Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4879-4894.doi: 10.3864/j.issn.0578-1752.2022.24.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Provincial Agricultural Ecological Efficiency and Its Influencing Factors in China from the Perspective of Grey Water Footprint

DENG YuanJian(),CHAO Bo()   

  1. School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
  • Received:2022-09-05 Accepted:2022-10-25 Online:2022-12-16 Published:2023-01-04
  • Contact: Bo CHAO E-mail:dyj_scga@163.com;1627845541@qq.com

Abstract:

【Objective】This paper evaluated Chinese provincial agricultural ecological efficiency from the perspective of gray water footprint, revealed the spatial distribution characteristics of agricultural ecological efficiency, analyzed the main factors affecting agricultural ecological efficiency, and put forward policy suggestions to improve Chinese provincial agricultural ecological efficiency. 【Method】Based on the provincial panel data of China from 2000 to 2019, this paper comprehensively evaluated the agricultural ecological efficiency of Chinese provinces with the super efficiency SBM model considering the unexpected output, and used the spatial Dobbin model to analyze the spatial differences and influencing factors of agricultural ecological efficiency. 【Result】(1) In general, the agricultural grey water footprint showed a downward trend, but in some provinces (cities and districts), it showed an upward trend. From the ranking of grey water footprint from low to high, it could be seen that the provinces (cities and districts) in the forefront (i.e. with less grey water footprint) had a high level of economic development or a relatively low proportion of agricultural output value; the provinces (cities and districts) in the rear row (i.e. with more grey water footprint) had low economic development level or high agricultural output value. (2) During the observation period, the agricultural ecological efficiency fluctuated greatly in some years in the stable trend, and the average difference among provinces (cities and districts) was obvious and the distribution was extremely unbalanced. (3) Economic development level, fiscal expenditure for supporting agriculture, technological progress, agricultural disaster rate, planting structure and other factors had different impacts on Chinese agricultural ecological efficiency. With the improvement of both economic development level and people's living quality, both agricultural operators and consumers paid more attention to the protection of agricultural ecological environment and the quality of agricultural products, which have improved the level of regional agricultural ecological efficiency to a certain extent. But the pollution caused by regional economic and social development might also have a negative impact on agricultural ecological efficiency. Most of the financial support for agriculture was used to subsidize production links, such as pesticides, chemical fertilizers, and agricultural machinery. Although the agricultural production conditions have been improved and the agricultural economic productivity and efficiency have been improved, the improvement of agricultural ecological efficiency was not significant. The development of technology was very important in the agricultural production process, and the proper use of it would improve the agricultural ecological efficiency. The estimated results of agricultural disaster rate failed to pass the significance test, which might be because the expansion of agricultural disaster area would lead to the decline of agricultural ecological efficiency, but the annual disaster situation was not regular. The coefficient of planting structure was negative, which had a negative impact on agricultural production efficiency. This might be due to the high proportion of grain crop planting area in the total planting area of crops, and the high consumption of nitrogen fertilizer. 【Conclusion】As the evolution trend and difference of agricultural gray water footprint in various provinces (cities and districts) in China were obvious, the overall level of agricultural ecological efficiency was not high, and various factors have different impacts on agricultural ecological efficiency, it was necessary to improve the governance mechanism of agricultural gray water footprint; optimize the agricultural industrial structure and establish a compensation mechanism for agricultural water resources protection based on gray water footprint; improve the ways and policies of financial support for agriculture, and guide business entities to actively improve agricultural ecological efficiency.

Key words: agricultural ecological efficiency, agricultural grey water footprint, super-SBM model

Table 1

Evaluation index system of agricultural ecological efficiency"

