high nitrogen efficiency.

Key words: wheat, maize, rice, reducing nitrogen application rate, management practices, soil properties

Table 1

Classification of experimental data"

影响因素 Influence factor 水稻 Rice 小麦Wheat 玉米Maize
种植制度 Plant system 一年一熟Single cropping;一年两熟Double cropping
土壤pH Soil pH <6.5;≥6.5 <7;≥7 <7;≥7
肥料类型 Fertilizer types 控释肥料Control release fertilizer;普通肥料Conventional fertilizer
全氮含量 TN (g·kg-1) <1.5;1.5-2;>2 <0.75;0.75-1;>1 0.5-1;1-1.5;>1.5
有机质含量 SOM (g·kg-1) 10-20;20-30;>30 0-10;10-20;>20 0-10;10-20;>20
不施氮肥区产量 Yield without N input (t·hm-2) <5;5-7.5;>7.5 <5;5-7.5;>7.5 <5;5-7.5;>7.5
水分管理Water management 无 No 灌溉Irrigation;雨养Rainfed 灌溉Irrigation;雨养Rainfed
氮肥减施比例Reduced nitrogen rate (%) FP(0)、N10 (0-10)、N20 (10-20)、N30 (20-30)、N40 (30-40)

Fig. 1

Conventional nitrogen application rate for three major cereals in China The upper and lower limits of each box represent the 25% and 75% percentiles parameters’ values. The horizontal line in the center of the box indicates the median. The open circle indicates mean values. The solid dot indicates the distribution of nitrogen application. The same as below"

Fig. 2

Rice yield under different nitrogen fertilizer reduction ratios n mean the number of observations. The same as below"

Fig. 3

Effect of reduced nitrogen ratios on crop yield under different nitrogen levels of farmer practice The number mean the number of observations. The same as Fig.6-Fig.12"

Fig. 4

Wheat yield under different nitrogen fertilizer reduction ratios"

Fig. 5

Maize yield under different nitrogen fertilizer reduction ratios"

Fig. 6

The effect of yield without nitrogen input area on the crop yield following reduced nitrogen application FP means conventional N rate; RNF means reduced 0-40% N rate. The same as below"

Fig. 7

The effect of soil total nitrogen content on the crop yield following reduced nitrogen application"

Fig. 8

The effect of soil organic matter content on the crop yield following reduced nitrogen application"

Fig. 9

The effect of soil pH on the crop yield following reduced nitrogen application"

Fig. 10

The effect of cropping systems on the crop yields following reduced nitrogen application"

Fig. 11

The effects of different fertilizer types on the crop yield following reduced nitrogen application"

Fig. 12

The effects of irrigation and rainfed on the crop yield following reduced nitrogen application"

[1] 中华人民共和国国家统计局. 中国统计年鉴-2020. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of People's Republic of China. China Statistical Yearbook-2020. Beijing: China Statistics Press, 2020. (in Chinese)
[2] 高晓宁. 长期轮作施肥对棕壤氮素形态转化及其供氮特征的影响[D]. 沈阳: 沈阳农业大学, 2009.
GAO X N. Effect of long-term rotation and fertilization on transformation and supply of soil nitrogen[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese)
[3] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil and Tillage Research, 2016, 155: 85-94. doi:10.1016/j.still.2015.08.006.
doi: 10.1016/j.still.2015.08.006
[4] 蒋孝松, 刘彩玲, 隋标, 董彩霞, 郭世伟. 太湖流域稻麦轮作体系施肥现状分析与对策. 中国农学通报, 2012, 28(15): 15-18. doi:10.3969/j.issn.1000-6850.2012.15.004.
doi: 10.3969/j.issn.1000-6850.2012.15.004
JIANG X S, LIU C L, SUI B, DONG C X, GUO S W. Problems and proposals of the current fertilization situation in the rice-wheat rotation system in Tai Lake Basin. Chinese Agricultural Science Bulletin, 2012, 28(15): 15-18. doi:10.3969/j.issn.1000-6850.2012.15.004. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2012.15.004
[5] 韩燕, 郑景瑞, 卢慧宇, 王云凤, 罗彩霞, 杜文婷, 雷同, 张润泽, 徐佳星, 胡昌录, 张树兰. 汾渭平原农户冬小麦氮磷养分投入调查与分析. 麦类作物学报, 2020, 40(11): 1382-1388. doi:10.7606/j.issn.1009-1041.2020.11.13.
doi: 10.7606/j.issn.1009-1041.2020.11.13
HAN Y, ZHENG J R, LU H Y, WANG Y F, LUO C X, DU W T, LEI T, ZHANG R Z, XU J X, HU C L, ZHANG S L. Investigation and analysis of nitrogen and phosphorus input for winter wheat in Fenwei plain. Journal of Triticeae Crops, 2020, 40(11): 1382-1388. doi:10.7606/j.issn.1009-1041.2020.11.13. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2020.11.13
[6] 常艳丽, 刘俊梅, 李玉会, 孙本华, 张树兰, 杨学云. 陕西关中平原小麦/玉米轮作体系施肥现状调查与评价. 西北农林科技大学学报(自然科学版), 2014, 42(8): 51-61. doi:10.13207/j.cnki.jnwafu.2014.08.033.
doi: 10.13207/j.cnki.jnwafu.2014.08.033
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(8): 51-61. doi:10.13207/j.cnki.jnwafu.2014.08.033. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2014.08.033
[7] ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6: 25088. doi:10.1038/srep25088.
doi: 10.1038/srep25088 pmid: 27114032
[8] ZHAO Z, CAO L K, DENG J, SHA Z M, CHU C B, ZHOU D P, WU S H, LÜ W G. Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 2020, 178: 102743. doi:10.1016/j.agsy.2019.102743.
doi: 10.1016/j.agsy.2019.102743
[9] YANG Y Y, LIU L, ZHANG F, ZHANG X Y, XU W, LIU X J, LI Y, WANG Z, XIE Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environmental Science and Pollution Research, 2021, 28(12): 15350-15360. doi:10.1007/s11356-020-11591-5.
doi: 10.1007/s11356-020-11591-5
[10] XUE L H, YU Y L, YANG L Z. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Environmental Research Letters, 2014, 9(11): 115010. doi:10.1088/1748-9326/9/11/115010.
doi: 10.1088/1748-9326/9/11/115010
[11] LIU Z J, CHEN Z J, MA P Y, MENG Y, ZHOU J B. Effects of tillage, mulching and N management on yield, water productivity, N uptake and residual soil nitrate in a long-term wheat-summer maize cropping system. Field Crops Research, 2017, 213: 154-164. doi:10.1016/j.fcr.2017.08.006.
doi: 10.1016/j.fcr.2017.08.006