指标类型 Index type 指标类别 Index category 指标名称 Index name 指标说明 Index description
投入指标
Input index
资源类指标
Resource index
劳动力投入
Labor input
农林牧渔业从业人员(万人)
Agricultural, forestry, animal husbandry and fishery employees (ten thousand people)
土地投入 Land input 农作物播种面积 Planting area of crops (×103hm2)
化肥投入
Chemical fertilizer input
农用化肥施用折纯量
Net amount of agricultural chemical fertilizer application (×104 t)
农业机械投入
Agricultural machinery input
农业机械总动力
Total power of agricultural machinery (×104 kW·h)
灌溉投入 Irrigation input 有效灌溉面积 Effective irrigation area (hm2)
农膜投入 Agricultural film input 农膜使用量 Amounts of agricultural film used (×104 t)
农药投入 Pesticide input 农药使用量 Amounts of pesticides used (×104 t)
期望产出指标
Expected output index
经济类指标
Economic index
农业生产总值
Gross agricultural production
农林牧渔业生产总值
Gross output value of agriculture, forestry, animal husbandry and fishery (×108 yuan)
非期望产出指标
Unexpected output index
环境类指标
Environmental index
农业灰水足迹
Agricultural grey water footprint
稀释农业生产活动排放的一定量的水污染物所需要的自然水体体积
Volume of natural water body required to dilute a certain amount of water pollutants discharged from agricultural production activities (m3)

Fig. 1

Measurement results of agricultural grey water footprint of 30 provinces (cities and districts) in China from 2000 to 2019 1-30 represent Beijing, Tianjin, Hebei, Shanxi, Neimenggu, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, respectively"

Table 2

Average ranking of agricultural grey water footprint of 30 provinces (cities and districts) in China from 2000 to 2019"

省域
Province
均值与排名 Average value and ranking
2000—2004年
From 2000 to 2004
2005—2009年
From 2005 to 2009
2010—2014年
From 2010 to 2014
2015—2019年
From 2015 to 2019
排名
Ranking
均值
Average value (m3)
排名
Ranking
均值
Average value (m3)
排名
Ranking
均值
Average value (m3)
排名
Ranking
均值
Average value (m3)
青海 Qinghai 1 3.2 1 3.3 1 3.9 1 3.3
北京 Beijing 2 8.5 2 7.2 3 5.9 2 3.4
天津 Tianjin 3 10.1 4 12.2 4 10.9 4 6.6
海南 Hainan 4 10.9 5 13.1 5 14.5 5 14.9
上海 Shanghai 5 11.7 3 7.7 2 5.4 3 3.9
宁夏 Ningxia 6 14.1 6 16.6 6 17.9 6 16.8
甘肃 Gansu 7 33.8 7 37.7 8 39.8 8 34.4
山西 Shanxi 8 40.7 8 40.1 7 37.2 7 26.9
贵州 Guizhou 9 43.4 10 46.3 13 51.8 11 43.3
重庆 Chongqing 10 45.5 12 48.8 12 49.8 13 46.4
新疆 Xinjiang 11 45.9 18 69.2 20 96.4 24 110.4
江西 Jiangxi 12 46.9 9 44.6 9 42.8 9 35.9
内蒙古 Neimenggu 13 49.8 19 73.1 18 89.6 19 90.7
福建 Fujian 14 52.3 11 48.3 10 47.3 12 43.4
黑龙江 Heilongjiang 15 53.7 17 68.7 17 86.4 17 82.3
浙江 Zhejiang 16 56.5 13 53.7 11 49.4 10 40.7
广西 Guangxi 17 59.5 16 67.8 16 73.3 16 74.4
辽宁 Liaoning 18 64.2 15 65.7 14 68.3 14 55.8
吉林 Jilin 19 66.2 14 64.3 15 71.3 15 62.5
云南 Yunnan 20 73.6 21 90.3 23 109.8 23 108.1
陕西 Shaanxi 21 74.8 20 82.7 19 95.6 18 87.9
广东 Guangdong 22 96.2 22 97.2 21 102.1 21 95.8
湖南 Hunan 23 100.3 23 108.1 22 108.6 20 94.1
安徽 Anhui 24 117.7 24 111.9 24 112.3 22 97.3
四川 Sichuan 25 120.5 25 128.3 25 126.6 25 113.7
湖北 Hubei 26 135.6 26 148.5 27 151.2 26 119.9
河北 Hebei 27 149.3 27 154.1 26 150.6 27 126.6
江苏 Jiangsu 28 185.5 28 176.9 29 166.9 29 149.1
山东 Shandong 29 190.5 29 181.5 28 156.3 28 133.7
河南 Henan 30 216.9 30 239.4 30 242.9 30 209.9

Table 3

Measurement results of agricultural ecological efficiency of 30 provinces (cities and districts) in China from 2000 to 2019"

省域
Province
年份 Year
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2019
北京 Beijing 1.069 1.171 1.271 1.208 1.135 1.124 1.088 1.130 1.165 1.664 1.696
天津Tianjin 1.392 1.315 1.160 1.198 1.208 1.149 1.147 1.136 1.090 1.014 1.023
河北 Hebei 1.286 1.206 1.241 1.240 1.255 1.149 1.108 1.094 1.004 0.176 1.027
山西 Shanxi 0.723 1.003 1.024 1.056 1.000 1.013 0.845 1.059 0.578 0.167 0.469
内蒙古 Neimenggu 0.488 0.504 0.532 0.549 1.046 1.035 1.026 1.046 1.027 0.216 1.031
辽宁 Liaoning 0.426 0.451 0.468 0.532 0.514 0.536 0.533 0.573 0.588 0.162 0.574
吉林 Jilin 0.385 0.384 0.403 0.454 0.484 0.560 0.595 0.597 1.050 0.231 1.162
黑龙江 Heilongjiang 0.447 0.438 0.450 0.521 0.542 1.002 1.042 1.004 1.111 0.176 1.126
上海 Shanghai 1.062 1.037 0.844 1.102 1.136 1.257 1.320 1.155 1.037 1.025 1.026
江苏 Jiangsu 0.416 0.406 0.400 0.410 0.429 0.452 0.463 0.507 0.709 0.144 0.694
浙江 Zhejiang 1.023 1.007 0.681 1.001 0.677 0.681 0.668 0.665 0.746 4.036 0.650
安徽 Anhui 0.527 0.559 0.584 0.622 0.605 0.700 0.717 0.677 1.080 0.173 1.024
福建 Fujian 0.376 0.393 0.416 0.400 0.422 0.432 0.459 0.463 0.519 0.179 0.481
江西 Jiangxi 0.279 0.336 0.433 0.594 1.002 1.093 1.106 0.445 0.567 0.157 0.620
山东 Shandong 1.008 1.027 1.019 1.022 1.003 1.016 1.020 1.026 1.110 0.170 1.112
河南 Henan 0.631 0.648 0.685 0.689 0.712 0.705 0.728 0.750 1.024 0.147 0.831
湖北 Hubei 0.315 0.337 0.347 0.422 0.450 0.509 0.532 0.562 0.662 0.144 0.667
湖南 Hunan 0.449 0.475 0.506 0.557 0.598 0.641 0.674 0.705 1.081 0.185 1.031
广东 Guangdong 0.463 0.402 0.398 0.376 0.374 0.405 0.421 0.440 0.489 0.120 0.474
广西 Guangxi 0.422 0.440 0.449 0.413 0.450 0.502 0.540 0.568 1.018 0.154 1.014
海南 Hainan 1.089 1.005 1.012 1.008 1.015 1.017 1.030 0.759 1.039 0.456 1.066
重庆 Chongqing 0.304 0.349 0.388 0.403 0.404 0.445 0.444 0.475 0.596 0.214 0.622
四川 Sichuan 0.296 0.312 0.331 0.370 0.348 0.426 0.462 0.447 0.586 0.117 0.595
贵州 Guizhou 0.292 0.332 0.385 0.542 0.520 0.613 0.537 0.620 0.601 0.170 1.007
云南 Yunnan 0.357 0.371 0.387 0.393 0.417 0.502 0.491 0.492 0.674 0.123 0.471
陕西 Shaanxi 0.342 0.374 0.405 0.424 0.445 0.486 0.524 0.543 0.583 0.160 0.577
甘肃 Gansu 0.484 0.510 0.539 0.533 0.555 0.616 0.660 0.663 0.646 0.192 0.673
青海 Qinghai 1.868 1.773 1.588 1.702 1.503 1.397 1.598 1.054 1.024 1.035 1.061
宁夏 Ningxia 0.682 1.002 1.005 1.012 0.805 1.007 1.033 1.026 0.776 1.007 1.014
新疆 Xinjiang 0.357 0.371 0.383 0.403 0.415 0.508 0.528 0.369 0.503 0.144 0.485

Table 4

Average agricultural ecological efficiency level of 30 provinces (cities, districts) in China from 2000 to 2019"