[12] 王道中, 张成军, 郭熙盛. 减量施肥对水稻生长及氮素利用率的影响. 土壤通报, 2012, 43(1): 161-165. doi:10.19336/j.cnki.trtb.2012.01.031.
doi: 10.19336/j.cnki.trtb.2012.01.031
WANG D Z, ZHANG C J, GUO X S. Effects of lower fertilizer on rice growth and nitrogen use efficiency. Chinese Journal of Soil Science, 2012, 43(1): 161-165. doi:10.19336/j.cnki.trtb.2012.01.031. (in Chinese)
doi: 10.19336/j.cnki.trtb.2012.01.031
[13] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018, 51(20): 3941-3950. doi:10.3864/j.issn.0578-1752.2018.20.012.
doi: 10.3864/j.issn.0578-1752.2018.20.012
YIN C X, LI Q, KONG L L, QIN Y B, WANG M, YU L, LIU C G, WANG L C, HOU Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Scientia Agricultura Sinica, 2018, 51(20): 3941-3950. doi:10.3864/j.issn.0578-1752.2018.20.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.20.012
[14] DING W C, XU X P, HE P, ULLAH S, ZHANG J J, CUI Z L, ZHOU W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis. Field Crops Research, 2018, 227: 11-18. doi:10.1016/j.fcr.2018.08.001.
doi: 10.1016/j.fcr.2018.08.001
[15] LI Y, LI Z, CUI S, CHANG S X, JIA C L, ZHANG Q P. A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agricultural and Forest Meteorology, 2019, 268: 136-145. doi:10.1016/j.agrformet.2019.01.018.
doi: 10.1016/j.agrformet.2019.01.018
[16] 晏娟, 尹斌, 张绍林, 沈其荣, 朱兆良. 太湖地区稻麦轮作系统中氮肥效应的研究. 南京农业大学学报, 2009, 32(1): 61-66.
YAN J, YIN B, ZHANG S L, SHEN Q R, ZHU Z L. Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region. Journal of Nanjing Agricultural University, 2009, 32(1): 61-66. (in Chinese)
[17] 林娜, 张忠庆, 李韶山, 刘金华, 赵立刚, 王亚卿, 向井, 朱飞鸿, 杨靖民. 基于SPAD值确定东北黑土区水稻最佳施氮量及追肥时间. 中国农学通报, 2015, 31(33): 6-10.
LIN N, ZHANG Z Q, LI S S, LIU J H, ZHAO L G, WANG Y Q, XIANG J, ZHU F H, YANG J M. The optimal amount of fertilizer and additional manuring time of rice in the northeast black earth area based on SPAD. Chinese Agricultural Science Bulletin, 2015, 31(33): 6-10. (in Chinese)
[18] 王小英, 刘芬, 同延安, 赵佐平. 陕南秦巴山区水稻施肥现状评价. 应用生态学报, 2013, 24(11): 3106-3112. doi:10.13287/j.1001-9332.2013.0534.
doi: 10.13287/j.1001-9332.2013.0534
WANG X Y, LIU F, TONG Y A, ZHAO Z P. Present situation of rice fertilization in Qin-Ba mountainous area of southern Shaanxi, China. Chinese Journal of Applied Ecology, 2013, 24(11): 3106-3112. doi:10.13287/j.1001-9332.2013.0534. (in Chinese)
doi: 10.13287/j.1001-9332.2013.0534
[19] 张均华, 刘建立, 张佳宝, 赵夫涛, 程亚南, 王伟鹏. 施氮量对稻麦干物质转运与氮肥利用的影响. 作物学报, 2010, 36(10): 1736-1742.
doi: 10.3724/SP.J.1006.2010.01736
ZHANG J H, LIU J L, ZHANG J B, ZHAO F T, CHENG Y N, WANG W P. Effects of nitrogen application rates on translocation of dry matter and utilization of nitrogen in rice and wheat. Acta Agronomica Sinica, 2010, 36(10):1736-1742. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01736
[20] 崔振岭. 华北平原冬小麦—夏玉米轮作体系优化氮肥管理—从田块到区域尺度[D]. 北京: 中国农业大学, 2005.
CUI Z L. Optimization of the nitrogen fertilizer management for a winter wheat-summer maize rotation system in the North China plain-from field to regional scale[D]. Beijing: China Agricultural University, 2005. (in Chinese)