省域 Province 平均值 Average value 排序 Ranking 省域 Province 平均值 Average value 排序 Ranking
北京 Beijing 1.2263 1 甘肃 Gansu 0.5466 16
天津 Tianjin 1.1727 2 吉林 Jilin 0.5260 17
上海 Shanghai 1.0948 3 广西 Guangxi 0.5009 18
河北 Hebei 1.0699 4 贵州 Guizhou 0.4984 19
宁夏 Ningxia 0.9501 5 辽宁 Liaoning 0.4831 20
山东 Shandong 0.9433 6 青海 Qinghai 0.4423 21
海南 Hainan 0.9273 7 江苏 Jiangsu 0.4355 22
浙江 Zhejiang 0.9058 8 陕西 Shaanxi 0.4345 23
山西 Shanxi 0.8491 9 湖北 Hubei 0.4329 24
内蒙古 Neimenggu 0.7482 10 云南 Yunnan 0.4137 25
河南 Henan 0.7032 11 重庆 Chongqing 0.4096 26
黑龙江 Heilongjiang 0.6637 12 福建 Fujian 0.4084 27
安徽 Anhui 0.6268 13 新疆 Xinjiang 0.3917 28
湖南 Hunan 0.5907 14 广东 Guangdong 0.3914 29
江西 Jiangxi 0.5871 15 四川 Sichuan 0.3779 30

Fig. 2

Change trend of national agricultural ecological efficiency"

Table 5

Moran's I statistics of agricultural ecological efficiency in 30 provinces (cities and districts) of China from 2000 to 2019"

年份Year 莫兰值Morans’I P值P value Z值Z value 年份Year 莫兰值Morans’I P值P value Z值Z value
2000 0.135 0.009 2.387 2010 0.204 0.001 3.210
2001 0.133 0.006 2.496 2011 0.227 0.000 3.519
2002 0.151 0.005 2.577 2012 0.211 0.000 3.365
2003 0.197 0.001 3.176 2013 0.154 0.006 2.536
2004 0.191 0.001 3.110 2014 0.179 0.002 2.868
2005 0.175 0.002 2.879 2015 0.191 0.001 3.028
2006 0.154 0.005 2.610 2016 0.075 0.071 1.465
2007 0.169 0.003 2.792 2017 0.034 0.164 0.980
2008 0.185 0.001 2.981 2018 0.012 0.329 0.433
2009 0.206 0.001 3.282 2019 0.132 0.010 2.310

Table 6

Aggregation type of agricultural ecological efficiency in China"

年份
Year
高-高集群
High-High cluster
高-低集群
High-Low cluster
低-低集群
Low-Low cluster
低异常值
Low outlier
2000 北京、天津、河北
Beijing, Tianjin, Hebei
青海
Qinghai
贵州、重庆
Guizhou, Chongqing
新疆
Xinjiang
2004 北京、天津、河北
Beijing, Tianjin, Hebei
青海、海南
Qinghai, Hainan
新疆
Xinjiang
2009 内蒙古、北京、天津、河北
Neimenggu, Beijing,Tianjin, Hebei
青海
Qinghai
重庆
Chongqing
新疆
Xinjiang
2014 内蒙古、北京、天津、河北、山东、山西
Neimenggu, Beijing, Tianjin, Hebei, Shandong, Shanxi
广东、重庆
Guangdong, Chongqing
辽宁
Liaoning
2019 北京 Beijing 辽宁 Liaoning

Table 7

Influencing factors of agricultural ecological efficiency"

因变量
Dependent variable
符号
Symbol
变量解释
Interpretation of variables
人均收入 Per capita income RCI 农村居民人均可支配收入 Per capita disposable income of rural residents
财政支农支出
Fiscal expenditure on supporting agriculture
AFI 地方财政农林水事务支出/地方财政一般预算支出
Amount of agricultural, forestry and water affairs expenditure in local fiscal expenditure/ General budget expenditure of local finance (%)
技术水平 Technical level TI R&D投入/地方财政一般预算支出 R&D input/ General budget expenditure of local finance (%)
经济发展水平 Economic development level LED 地区人均GDP Regional per capita GDP
农业受灾率 Agricultural disaster rate RDR 农作物受灾面积/农作物总播种面积 Area affected by crops/ Total sown area of crops (%)
种植业结构 Planting structure CS 粮食作物种植面积/农作物总播种面积 Grain crop planting area/ Total sown area of crops (%)

Table 8

Descriptive statistics of variables"

变量名称
Variable name
均值
Average value
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
样本数
Number of samples
ECOE 0.69 0.38 0.11 4.04 600
RCI 7.8e 7.4e 1.41 1.3e 600
AFI 274.95 279.87 2.14 1.3e 600
TI 6.5e 7.4e 80.91 4.4e 600
LED 0.92 0.46 0.05 2.71 600
RDR 0.23 0.16 0.00 0.94 600
CS 0.53 0.09 0.34 0.75 600

Table 9

Regression results of influencing factors of agricultural ecological efficiency"

ECOE (1) ECOE (2) ECOE (3) ECOE (4)
RCIit -0.242***
(-2.741)
-0.325***
(-2.735)
-0.317**
(-2.352)
-0.296**
(-2.173)
RCI2it 2.351***
(4.812)
1.869***
(3.551)
1.662***
(3.129)
1.386***
(2.875)
LEDit -4.18*
(-2.13)
0.000*
(0.263)
CSit -0.065*
(-2.04)
4.189*
(1.493)
AFIit 0.002**
(2.346)
-0.001**
(-2.097)
TIit 3.88e**
(0.001)
0.179**
(2.013)
RDRit -0.085
(-1.02)
-6.251
(-3.276)
_cons -0.233**
(-2.152)
-0.128**
(-2.637)
0.318*
(1.851)
0.394*
(1.727)
R2 0.166 0.168 0.163 0.167
控制时间Control time 不控制Out of control 不控制Out of control 不控制Out of control 控制control
控制省份Control the provinces 不控制Out of control 控制control 不控制Out of control 控制control
样本数 Number of samples 600 600 600 600
拐点 Inflection point 0.593 0.577 0.561 0.558

Table 10

Sub sample estimation results of various factors on agricultural ecological efficiency in China"