[21] ZHANG S L, GAO P C, TONG Y N, NORSE D, LU Y L, POWLSON D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, northwest China. Agriculture, Ecosystems & Environment, 2015, 209: 89-99. doi:10.1016/j.agee.2015.03.002.
doi: 10.1016/j.agee.2015.03.002
[22] 冯承彬, 李吉环, 白惠义, 刘景莉. 青海省春小麦农户施肥状况调查研究. 安徽农业科学, 2017, 45(36): 102-104, 148. doi:10.13989/j.cnki.0517-6611.2017.36.032.
doi: 10.13989/j.cnki.0517-6611.2017.36.032
FENG C B, LI J H, BAI H Y, LIU J L. Investigation on current fertilization of spring wheat in Qinghai Province. Journal of Anhui Agricultural Sciences, 2017, 45(36): 102-104, 148. doi:10.13989/j.cnki.0517-6611.2017.36.032. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2017.36.032
[23] 游福欣, 王向阳, 王宗杰, 王定郧, 刘迎锋. 夏玉米最佳施氮量研究. 安徽农业科学, 2005, 33(5): 765-766. doi:10.13989/j.cnki.0517-6611.2005.05.010.
doi: 10.13989/j.cnki.0517-6611.2005.05.010
YOU F X, WANG X Y, WANG Z J, WANG D Y, LIU Y F. Preliminary study on application amount of nitrogen in summer corn. Journal of Anhui Agricultural Sciences, 2005, 33(5): 765-766. doi:10.13989/j.cnki.0517-6611.2005.05.010. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2005.05.010
[24] 高强, 冯国忠, 王志刚. 东北地区春玉米施肥现状调查. 中国农学通报, 2010, 26(14): 229-231.
GAO Q, FENG G Z, WANG Z G. Present situation of fertilizer application on spring maize in northeast China. Chinese Agricultural Science Bulletin, 2010, 26(14): 229-231. (in Chinese)
[25] WU W, LIAO Y C, SHAH F, NIE L X, PENG S B, CUI K H, HUANG J L. Plant growth suppression due to sheath blight and the associated yield reduction under double rice-cropping system in central China. Field Crops Research, 2013, 144: 268-280. doi:10.1016/j.fcr.2013.01.012.
doi: 10.1016/j.fcr.2013.01.012
[26] CASTILLA N P, LEAÑO R M, ELAZHOUR F A, TENG P S, SAVARY S. Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight. Journal of Phytopathology, 1996, 144(4): 187-192. doi:10.1111/j.1439-0434.1996.tb01512.x.
doi: 10.1111/j.1439-0434.1996.tb01512.x
[27] WU W, NIE L, SHAH F, LIAO Y, CUI K, JIANG D, XIE J, CHEN Y, HUANG J. Influence of canopy structure on sheath blight epidemics in rice. Plant Pathology, 2014, 63(1): 98-108. doi:10.1111/ppa.12078.
doi: 10.1111/ppa.12078
[28] 马尚宇, 侯君佑, 王艳艳, 黄正来, 张文静, 樊永惠, 马元山. 稻麦轮作系统无机氮肥高效利用研究进展. 土壤通报, 2021, 52(6): 1496-1504. doi:10.19336/j.cnki.trtb.2020110901.
doi: 10.19336/j.cnki.trtb.2020110901
MA S Y, HOU J Y, WANG Y Y, HUANG Z L, ZHANG W J, FAN Y H, MA Y S. Research progress on efficient utilization of inorganic nitrogen in rice and wheat rotation system. Chinese Journal of Soil Science, 2021, 52(6): 1496-1504. doi:10.19336/j.cnki.trtb.2020110901. (in Chinese)
doi: 10.19336/j.cnki.trtb.2020110901
[29] ZHU J G, HAN Y, LIU G, ZHANG Y L, SHAO X H. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutrient Cycling in Agroecosystems, 2000, 57(1): 75-82. doi:10.1023/A:1009712404335.
doi: 10.1023/A:1009712404335
[30] 梁婷, 同延安, 林文, 乔丽, 刘学军, 白水成, 杨宪龙. 陕西省不同生态区大气氮素干湿沉降的时空变异. 生态学报, 2014, 34(3): 738-745. doi:10.5846/stxb201211011517.
doi: 10.5846/stxb201211011517
LIANG T, TONG Y A, LIN W, QIAO L, LIU X J, BAI S C, YANG X L. Spatial-temporal variability of dry and wet deposition of atmospheric nitrogen in different ecological regions of Shaanxi. Chinese Journal of Plant Ecology, 2014, 34(3): 738-745. doi:10.5846/stxb201211011517. (in Chinese)