区域
Region
解释变量
Explanatory variable
系数
Coefficient
区域
Region
解释变量
Explanatory variable
系数
Coefficient
东北地区
Northeast region
RCIit -0.103* 中部地区
Central region
RCIit -0.034**
RCIit2 2.108** RCIit2 1.552*
LEDit -0.005** LEDit -0.213***
CSit -0.461** CSit -0.245*
AFIit -0.121* AFIit -0.314*
TIit 0.231** TIit 0.125**
RDRit -0.424 RDRit -0.081
东部地区
Eastern region
RCIit -0.191* 西部地区
Western region
RCIit -0.112*
RCIit2 1.976* RCIit2 1.495**
LEDit -0.001** LEDit -0.006**
CSit -0.524** CSit -0.032**
AFIit -0.137** AFIit 0.046**
TIit 0.172* TIit 0.087*
RDRit -0.315 RDRit -0.631
[1] 前瞻产业研究院. 2017-2022年中国农村污水处理行业发展前景预测与投资战略规划分析报告. https://bg.qianzhan.com/trends/detail/506/220808-ac1fce40.html.
Prospective Industry Research Institute. Report of prospect and investment strategy planning analysis on China rural sewage treatment industry(2017-2022). https://bg.qianzhan.com/trends/detail/506/220808-ac1fce40.html. (in Chinese)
[2] 开燕华, 王霞, 曾铖. 长三角城市群现代农业发展效率评价: 考虑社会和工程功能的PCA-DEA模型的研究. 经济问题探索, 2018(6): 155-163.
KAI Y H, WANG X, ZENG C. Evaluation of modern agriculture of the Yangtze River Delta City group considering social and engineering functions based on PCA-DEA model. Inquiry into Economic Issues, 2018(6): 155-163. (in Chinese)
[3] 汪言在, 刘大伟. 纳入气候要素的重庆市农业全要素生产率增长时空分布分析. 地理科学, 2017, 37(12): 1942-1952. doi:10.13249/j.cnki.sgs.2017.12.019.
doi: 10.13249/j.cnki.sgs.2017.12.019
WANG Y Z, LIU D W. Spatial and temporal changes of total factor productivity in agriculture of Chongqing under constraints of climatic factors. Scientia Geographica Sinica, 2017, 37(12): 1942-1952. doi:10.13249/j.cnki.sgs.2017.12.019. (in Chinese)
doi: 10.13249/j.cnki.sgs.2017.12.019
[4] 苏昕, 刘昊龙. 农村劳动力转移背景下农业合作经营对农业生产效率的影响. 中国农村经济, 2017(5): 58-72.
SU X, LIU H L. The effects of farmers' specialized cooperatives on agricultural production efficiency within the context of rural labor migration. Chinese Rural Economy, 2017(5): 58-72. (in Chinese)
[5] 郑德凤, 郝帅, 孙才志. 基于DEA-ESDA的农业生态效率评价及时空分异研究. 地理科学, 2018, 38(3): 419-427. doi:10.13249/j.cnki.sgs.2018.03.012.
doi: 10.13249/j.cnki.sgs.2018.03.012
ZHENG D F, HAO S, SUN C Z. Evaluation of agricultural ecological efficiency and its spatial-temporal differentiation based on DEA- ESDA. Scientia Geographica Sinica, 2018, 38(3): 419-427. doi:10.13249/j.cnki.sgs.2018.03.012. (in Chinese)
doi: 10.13249/j.cnki.sgs.2018.03.012
[6] 黄玛兰, 曾琳琳, 李晓云. LCA和DEA法相结合的农业生态效率研究: 兼顾绿色认知和环境规制的影响. 华中农业大学学报(社会科学版), 2022(1): 94-104. doi:10.13300/j.cnki.hnwkxb.2022.01.010.
doi: 10.13300/j.cnki.hnwkxb.2022.01.010
HUANG M L, ZENG L L, LI X Y. Joint life cycle assessment and data envelopment analysis for assessing agriculture eco-efficiency— considering the impacts of green cognition and government regulations. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(1): 94-104. doi:10.13300/j.cnki.hnwkxb.2022.01.010. (in Chinese)
doi: 10.13300/j.cnki.hnwkxb.2022.01.010
[7] 赵吉, 党国英, 唐夏俊. 基于SBM-Tobit模型的中国农业生态效率时空差异及影响因素研究. 西南林业大学学报(社会科学), 2022, 6(3): 10-18.
ZHAO J, DANG G Y, TANG X J. Spatial-temporal differences and influencing factors of agricultural eco-efficiency in China based on SBM-Tobit model. Journal of Southwest Forestry University (Social Sciences), 2022, 6(3): 10-18. (in Chinese)
[8] 陈菁泉, 信猛, 马晓君, 常百舒, 张紫嫣. 中国农业生态效率测度与驱动因素. 中国环境科学, 2020, 40(7): 3216-3227. doi:10.19674/j.cnki.issn1000-6923.2020.0360.
doi: 10.19674/j.cnki.issn1000-6923.2020.0360
CHEN J Q, XIN M, MA X J, CHANG B S, ZHANG Z Y. Chinese agricultural eco-efficiency measurement and driving factors. China Environmental Science, 2020, 40(7): 3216-3227. doi:10.19674/j.cnki.issn1000-6923.2020.0360. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2020.0360