doi: 10.5846/stxb201211011517
[31] 马荣辉, 王瑞雪, 张杰, 董艳红, 郭跃升, 徐钰, 邱燕, 刘延生. 应用增效尿素减氮施肥对夏玉米产量及氮肥利用率的影响. 中国农技推广, 2020, 36(7): 51-53. doi:10.3969/j.issn.1002-381X.2020.07.022.
doi: 10.3969/j.issn.1002-381X.2020.07.022
MA R H, WANG R X, ZHANG J, DONG Y H, GUO Y S, XU Y, QIU Y, LIU Y S. Effect of nitrogen-reducing fertilization with synergistic urea on yield of summer maize and nitrogen utilization efficiency. China Agricultural Technology Extension, 2020, 36(7): 51-53. doi:10.3969/j.issn.1002-381X.2020.07.022. (in Chinese)
doi: 10.3969/j.issn.1002-381X.2020.07.022
[32] 郝小雨, 马星竹, 高中超, 周宝库. 氮肥管理措施对黑土春玉米产量及氮素利用的影响. 玉米科学, 2016, 24(4): 151-159. doi:10.13597/j.cnki.maize.science.20160425.
doi: 10.13597/j.cnki.maize.science.20160425
HAO X Y, MA X Z, GAO Z C, ZHOU B K. Effects of nitrogen fertilizer management on spring maize yield and nitrogen utilization in black soil. Journal of Maize Sciences, 2016, 24(4): 151-159. doi:10.13597/j.cnki.maize.science.20160425. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20160425
[33] 王薇, 李子双, 赵同凯, 李洪杰, 周晓琳. 控释尿素减量施用对冬小麦和夏玉米产量及氮肥利用率的影响. 山东农业科学, 2016, 48(5): 83-85, 88. doi:10.14083/j.issn.1001-4942.2016.05.021.
doi: 10.14083/j.issn.1001-4942.2016.05.021
WANG W, LI Z S, ZHAO T K, LI H J, ZHOU X L. Effects of decreasing controlled- release urea application rate on grain yield and nitrogen use efficiency of winter wheat and summer maize. Shandong Agricultural Sciences, 2016, 48(5): 83-85, 88. doi:10.14083/j.issn.1001-4942.2016.05.021. (in Chinese)
doi: 10.14083/j.issn.1001-4942.2016.05.021
[34] 彭术, 王华, 张文钊, 侯海军, 陈安磊, 魏文学, 万军勇, 袁辉忠. 长期氮肥减量深施对双季稻产量和土壤肥力的影响. 植物营养与肥料学报, 2020, 26(6): 999-1007. doi:10.11674/zwyf.19406.
doi: 10.11674/zwyf.19406
PENG S, WANG H, ZHANG W Z, HOU H J, CHEN A L, WEI W X, WAN J Y, YUAN H Z. Effect of long-term reduction and deep placement of nitrogen fertilizer on rice yield and soil fertility in a double rice cropping system. Plant Nutrition and Fertilizer Science, 2020, 26(6): 999-1007. doi:10.11674/zwyf.19406. (in Chinese)
doi: 10.11674/zwyf.19406
[35] XIA L L, LAM S K, CHEN D L, WANG J Y, TANG Q, YAN X Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(5): 1917-1925. doi:10.1111/gcb.13455.
doi: 10.1111/gcb.13455 pmid: 27506858
[36] WANG W N, LU J W, REN T, LI X K, SU W, LU M X. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Research, 2012, 137: 37-48. doi:10.1016/j.fcr.2012.08.010.
doi: 10.1016/j.fcr.2012.08.010
[37] FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980. PLoS ONE, 2013, 8(9): e74617. doi:10.1371/journal.pone.0074617.
doi: 10.1371/journal.pone.0074617
[38] LIU L, YAO S, ZHANG H T, MUHAMMED A, XU J X, LI R N, ZHANG D J, ZHANG S L, YANG X Y. Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat- summer maize cropping in Northern China. Agricultural Water Management, 2019, 213: 445-453. doi:10.1016/j.agwat.2018.11.001.
doi: 10.1016/j.agwat.2018.11.001
[39] FAGERIA N K. Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 2012, 43(16): 2063-2113. doi:10.1080/00103624.2012.697234.
doi: 10.1080/00103624.2012.697234