[9] 张展, 廖小平, 李春华, 杨灿, 阳莎莎, 李伊涵. 湖南省县域农业生态效率的时空特征及其影响因素. 经济地理, 2022, 42(2): 181-189. doi:10.15957/j.cnki.jjdl.2022.02.020.
doi: 10.15957/j.cnki.jjdl.2022.02.020
ZHANG Z, LIAO X P, LI C H, YANG C, YANG S S, LI Y H. Spatio-temporal characteristics of agricultural eco-efficiency and its determinants in Hunan Province. Economic Geography, 2022, 42(2): 181-189. doi:10.15957/j.cnki.jjdl.2022.02.020. (in Chinese)
doi: 10.15957/j.cnki.jjdl.2022.02.020
[10] 舒晓波, 冯维祥, 廖富强, 凌春园. 长江中游城市群农业生态效率时空演变及驱动因子研究. 水土保持研究, 2022, 29(1): 394-403. doi:10.13869/j.cnki.rswc.2022.01.043.
doi: 10.13869/j.cnki.rswc.2022.01.043
SHU X B, FENG W X, LIAO F Q, LING C Y. Study on the spatiotemporal evolution and driving factors of agricultural eco- efficiency of urban agglomeration in the middle reaches of the Yangtze River. Research of Soil and Water Conservation, 2022, 29(1): 394-403. doi:10.13869/j.cnki.rswc.2022.01.043. (in Chinese)
doi: 10.13869/j.cnki.rswc.2022.01.043
[11] 侯孟阳, 姚顺波. 空间视角下中国农业生态效率的收敛性与分异特征. 中国人口·资源与环境, 2019, 29(4): 116-126.
HOU M Y, YAO S B. Convergence and differentiation characteristics on agro-ecological efficiency in China from a spatial perspective. China Population, Resources and Environment, 2019, 29(4): 116-126. (in Chinese)
[12] 韩琴, 孙才志, 邹玮. 1998—2012年中国省际灰水足迹效率测度与驱动模式分析. 资源科学, 2016, 38(6): 1179-1191.
doi: 10.18402/resci.2016.06.17
HAN Q, SUN C Z, ZOU W. Grey water footprint efficiency measure and its driving pattern analysis on provincial scale in China from 1998 to 2012. Resources Science, 2016, 38(6): 1179-1191. (in Chinese)
doi: 10.18402/resci.2016.06.17
[13] 程鹏, 李叙勇, 孙明东. 基于河流参照状态的季风区域季节性农业灰水足迹核算方法与例证. 环境科学学报, 2020, 40(9): 3453-3462. doi:10.13671/j.hjkxxb.2020.0142.
doi: 10.13671/j.hjkxxb.2020.0142
CHENG P, LI X Y, SUN M D. Calculation method and illustration of seasonal agricultural grey water footprint in monsoon region based on river reference conditions. Acta Scientiae Circumstantiae, 2020, 40(9): 3453-3462. doi:10.13671/j.hjkxxb.2020.0142. (in Chinese)
doi: 10.13671/j.hjkxxb.2020.0142
[14] 何立新, 练继建, 王书吉. 河北省主要农作物2005—2014年灰水足迹变化. 水利水电技术, 2016, 47(12): 143-148. doi:10.13928/j.cnki.wrahe.2016.12.030.
doi: 10.13928/j.cnki.wrahe.2016.12.030
HE L X, LIAN J J, WANG S J. Variation of grey water footprint of main crops in Hebei Province from 2005 to 2014. Water Resources and Hydropower Engineering, 2016, 47(12): 143-148. doi:10.13928/j.cnki.wrahe.2016.12.030. (in Chinese)
doi: 10.13928/j.cnki.wrahe.2016.12.030
[15] CHAPAGAIN A K, HOEKSTRA A Y. The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International, 2008, 33(1): 19-32. doi:10.1080/02508060801927812.
doi: 10.1080/02508060801927812
[16] HOEKSTRA A Y. Virtual water trade: proceedings of the international expert meeting on virtual water trade. Delft, Netherlands: IHE, 2003: 13-23.
[17] BECKEN S. Water equity - Contrasting tourism water use with that of the local community. Water Resources and Industry, 2014, 7/8: 9-22. doi:10.1016/j.wri.2014.09.002.
doi: 10.1016/j.wri.2014.09.002
[18] MEKONNEN M M, HOEKSTRA A Y. A global assessment of the water footprint of farm animal products. Ecosystems, 2012, 15(3): 401-415. doi:10.1007/s10021-011-9517-8.
doi: 10.1007/s10021-011-9517-8
[19] 王圣云, 林玉娟. 中国区域农业生态效率空间演化及其驱动因素: 水足迹与灰水足迹视角. 地理科学, 2021, 41(2): 290-301. doi:10.13249/j.cnki.sgs.2021.02.012.
doi: 10.13249/j.cnki.sgs.2021.02.012
WANG S Y, LIN Y J. Spatial evolution and its drivers of regional agro-ecological efficiency in China's from the perspective of water footprint and gray water footprint. Scientia Geographica Sinica, 2021, 41(2): 290-301. doi:10.13249/j.cnki.sgs.2021.02.012. (in Chinese)