[40] 叶优良, 张福锁, 李生秀. 土壤供氮能力指标研究. 土壤通报, 2001, 32(6): 273-277. doi:10.19336/j.cnki.trtb.2001.06.009.
doi: 10.19336/j.cnki.trtb.2001.06.009
YE Y L, ZHANG F S, LI S X. Study on soil nitrogen supplying indexes. Chinese Journal of Soil Science, 2001, 32(6): 273-277. doi:10.19336/j.cnki.trtb.2001.06.009. (in Chinese)
doi: 10.19336/j.cnki.trtb.2001.06.009
[41] 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义. 土壤学报, 2003, 40(2): 232-238. doi:10.3321/j.issn:0564-3929.2003.02.011.
doi: 10.3321/j.issn:0564-3929.2003.02.011
LI J M, WANG Z H, LI S X. Significance of soil organic matter, total n and minerali- zable nitrogen in reflecting soil n supplying capacity. Acta Pedologica Sinica, 2003, 40(2): 232-238. doi:10.3321/j.issn:0564-3929.2003.02.011. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2003.02.011
[42] 张昌爱, 劳秀荣. 保护地土壤模拟酸化对油菜根系的影响. 耕作与栽培, 2003(1): 48-50. doi:10.3969/j.issn.1008-2239.2003.01.027.
doi: 10.3969/j.issn.1008-2239.2003.01.027
ZHANG C A, LAO X R. Effect of simulated acidification of protected soil on root system of rape. Tillage and Cultivation, 2003(1): 48-50. doi:10.3969/j.issn.1008-2239.2003.01.027. (in Chinese)
doi: 10.3969/j.issn.1008-2239.2003.01.027
[43] 张旭, 刘彦卓, 孔清霓, 黄农荣. 土壤pH对华南双季稻旱育秧素质的影响试验初报. 广东农业科学, 1998, 25(2): 8-10. doi:10.16768/j.issn.1004-874x.1998.02.004.
doi: 10.16768/j.issn.1004-874x.1998.02.004
ZHANG X, LIU Y Z, KONG Q N, HUANG N R. Preliminary report on the effect of soil pH on the quality of dry-raised seedlings of double-cropping rice in South China. Guangdong Agriculturl Science, 1998, 25(2): 8-10. doi:10.16768/j.issn.1004-874x.1998.02.004. (in Chinese)
doi: 10.16768/j.issn.1004-874x.1998.02.004
[44] 陈平平. 酸化土壤对水稻产量与氮利用效率的影响途径研究[D]. 长沙: 湖南农业大学, 2015.
CHEN P P. Effect approach of acidified soil on yield and nitrogen utilization efficiency of rice[D]. Changsha: Hunan Agricultural University, 2015. (in Chinese)
[45] 沈静, 朱毅勇, 徐国华. 根际pH对水稻细胞膜质子泵基因表达的影响. 中国水稻科学, 2009, 23(4): 349-353. doi:10.3969/j.issn.1001-7216.2009.04.03.
doi: 10.3969/j.issn.1001-7216.2009.04.03
SHEN J, ZHU Y Y, XU G H. Effect of rhizosphere pH on the expression of plasma membrane H+-ATPase gene in rice plants. Chinese Journal of Rice Science, 2009, 23(4): 349-353. doi:10.3969/j.issn.1001-7216.2009.04.03. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2009.04.03
[46] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23(3): 724-730. doi:10.13287/j.1001-9332.2012.0097.
doi: 10.13287/j.1001-9332.2012.0097
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. doi:10.13287/j.1001-9332.2012.0097. (in Chinese)
doi: 10.13287/j.1001-9332.2012.0097
[47] YANG J C, ZHANG J H, HUANG Z L, ZHU Q S, WANG L. Remobilization of carbon reserves is improved by controlled soil- drying during grain filling of wheat. Crop Science, 2000, 40(6): 1645-1655. doi:10.2135/cropsci2000.4061645x.
doi: 10.2135/cropsci2000.4061645x
[48] 王寅, 冯国忠, 张天山, 茹铁军, 袁勇, 高强. 控释氮肥与尿素混施对连作春玉米产量、氮素吸收和氮素平衡的影响. 中国农业科学, 2016, 49(3): 518-528. doi:10.3864/j.issn.0578-1752.2016.03.010.
doi: 10.3864/j.issn.0578-1752.2016.03.010