doi: 10.13249/j.cnki.sgs.2021.02.012
[20] 付永虎, 刘铁, 刘俊青, 胡晗, 魏范青. 基于灰水足迹的粮食主产区农业环境效率与水环境可持续性测度与评估. 中国农业资源与区划, 2021, 42(1): 77-87.
FU Y H, LIU T, LIU J Q, HU H, WEI F Q. Measurement and evaluation of agricultural environmental efficiency and environmental sustainability for water in the major grain-producing area based on grey water footprint. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(1): 77-87. (in Chinese)
[21] 欧阳佚亭, 宋国宝, 陈景文, 张树深. 中国淡水池塘养殖鱼类排污的灰水足迹及污染负荷研究. 环境污染与防治, 2018, 40(3): 317-322, 328. doi:10.15985/j.cnki.1001-3865.2018.03.016.
doi: 10.15985/j.cnki.1001-3865.2018.03.016
OUYANG Y T, SONG G B, CHEN J W, ZHANG S S. Grey water footprint and pollution loadings of freshwater pond-cultured fish in China. Environmental Pollution & Control, 2018, 40(3): 317-322, 328. doi:10.15985/j.cnki.1001-3865.2018.03.016. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2018.03.016
[22] TONE K. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 2001, 130(3): 498-509. doi:10.1016/S0377-2217(99)00407-5.
doi: 10.1016/S0377-2217(99)00407-5
[23] TONE K. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 2002, 143(1): 32-41. doi:10.1016/S0377-2217(01)00324-1.
doi: 10.1016/S0377-2217(01)00324-1
[24] 华春林, 张玖弘, 金书秦. 基于文本量化的中国农业面源污染治理政策演进特征分析. 中国农业科学, 2022, 55(7): 1385-1398.
HUA C L, ZHANG J H, JIN S Q. Analysis to evolution characteristics of policies for controlling agricultural non-point source pollution in China: based on text quantification. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398. (in Chinese)
[25] 张子龙, 薛冰, 陈兴鹏, 李勇进. 中国工业环境效率及其空间差异的收敛性. 中国人口·资源与环境, 2015, 25(2): 30-38.
ZHANG Z L, XUE B, CHEN X P, LI Y J. Convergence in spatial difference of industrial environmental efficiency in China. China Population, Resources and Environment, 2015, 25(2): 30-38. (in Chinese)
[26] 王宝义, 张卫国. 中国农业生态效率测度及时空差异研究. 中国人口·资源与环境, 2016, 26(6): 11-19.
WANG B Y, ZHANG W G. A research of agricultural eco-efficiency measure in China and space-time differences. China Population, Resources and Environment, 2016, 26(6): 11-19. (in Chinese)
[27] 蒋黎, 王晓君. 环境质量与农业经济增长的内在关系探讨: 基于我国31个省区面板数据的EKC分析. 农业经济问题, 2019, 40(12): 43-51. doi:10.13246/j.cnki.iae.2019.12.005.
doi: 10.13246/j.cnki.iae.2019.12.005
JIANG L, WANG X J. EKC hypothesis verification between rural environmental quality and agricultural economic growth in China—an empirical analysis based on panel data of 31 provinces. Issues in Agricultural Economy, 2019, 40(12): 43-51. doi:10.13246/j.cnki.iae.2019.12.005. (in Chinese)
doi: 10.13246/j.cnki.iae.2019.12.005
[28] 曹俊文, 曾康. 低碳视角下长江经济带农业生态效率及影响因素研究. 生态经济, 2019, 35(8): 115-119, 127.
CAO J W, ZENG K. Study on agricultural eco-efficiency and its influencing factors in the Yangtze River economic belt from the perspective of low carbon. Ecological Economy, 2019, 35(8): 115-119, 127. (in Chinese)
[29] 方琳, 吴凤平, 王新华, 余燕团. 基于共同前沿SBM模型的农业用水效率测度及改善潜力. 长江流域资源与环境, 2018, 27(10): 2293-2304.
FANG L, WU F P, WANG X H, YU Y T. Analysis of agricultural water efficiency measurement and improvement potential based on meta frontier SBM model. Resources and Environment in the Yangtze Basin, 2018, 27(10): 2293-2304. (in Chinese)
[30] 李慧明. 内外均衡, 一体循环: 循环经济的经济学思考: 国家社会科学基金重大项目:“经济发展和生态环境保护双赢的循环经济深入发展研究”成果之一. 天津: 天津人民出版社, 2007: 128-130.
LI H M. Internal and External Balance, Integrated Circulation—— Economic Thinking on Circular Economy. Beijing: Tianjin: Tianjin People's Publishing House, 2007: 128-130. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!