WANG Y, FENG G Z, ZHANG T S, RU T J, YUAN Y, GAO Q. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production. Scientia Agricultura Sinica, 2016, 49(3): 518-528. doi:10.3864/j.issn.0578-1752.2016.03.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.010
[49] 樊小林, 刘芳, 廖照源, 郑祥洲, 喻建刚. 我国控释肥料研究的现状和展望. 植物营养与肥料学报, 2009, 15(2): 463-473. doi:10.3321/j.issn:1008-505X.2009.02.032.
doi: 10.3321/j.issn:1008-505X.2009.02.032
FAN X L, LIU F, LIAO Z Y, ZHENG X Z, YU J G. The status and outlook for the study of controlled-release fertilizers in China. Plant Nutrition and Fertilizer Science, 2009, 15(2): 463-473. doi:10.3321/j.issn:1008-505X.2009.02.032. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.02.032
[50] AZEEM B, KUSHAARI K, MAN Z B, BASIT A, THANH T H. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 2014, 181: 11-21. doi:10.1016/j.jconrel.2014.02.020.
doi: 10.1016/j.jconrel.2014.02.020
[51] 樊小林, 廖宗文. 控释肥料与平衡施肥和提高肥料利用率. 植物营养与肥料学报, 1998, 4(3): 219-223.
FAN X L, LIAO Z W. Icreasing fertlizer use efficiency by means of controlled release fertilizer (crf) production according to theory and techniques of balanced fertilization. Plant Natrition and Fertilizen Science, 1998, 4(3): 219-223. (in Chinese)
[52] LIU R H, KANG Y H, PEI L, WAN S Q, LIU S P, LIU S H. Use of a new controlled-loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou reservoir area of China. Communications in Soil Science and Plant Analysis, 2016, 47(9): 1137-1147. doi:10.1080/00103624.2016.1166245.
doi: 10.1080/00103624.2016.1166245
[53] 张文学, 王少先, 夏文建, 孙刚, 刘增兵, 李祖章, 刘光荣. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响. 植物营养与肥料学报, 2019, 25(6): 897-909.
ZHANG W X, WANG S X, XIA W J, SUN G, LIU Z B, LI Z Z, LIU G R. Effects of urease inhibitor and nitrification inhibitor on functional nitrifier and denitrifier in paddy soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 897-909. (in Chinese)
[54] 谷佳林, 徐凯, 付铁梅, 张东雷, 佟国香, 罗军, 佟二建, 衣文平, 徐秋明. 不同密闭材料硫包衣尿素氮素释放特性及对夏玉米生长的影响. 植物营养与肥料学报, 2011, 17(3): 630-637.
GU J L, XU K, FU T M, ZHANG D L, TONG G X, LUO J, TONG E J, YI W P, XU Q M. Nitrogen release characteristics of different hermetic material sulfur coated urea and their effects on summer maize. Plant Nutrition and Fertilizer Science, 2011, 17(3): 630-637. (in Chinese)
[55] 王晨阳, 马元喜. 不同土壤水分条件下小麦根系生态生理效应的研究. 华北农学报, 1992, 7(4): 1-8.
doi: 10.3321/j.issn:1000-7091.1992.04.001
WANG C Y, MA Y X. Ecological and physiological effects on root systems of wheat under different soil water conditions. Acta Agriculturae Boreali-Sinica, 1992, 7(4): 1-8. (in Chinese)
doi: 10.3321/j.issn:1000-7091.1992.04.001
[56] 张慧娜, 王志强, 林同保. 不同水分条件下追施氮肥对小麦生物量及氮素利用的影响. 麦类作物学报, 2010, 30(6): 1104-1109.
ZHANG H N, WANG Z Q, LIN T B. Effects of nitrogen topdressing under different water conditions on the wheat nitrogen utilization and distribution. Journal of Triticeae Crops, 2010, 30(6): 1104-1109. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[10] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[11] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[12] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[13] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!